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Abstract
Purpose: Automatically identifying synonyms is an important but challenging aspect of entity

normalization in knowledge graphs. Entity normalization is crucial in ensuring that information in
knowledge graphs is well connected and therefore efficiently reusable. We aim to investigate the potential
of pre-trained large language models (LLMs) for this task.
Methodology: We use k-Means clustering to compare latent concepts learned by LLMs with human-
defined scientific synonymy concept clusters sourced from ORKG, CS-KG, SemEval 2017, and SciERC
data. We investigate the models BERT, RoBERTa, BART, and OpenAI GPT3 (text-embedding-ada-002
variant) and evaluate clustering results by model layer.
Findings: 𝐹1 scores average around 0.7 to 0.75 depending on the dataset and layer. The best results
are reached using OpenAI GPT3 (max 𝐹1=0.914). We further notice no advantage of models trained on
scientific data.
Value: Our results suggest information learned by transformer models aligns with human-defined
scientific synonyms. This shows the potential of information encoded in pre-trained LLMs to be leveraged
for synonymy detection.
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1. Introduction

Knowledge graphs (KGs) can help to represent, organize, make accessible, and more efficiently
reusable the large and ever-increasing amount of scientific findings. However, in order to do so,
it is vital that the entities they contain are richly described and well connected.

One possible way to build rich KGs is through leveraging existing human knowledge by
employing crowd-sourcing. The Open Research Knowledge Graph (ORKG, https://orkg.org/),
for example, is a community-curated KG for scientific information extracted from journal
publications, conference proceedings, and other academic literature [1, 2]. Its web-based
frontend interface supports researchers in creating semantic descriptions of their scientific
findings. Hence, users collaboratively populate and maintain the knowledge graph.

An important challenge in crowd-sourced KGs is the appearance of non-connected name
variations of entities in the graph. Name variations are different wordings, spelling differences
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or synonyms of the same underlying entity. Fakhraei et al. [3] differentiate between syntactic
and semantic variations. Syntactic variations cover spelling differences, changes in word order or
capitalization and similar (e.g., ‘FOXP2’ and ‘FOX-P2’) while semantic variations are significant
changes in naming not linkable to the same entity by considering syntactical changes that a
human can, however, still identify as describing the same entity (e.g., ‘P70 S6KA’ and ‘52 kDa
ribosomal protein S6 kinase’). Name variations — especially semantic variations — pose a risk
to richly described, dense KGs, because they can lead to missing links between information
about the same underlying entity. A crucial task in knowledge graph curation is therefore the
normalization of entities and linking between semantic variations.

The linguistic property we are most interested in here is synonymy. Synonyms are different
terms, which express the same fact and cover both the same meaning as well as extension. They
can be differentiated from hyper- and hyponyms, which form a generalization or specialization,
respectively.

Our aim is to measure to what degree the semantic information encoded in large language
models (LLMs) aligns with the linguistic property of synonyms. Specifically, we are interested
in whether concept clusters can be automatically (re-)constructed from LLMs. A concept or
concept cluster is understood here as a set of synonymous scientific terms. In this way LLMs
can aid normalization of knowledge graphs by identifying missing relations between semantic
variations of entities. More generally, our work provides foundational empirical validation that
can support future work in automatic ontology discovery from LLMs through the discovery of
specific relations (in this case synonymy).

Large language models are typically neural networks with large sets of parameters, trained
on a language modeling task – assigning probabilities to the next token in a sentence [4]. Many
models are able to represent some form of general language capability, applicable to a wide
range of tasks without extensive re-training. LLMs have been found to replicate representations
of linguistic structures ranging from syntax trees [5] to tense [6]. Effectively, LLMs have become
a standard for a wide range of practical NLP applications such as machine translation or entity
linking [7, 8].

We aim to analyze whether the word representation built by LLMs encode linguistic in-
formation relevant for detecting synonyms, specifically for scientific entities. Additionally,
we investigate which model and network layers show the best prospect for the synonymy
detection task, in order to guide future work on developing a knowledge graph normalization
use case for this task. For this purpose we consider SciBERT, RoBERTa, BART, and OpenAI
GPT3 (text-embedding-ada-2 variant) as models. In detail, we aim to answer the following
research questions (RQs):
RQ1. How well do word embeddings encoded by LLMs capture the linguistic property of
synonymy?
RQ2. Which LLMs best encode synonymy information?
RQ3. At which layers in the LLM network are the most effective embeddings for synonymy
found?



2. Related Work

Our approach is situated within the task of probing contextualized word representations for
semantic linguistic properties, namely synonymy relations, by means of a cluster analysis of
the embeddings. In this section we discuss related work. We conclude that correctly identifying
synonyms is one of the most challenging aspects of the normalization task. Previous experiments
probing LLMs show that semantic representations exist and are similar to linguistic categories
in mid- to higher layers of the models. Additionally, cluster analysis can be used to uncover
latent concepts encoded in the representations. This provides an avenue to investigate whether
latent concepts in the representations produced by LLMs encode synonymy.

