
Decision Heuristics in a Constraint-based Product
Configurator
Matthias Gorenflo1, Tomáš Balyo1, Markus Iser2,3 and Tobias Ostertag1,∗

1CAS Software AG, CAS-Weg 1 - 5, 76131 Karlsruhe, Germany
2Karlsruhe Institute of Technology (KIT), KIT-Department of Informatics, Karlsruhe, Germany
3University of Helsinki, Department of Computer Science / HIIT, Helsinki, Finland

Abstract
This paper presents an evaluation of decision heuristics of solvers of the Boolean satisfiability problem (SAT) in the context of
constraint-based product configuration. In product configuration, variable assignments are searched in real-time, based on
interactively formulated user requirements. Operating on user’s successive input poses new requirements, such as low-latency
interactivity as well as deterministic and minimal implicit product changes. This work presents a performance evaluation
of several heuristics from the SAT literature along with new variants that address the special real-time requirements of
incremental product configuration. Our results show that the execution time on an industrial benchmark can be significantly
improved with our new heuristic.
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1. Introduction

1.1. Motivation
In wake of an increasing globalization, the demand for
customized and personalized products rises in manufac-
turing and service industries, which previously only uti-
lized the advantages of mass production to offer stan-
dardized products for a good value. Shaped by Stanley
Davis and his 1987 book Future Perfect [1], this new fron-
tier is called mass customization and wants to meet the
product needs of individual customers. ”At its core, is a
tremendous increase in variety and customization with-
out a corresponding increase in costs. At its limit, it is the
mass production of individually customized goods and
services. At its best, it provides strategic advantage and
economic value” [2]. This results in increasingly complex
models of the product variants that can be configured,
if the model shall offer many intertwined parameters a
customer is allowed to choose from. Various domains
are applicable for product configuration with some of the
more complex product models revolving around the as-
sembly of different vehicles. But the decision, if every re-
quest of a customer is viable, can become troublesome for
even reasonably sized models. In remedying the solving
process automatically, so called knowledge-based con-
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figuration systems (or simply product configurators) [3]
play a key role. The product configurator is a tool to on
one hand decide on a product that respects the demands
of the user, which can be a customer, while conforming
to the limitations and constraints of the manufacturer
on the other hand. The description of the product model
lies at the core and spans the solution space, which is the
set of all possible product variants. This work focuses
on an interactive configuration process. During the con-
figuration of a product, a user performs adjustments to
the current product by selecting from different parts or
properties. Incremental requests coming from the user
are called user wishes and the configurator has to check
the validity of them.

A method of realizing the constraints of a product
model is to utilize propositional logic [4]. Hereby, for a
configuration to be valid, it has to satisfy a set of propo-
sitional formulas expressing the product configuration
problem as shown in [5]. A SAT solver is then capable
of checking if all user wishes can be satisfied under the
propositional representation of the configurator’s specifi-
cations. The truth assignment then holds the information
about the concrete manifestation of the configured prod-
uct.

The complexity of the SAT problem is in non-
deterministic polynomial time (NP) which can lead to
long computation times, exponential in the size of the
problem. Contrary to that is the interactive nature of
product configuration, where users expect a fast response
regarding the feasibility of their latest demand. The
shorter and faster the time spent on satisfiabilty check-
ing, the shorter the waiting time for users. Minimizing
the time of the SAT solving therefore plays an essential
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role for interactive, low-latency product configuration.
Luckily, many SAT formulas that model real world

problems can be solved quickly thanks to the classic DPLL
algorithm [6], which has seen many improvements and
additions over the last decades. Sophisticated heuristics
play a key role here. This is especially true for decision
and branching heuristics, which control the ordering and
values of the algorithm’s truth assignments [7].

The area of product configuration tends to place differ-
ent demands on a solver than the classical SAT formulas.
The process of incremental product configuration gener-
ally leads to less complex computations, since we solve
many simple formulas and not just one complex formula.

New challenges arise when the last user requirement
cannot be met with a previously selected configuration.
The possibility of stating conflicting requirements is in-
tentional, as the user may not be aware of all the interac-
tions between different requirements, or may be in the
process of making fundamental changes. In either case,
the user relies on feedback from the configurator, and it is
the solver’s job to calculate a new valid product configu-
ration. This amounts to solving an optimization problem
where the new configuration contains as few changes
as possible while omitting as few user requirements as
possible. To realize this idea, the configurator weights
the user’s requirements so that changes are associated
with costs.

Furthermore, not only a single optimal solution is of in-
terest but every solution with the smallest cost or within
a certain delta. So the user is able to select one of the best
fitting alternatives. The optimization problem can be re-
alized as aminimum-cost satisfiability (MinCostSAT) prob-
lem or an equivalent maximum satisfiability (MaxSAT)
problem. Nevertheless, the additional challenges posed
by product configuration also present new opportunities
to derive better heuristics for this specific use case.

1.2. Goals and Contributions
This paper lays the focal point on the goal of reaching an
as optimal as possible performance of decision heuristics
for SAT in the context of incremental product configura-
tion with weighted user requirements as described in the
previous section. We implemented four decision heuris-
tics under the additional requirement of deterministic
user experience, i.e., the configurator keeps producing
the same results. So a user receives the same selection
of alternative configurations for every repetition of a
specific interactive configuration sequence. The perfor-
mance of various known branching heuristics from SAT
solving as well as new heuristic ideas are evaluated in
the product configuration context. We examine how the
different sub-formula types and literal types can be ex-
ploited effectively in these heuristics.

The implementation of the heuristics and the following

evaluation is done with the product configurator Merlin
CPQ by the CAS Software AG. Merlin has a specialized
solving process of incremental problems from interac-
tive configuration. Compared to a typical SAT solver,
this configurator also supports multiple different formula
terms as well as arithmetic expressions.

We evaluate the heuristics with respect to their exe-
cution time and the decision count on several product
configuration benchmarks and specifically focus our ef-
forts on speeding up the more complex to solve problems
to enable fluid and user-friendly configuration of the de-
sired product, even in these taxing cases. Experimental
results show that the performance of the especially ex-
pensive benchmarks is roughly doubled by the best of
the presented branching heuristics.

Interactive product configuration is a unique domain,
so general-purpose heuristics do not necessarily achieve
the best performance here. In this paper, we intro-
duce new branching heuristics that achieve better perfor-
mance in the domain of interactive product configuration
than the well-known top dogs for more general-purpose
benchmarks. It remains to be seen, how the heuristics
evaluated in this paper behave in other benchmark do-
mains.

1.3. Related Work
Most modern satisfiability solvers are based on the highly
influential foundation of Davis and Putnam [8] and
the shortly following DPLL algorithm [9]. Advance-
ments were made regarding decision heuristics, efficient
data structures [10], clause learning [11, 12], and search
restarts [13, 14]. The effectiveness of this method caught
interest in several domains taking advantage of the strong
performance of SAT solvers, especially after multiple
strong improvements around the turn of the last cen-
tury. Probably the two largest domains using SAT are
automated planning and scheduling [15, 16] and formal
verification [17, 18].

Reductions to SAT are also well known in the context
of product configuration [3]. Sinz, Kaiser and Küchlin
show different methods in [19, 4] that can be deployed for
configuration and [5] demonstrates how SAT solvers are
able to be used for an interactive configuration process.

The most dominant decision heuristic in SAT solving
of the last century is probably Dynamic Largest Indi-
vidual Sum (DLIS) [20] found in GRASP, the algorithm
that revolutionized DPLL and gave birth to the new solv-
ing paradigm Conflict-driven Clause Learning (CDCL).
The predominant decision heuristic in CDCL solvers in
the last two decades has been Variable State Indepen-
dent Decaying Sum (VSIDS) which was first presented
in Chaff [10].

Nevertheless, decision heuristics for CDCL are a vi-
tal research area [21]. Application-specific specialized



heuristics are evaluated regularly [22, 23, 24]. Recently,
approaches based on reinforcement learning have been
successfully used to select heuristics dynamically [25, 26].

Efforts to develop specialized heuristics for product
configuration were made in [27] by applying graph analy-
sis to propositional formulas inMerlin CPQ. Nevertheless,
the resulting heuristic based on coreness is not adaptively
reacting to conflicts that will often appear in DPLL and
thus could not dethrone VSIDS, which still is Merlin’s
standard heuristic.

1.4. Overview
Chapter 2 presents the theoretical concepts and defini-
tions covering propositional logic as well as SAT and
MaxSAT solving in the context of incremental product
configuration. In Chapter 3, we explain the ideas and mo-
tivations behind the branching heuristics under consider-
ation. The implementation in Merlin CPQ is described in
Chapter 4. Subsequently, Chapter 5 presents the results
of our performance evaluation of the presented heuris-
tics. Lastly, we provide a summary and our perspective
on potential future work in Chapter 6.

2. Theoretical Preliminaries
This chapter is meant to give a brief introduction into
necessary preliminaries for our work, but this informa-
tion is not targeting to be an exhaustive treatise about
the field of SAT solving.

2.1. Propositional Logic
In propositional logic, we have two Boolean constants
to represent values of ”true” and ”false”. Propositional
formulas are built from Boolean variables and operators
such as negation, conjunction, and disjunction.

These operators are interpreted with respect to the
usual semantics, i.e., the negation of an argument is true
if and only if the argument is false, the conjunction of a
set of arguments is true if and only if all arguments are
true, and the disjunction of a set of arguments is false if
and only if all arguments are false.

A variable assignment maps all Boolean variables of
a formula to Boolean constants. The truth value of a
formula under a given assignment is determined by re-
placing the variables with Boolean constants accordingly
and by successively interpreting the truth value of all
sub-formulas according to the operator semantics.

2.1.1. Normal Forms and Clause Types

The most common appearance of SAT formulas is in
conjunctive normal form (CNF). A CNF formula is a con-
junction of clauses. Each clause itself is a disjunction of

one or more literals. A literal is either a Boolean variable
(positive literal) or the negation of a variable (negative
literal). In contrast to CNF formulas, a formula in dis-
junctive normal form (DNF) if it is a disjunction of terms,
where a term is a conjunction of literals.

The Merlin product configurator supports formulas
constructed as conjunctions of both types of normal
forms, CNF and DNF formulas, as well as at-most-one
(AMO) constraints over sets of literals. An AMO con-
straint evaluates to true if and only if at most one of its
literals is true. There are several ways to encode this
constraint in propositional logic but further details are
unimportant for this paper.

2.2. Propositional Satisfiability
The satisfiability (SAT) problem asks the question
whether it is possible to find a complete variable assign-
ment that interprets a given formula to true (satisfiable)
or declares this impossible (unsatisfiable). A SAT solver
can be used to answer such problem instances. We can ad-
ditionally call a propositional formula valid if it evaluates
to true for every possible assignment.

The easiest way to determine satisfiability is achieved
by creating a truth table for the whole formula and check
whether any resulting value is true. The issue is the effort
of this procedure, which grows exponentially with the
number of variables.

2.2.1. DPLL Algorithm

DPLL is an enhanced depth-first search algorithm. A
partial assignment is successively collected for a given
CNF formula by adding literals during its search proce-
dure. The assigned variables are then used to simplify
the original formula.

Central to DPLL is unit propagation. If the CNF con-
tains a unit clause (a clauses that consist of only a single
literal), then the clause’s literal is immediately used to
extend the current partial assignment. All further clauses
where this literal occurs can then be dropped from the
formula because they are satisfied by the assignment.
Furthermore, the negation of the literal is removed from
all clauses in which it occurs and we call clauses where
this happens ”touched” (this will be important later). The
propagation stops when no more unit clauses are present.

Afterwards, one of three states is reached. If no clause
remains, the instance is satisfiable and the algorithm
returns a satisfying assignment. If an empty clause
emerges, i.e., all literals in that clause are falsified, the in-
stance is unsatisfied under the current partial assignment.
This means that decisions have to be undone (backtrack-
ing) and if no decision can be undone the instance is
unsatisfiable. Otherwise, we need to heuristically pick
a decision variable which we use to extend the current



partial assignment. Two recursive calls have to be made
now; the variable is assigned true in one branch and false
in the other.

This algorithm covers all possible branches in the
worst case, which makes it sound and complete but also
not better than the naive approach regarding this aspect.
However, the performance on real world problems is com-
monly clearly superior to the worst-case performance
due to unit propagation and further techniques.

2.2.2. Clause Learning

A major improvement made to DPLL-based solvers
has been the concept of conflict-driven clause learning
(CDCL), first shown in the GRASP solver [11, 12] and then
advanced by Chaff [10]. It has been shown that CDCL p-
simulates general resolution which makes CDCL strictly
more powerful than classic DPLL [28]. In CDCL, each
time a decision leads to an empty clause, the conflicting
assignment is analyzed to derive a new clause that is
added to the formula. The idea behind that is to avoid
repeating mistakes across different similar branches in
the search. Additionally, conflict analysis can determine
a backtracking level for directly backtracking multiple
decision levels instead of one at a time. A slightly closer
look at this conflict analysis will be taken in the next
chapter, where we discuss heuristics that operate on the
implication graph that is used for conduction such a con-
flict analysis.

2.3. Propositional Optimization
The common formalism for describing propositional op-
timization problems is the weighted Maximum Satisfia-
bility Problem [29]. A MaxSAT instance consists of hard
clauses and soft clauses and associates a weight with
each soft clause. A solution for a MaxSAT instance is
characterized such that it satisfies all hard clauses and
the sum of weights of satisfied soft clauses is maximized.
In contrast, Minimum-Cost Satisfiability (MinCostSAT)
associates weights with every variable to define the cost
of an assignment. In that case, the target is to find a
solution of lowest possible cost. The reduction of Min-
CostSAT to MaxSAT is straight-forward through adding
the variables as negative literals in a soft unit clause with
a weight according to the variable’s cost.

Merlin CPQ uses such costs on the product’s properties
in the previous step (since we want to avoid overriding
preconfigured parts as much as possible) as well as for
the user wishes if they cannot all be realized together.
In order to achieve this goal, Merlin’s DPLL implemen-
tation supports best-first search, that prefers branches
of minimal cost. This search follows the branches that
cost the least. Should a branch appear that increases the
cost above the currently optimal path’s cost, then the

search is interrupted and always greedily continued at
another branch that sits on the path of minimal cost. A
relaxed version with a reduced memory consumption
is the beam search. Instead of potentially exploring all
promising branches, only a maximum number of the
cost-optimized children (defined by the beam width) are
considered.

3. Decision Heuristics
Solving SAT instances under the given optimization goals
is computationally hard. Nonetheless, DPLL in combina-
tion with good heuristics can often efficiently solve many
formulas that model real world problems. Thus we are
taking a look at several decision heuristics from SAT solv-
ing. In this chapter, we review and present well-known
and new heuristics that implemented and evaluated in
the context of product configuration in Merlin CPQ.

Important regarding possible heuristics for Merlin is
also that they have to pick their decision from a pre-
defined set of candidate literals. These candidates stem
from the unit propagation’s touched clauses. The touched
clauses unassigned literals are candidate literals if the
clauses are still unsatisfied when the heuristic is called.

3.1. Variable State Independent
Decaying Sum

Variable State Independent Decaying Sum (VSIDS) is one
of the most efficient decision heuristic for SAT solving
since over 20 years. The original idea arose for the solver
Chaff [10]. VSIDS was then refined and adjusted slightly
over the years, for example inMiniSat [30]. The common
idea behind the heuristic is that every variable maintains
a counter. The unassigned variable with the highest
counter value is chosen for the branching when the solv-
ing procedure requires a next decision. The counters are
maintained as follows:

• Initially, every counter starts with a score that
is typically set to zero. Alternatively, the initial
score could also be the amount of occurrences
of the respective variable in the propositional
formula.

• The counter is incremented each time the respec-
tive variable is involved in the reasons for a con-
flicting assignment. With Chaff the focus was
only on the learned clauses, MiniSat expanded
the involvement to all clauses that appeared dur-
ing conflict analysis.

• All counters are periodically decreased by a con-
stant factor after a certain amount of conflicts
occurred. This so called decaying is meant to
give higher priority to variables that appeared in
more recent conflicts.



3.2. Distance Heuristic
The distance heuristic pursues a promising approach
as described in [31]. This branching heuristic is based
on counters like VSIDS and also makes use of decaying.
However, the score increment dynamically takes into
account an estimate of how much a variables contributes
to the conflicting assignment under analysis. This is done
by taking into account the position of the variables in
the implication graph that is commonly used in CDCL
for analyzing the reasons for a conflicting assignment.

An implication graph is a directed acyclic graph. Each
node in the implication graph either represents a clause
that triggered an assignment during unit propagation
(including the empty clause which triggered the conflict
under analysis) or a decision literal. In the implication
graph, edges represent propagated, i.e. implied, literal as-
signments. Each edge is rooted in the node representing
the clause or decision that is the reason for the assign-
ment and ends in the node representing the clause in
which this assignment falsifies a literal. The creation
process starts by representing the conflicting clause with
a node and subsequently adding incoming edges for each
falsified literal, rooting them in nodes representing the
respective reasons for their assignment.

The authors hypothesize that the fewer clauses a vari-
able depends on during the conflict, the higher the prob-
ability that the variable contributes to a later conflict.
Unfortunately, realizing this dependence hypothesis ex-
actly would be too computationally intensive. The dis-
tance heuristic is an approximation to this idea, in that
it determines the number of vertices that are located on
the longest path in the implication graph from the node
representing the reason of a variable’s assignment to the
node representing the conflicting clause.

The distance heuristic scores literals differently de-
pending on their responsibility for the conflict in con-
trast to the constant increment of VSIDS. This heuristic
aims to be more precise because of the more elaborate
scoring, especially during the beginning of the search
where only few conflicts occurred and none of the deci-
sion heuristics is sufficiently initialized yet. However, the
authors of the distance heuristic point to the computa-
tional overhead of their heuristic as compared to VSIDS.
In their empirical evaluation, they found that it is bet-
ter to switch from the distance heuristic to VSIDS after
50,000 conflicts. This seems especially fitting for product
configuration because the focus on interactivity means
that the targeted problems are typically faster to solve
compared to some large SAT instances running several
minutes and resolving tens of thousands of conflicts.

3.3. Conflict Heuristic
While the previously described heuristics increase the
scores of variables that appear in reason clauses or
learned clauses, we thought that in our context we could
try something that is much simpler. The conflict heuristic
is our own variant of VSIDS, where we simply increase
the scores of variables in the conflicting clause. The
intuition behind this procedure is that such variable as-
signments should be fixed as quickly as possible, ideally
to satisfy as many unsatisfied clauses as possible.

3.4. Heuristics based on Pure Literals
Pure literals were already used in the original algorithm
of Davis and Putnam in the affirmative-negative rule [8].
After each unit propagation, the rule searches for liter-
als whose negated form does not occur in the formula
under the current partial assignment. Such literals can
be set to true without conflict, so that clauses containing
them can be eliminated from the formula. This proce-
dure was later called ”pure literal elimination”. However,
this has disappeared from most modern CDCL solvers
because the computational overhead involved is usually
not compensated by the benefits of this instance simplifi-
cation procedure. This is due to the advent of efficient
data structures for unit propagation which are commonly
used in modern SAT solvers.

Merlin uses different data structures for unit prop-
agation, primarily due to the additional requirements
imposed by incremental user interaction, which requires
the ability to correct assignments deterministically and
non-chronologically. But the non-chronological correc-
tion of assignments is also detrimental to the applicability
of the pure literal rule. At any point in time, a user could
select a property such that a previously pure literal is no
longer pure. This would not be possible in classical SAT
solving, where a pure literal appearing under a particular
variable assignment remains a pure literal at least for
all branches below it. However, assigning a pure literal
explicitly by a branching decision is a valid option.

3.4.1. Pure Literal Heuristic

A first idea for a decision heuristic that utilizes this con-
cept can thus try to select pure literals whenever possible
and thus add them to the partial truth assignment. If
there are no pure literals available, then the remaining
variables are handled afterwards with a different strategy.
In the basic variant this is done by a fixed initial ordering.

3.4.2. Pure Literal Phase

The approach of favoring pure literals can and should
though be combined with other heuristics as well, where
those heuristics proceed instead of the random ordering.



Additionally, preferring pure literals can be done in cer-
tain phases. So pure literals could only be preferred after
a certain amount of conflicts or decisions, up to a certain
amount, within a range, or by having alternating phases
of favoring pure literals and just the basic heuristic.

3.4.3. State Dependent Pure Literals

We try some modifications related to keeping pure liter-
als up-to-date during run time for potential improvement.
A heuristic can remember so-called ”almost” pure literals,
which we see as variables that are mostly present in one
polarity, while the other polarity is rare. For every al-
most pure literal, the configurator also stores the clauses
preventing the literal from being completely pure. If all
the clauses related to an almost pure literal are marked
deleted during unit propagation, then this literal is being
added to the set of pure literals. This would thus increase
the amount of available pure literals.

3.4.4. Pureness Variant

Pureness of literals is another variant of pure literals. The
amount of positive versus negative literals of each vari-
able determines a pureness percentage. Variables with
a balanced share of positive and negative appearances
lead to a low pureness, almost pure literals get a high
pureness percentage, and fully pure literals would be 100
percent. The decision heuristic then picks the literal with
highest pureness score. Again, different heuristics can
be used as combination, either as tie breaker or to set
multiple scores off against each other.

3.5. Clause-Based Heuristic
For the clause-based heuristic (CBH), all clauses are kept
in an ordered list and decision literals are picked from the
top-most unsatisfied clauses in that list according to [32].
To create an initial ordering of clauses, the priority of a
clause is calculated based on the number of occurrences
of the literals it contains. To increase the proximity of
clauses that have literals in common, the ordered list is
gradually populated by starting with the clause with the
highest priority and then first increasing the priorities of
all clauses that have literals in common with the clause
just added. This process is repeated until all clauses are
added to the list. The ordered list is then update on
each conflict by moving the conflicting clause and the
reason clauses to the front. For the decision heuristic to
select a literal from the top-most unsatified clauses, each
literal has additional counters to measure its contribution
to (recent) conflicts, while larger scores are preferred.
Further details can be found in [32].

4. Implementation
Merlin CPQ already contains implementations of VSIDS
and a few other heuristics. In this section we discuss im-
plementation details of VSIDS, CBH and CBH Simplified.

4.1. Variable State Independent Decaying
Sum

VSIDS is already part of Merlin and the default heuristic.
The concrete realization of VSIDS is quite different from
the ones used in off-the-shelf SAT solvers. One difference
is that Merlin initially selects variable’s based on their
individual occurrence counts in the formula. This is in
contrast to most implementations which initialize scores
with zero (cf. CaDiCaL [33], orMiniSat [30]) The variable
occurrence counts and the VSIDS score of a variable are
kept separately. The sum of both scores is then used to
determine the final score used with decisions.

During conflict analysis, the VSIDS scores are incre-
mented by a bump value which is initially set to 100. The
purpose of VSIDS decay is to make previously bumped
variables less important over time. In Merlin, this is real-
ized by increasing the bump value over time. Every 15
conflicts the bump value is increased by two percent.

4.2. Clause-Based Heuristic
An exact reimplementation of the clause-based heuristic
as it is described in [32] would not suitMerlin’s heuristics,
who have to make their decision based on the given set
of candidate literals. Therefore, we do not explicitly man-
age a global clause-list as it is done in the original CBH.
Only initially, a list based on all clauses is created with
the ordering described by the CBH authors. Hereby, we
go through the original set of all clauses and remember
for each unique literal, in which clauses it was contained.
Then we create a new list with every variable, which is
sorted regarding the variables’ score based on the coun-
ters of the variable’s two literals. The paper would now
put the clauses containing the highest scoring variable
into the clause list, however, we assign a priority to the
literals depending on their supposed position in this list
instead of explicitly storing the clause list for later usage.
So in the first step, the highest scoring variable and all
variables that share a clause with it receive priority -1.
Each variable has two additional local literal counters
which get increased for every occurrence of its respective
literal as part of a clause added to the clause list. There-
fore, we also increase this local score when setting the
priority. The priority is afterwards decreased by one for
the next bunch of clauses. This procedure now continues
until every variable was selected, while the local score is
always added to the variable’s score.



Updates due to a conflict can then be realized by cal-
culating the conflict responsible clauses. Each literal of
these clauses receives a new priority (starting at zero)
that is one higher than the previous highest priority. This
procedure is equal to moving clauses to the topmost po-
sition of a clause list. Additionally, these literals get a
bump to their conflict counter. The same then happens
to the actual conflict clause with the next priority value.

Choosing a literal can then be done by checking the
position of a literal via its priority. The ones with the
highest priority (which is equal to the topmost position
in a clause list) are preferred. Literals from the supposed
topmost clause will receive the same priority, thus the
best literal is further selected depending on a variable’s
counters that get bumped for conflicts. The official clause-
based heuristic seems a bit over-engineered because it
keeps counters that get only increased during a conflict
and ones that additionally decay periodically. This decay
seems of questionable importance since we already move
literals that occur in recent conflicts to the top. Thus we
do drop this second counter in our implementation.

CBH also operates rather complex in regard to the
different counters for the variables because for every
comparison of two variables, several counters need to be
added and multiplied together for each of the variables.
This may cause unnecessary overhead. The formulas
that are used to combine the counters of a positive and
negative literal into a variable’s counter are the main
reason behind CBH’s need for this dynamic calculation.
In all these formulas, the positive and negative literal get
added to three times the minimum of the two literals.
The reason behind this last term is to punish variables
where just one of its literals is important, kind of like the
inverse of pureness. But the CBH authors do not spec-
ify how strong its impact on the heuristics performance
is. So we create a simplified clause-based heuristic re-
garding the scoring functions by removing the minimum
component. Consequently, we also drop the distinction
between positive and negative literals in regard to the
score and directly add them up. This means we explic-
itly combine values from a positive and negative literal
pair into one variable count, since the distinction will be
unimportant for our simplified heuristic. As a welcome
side effect, this combination also reduces the number of
individual counters that need to be stored.

5. Evaluation
The evaluation of the heuristics is done on several prob-
lems from three rule sets in Merlin CPQ. These rule sets
are based on the use cases of customers who use Merlin
for product configuration. Our testset contains a total
of 241 individual benchmarks across 85 methods of cus-
tomizing trucks. Each test translates to one user wish
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Figure 1: Evaluation with respect to decision count.

and a method with multiple tests translates to a series
of user requests. The most important statistics of the
formulas used in testing are as follows: 28000 variables,
127000 clauses, 5000 other constraints.

The performance metrics we consider for the problems
in this evaluation are the execution time, averaged over
three runs, and the sum of the amount of contradictions
that were encountered plus the number of branches that
were taken. The number of branches taken due to deci-
sions is a good indicator of the heuristic’s effectiveness.
Contradictions happen less often, ideally a few hundreds
for the most elaborate methods and at most around five
to ten percent the amount of branches. Therefore we
included it as a small contribution on defining the effec-
tiveness of the decisions selected. Both numbers should
be as low as possible and the sum of them is called ”steps”
in the following for simplicity. Their advantage is that the
amount of contradictions and branches is deterministic
in every run and hardware agnostic. The only down-
side is that potential time-consuming calculations of a
heuristic remain hidden when just looking at the step
count. Therefore we also measure the concrete execution
time (in milliseconds) for certain comparisons where we
expect overheads from parts of a heuristic.

Every metric is always plotted per test method. Cactus
plots – typically seen at SAT and SMT competitions – are
used whenever more than two heuristics are compared.
Here, the methods are ordered by importance for each
heuristic element displayed in the graph. The top and
right borders represent the timeout limit.

All measurements are performed on an Intel Core i7-
4710MQ CPU at 2.5 GHz with 16 GB of RAM under Win-
dows 10, version 21H1. The Merlin CPQ version in use is
the state of the master branch on 9. December 2021 and
running JDK 11.0.13.8.

In Figure 1 we can see that the quality of the literals
chosen by CBH are rather good, meaning that it takes
just a few decisions to finish the algorithm for most tests
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Figure 2: Evaluation with respect to execution time.

– typically even less than the pure literal modified VSIDS
variants. However, looking at Figure 2 we see that the
complicated summation used by CBH comes at a huge
penalty for the execution time. The modified and simpli-
fied alternative eliminates this issue.

The CBH simplified heuristic works as intended. It
keeps the strength of CBH’s good decision making while
maintaining to reach this conclusion quickly and without
too much overhead. The initial priority should also be
calculated more efficiently. So the execution time across
the whole of rule set 1 is therefore always competitive
and often even faster than the best VSIDS variants.

6. Conclusion
We presented and implemented several heuristics and
tweaks that were able to improve the decision making
of Merlin CPQ. The largest tests from an industrially
used rule set could be significantly improved by an op-
timized version of the clause-based heuristic. Our idea
of a branching heuristic that specializes on the variables
causing conflicts and utilized pure literals as preference
also performed almost as strong.

In a configurator, the initial weighting of variables is
substantial for the performance. The main conclusion for
a product configuration heuristic is the significance of
selecting interrelated variables. There are several ways a
configurator can group them together and take advantage
of them. Keeping them united according to their occur-
rence in clauses is what worked best for our benchmarks.
Other groupings are possible according to concepts like
pure literals, the types of literals and their clause type
they are contained in, or their appearance in the start
configuration. The aim is to offer a few good heuristics to
the people who design the rule sets that are then brought
to users who can configure their product. The design-
ers typically test several heuristics with their specific

environment and are then able to choose the one that
performs best for them.

There are still many promising heuristics that can be
tested in the field of product configuration, as well as
countless combinations and alternations. The currently
popular Learning Rate Branching (LRB) [34] based on
reinforcement learning is a prime candidate. However,
it is important to consider the limitations of the product
configurator’s structure. Some information might not
be directly accessible to the decision heuristic and only
realizable with major changes to the whole architecture.
Ideas that contain parts which are inefficient to calculate
might need to be changed to perform as desired. So a
heuristic has to be adopted to the system it is used in,
otherwise the configuration system would be in certain
aspects designed around the decision heuristic.
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