2.1. Entity Normalization

Fakhraei et al. [3] define entity normalization as the task of linking a string to a canonical
reference set. They use a deep Siamese neural network to employ similarity learning and
embeddings for entity normalization. The authors empirically validate their approach on
biomedical data, but argue that the approach is generalizable beyond this domain.

Another example of entity normalization specific to the biomedical domain can be found
in Sung et al. [9]. The authors base their work on BioBERT, which is a BERT-based model
trained on biomedical data [10]. Sung et al. [9] use a synonymy marginalization technique
which is supposed to maximize the probability of synonyms in the entity candidate selection
via marginal probabilities. They identify synonyms with different surface forms as well as
entities with similar surface forms but different meanings as the most challenging aspect of
the normalization task. They argue that this calls for latent representations capturing semantic
meaning for entity normalization.

2.2. Probing of LLMs

Previous works have investigated contextual word representations for a number of linguistic
phenomena, ranging from syntactic to semantic. We explicitly limit our description of existing
literature here to investigations of neural models trained on language modeling tasks, such as
large transformer models like BERT, although similar probing research exists for other neural
network models as well [e.g., 11, 12].

Hewitt and Manning [5] have investigated whether ELMo and BERT implicitly encode syntax
trees through their vector geometry by employing a so-called structural probe. This probe
identifies linear transformations of the word embedding space, which encode distance and
depth of a parse tree. They have found evidence that this linguistic structure is present and
recoverable from word representations in vector space.

Liu et al. [13] employ a range of probing tasks to contextualized word representations
ranging from token labeling (e.g. part-of-speech-tagging POS) or segmentation (e.g. named
entity recognition) to pairwise word relations of both syntactic as well semantic dependency
between words. They note that high performance is possible on a broad range of task with the
features generated from pre-trained LLMs and conclude that this means they encode useful and
transferable features of language.



Both Tenney et al. [14] and Jawahar et al. [6] probe BERT with a set of probing tasks applied
on the basis of extracted contextualized vectors from all network layers. Tenney et al. [14]
test on POS, coreference, and relation classification, among others, while Jawahar et al. [6]
test for a range of features ranging from surface level (e.g. sentence length) and syntactic (e.g.
syntactic tree depth) to semantic (e.g. tense). Both studies find evidence that BERT encodes
this information with processing similar to the classic NLP pipeline [14], meaning ordered from
local syntactic in lower layers to more semantic and longer-ranged dependencies in higher
layers.

Pimentel et al. [15] argue that the highest performing probe should be chosen even if it is
more complex, because it can give a better estimate of the full information available through the
model. This is in contrast to e.g. Liu et al. [13], who base their analysis on training simple probe
models arguing that if a simple model can make predictions one can reasonably assume that this
performance is based on the underlying information present in the pre-trained LLM rather than
through any additional complexity available through the probe. Pimentel et al. [15] probe BERT
contextualized embeddings for POS and dependency labeling in eleven languages with a focus
on the amount of information extractable compared to non-contextualized baselines. They find
that while BERT does in fact encode syntactic information needed for POS and dependency
labeling, the advantages compared to baseline are at most 12% more information, and differ
across languages.

2.3. Clustering Analysis

Sajjad et al. [16] analyze transformer models in terms of human-defined concepts through
clustering. They attempt to align clusters of contextual embeddings with human-defined
concepts (e.g. POS tags, synonym sets) to explain the concept representation in the model.
Using this approach, Sajjad et al. [16] find that clusters in lower layers more strongly align
with lexical concepts, while morphological and syntactical concepts are better represented in
middle to higher layers. The alignment with linguistic ontologies (i.e. WordNet synonymy sets)
is stronger in lower to middle layers and declines for higher, more contextualized layers.

Dalvi et al. [17] define groupings of word representations based on syntactic and semantic
relations as latent concepts, ’the information the model learns about language’ [17, p.1]. They
investigate these latent concepts in pre-trained BERT and analyze them in comparison to
traditional linguistic concepts and across model layers. Based on their results, they conclude
that the model learns both novel concepts not directly associated with pre-defined linguistic
categories as well as concepts based on multiple semantic, syntactic, and morphological concepts.
Additionally, the authors observe lower layers are dominated by shallow lexical concepts whereas
higher layers represent semantic relations.

3. Methods

We created and analyzed four different sets of data. All data taken together consist of 25 214
entities organized in 3746 concept clusters. Selected summary statistics about the data are



shown in table 1.1

Table 1
Selected summary statistics for the four datasets evaluated in this work.

parameters ORKG CS-KG SemEval 2017 SciERC

entities 247 23611 687 669
clusters 117 3000 336 293

avg. ent./ cluster 2.11 7.87 2.04 2.28
domains various CS CS, material sci., physics AI

3.1. Data Sources

In our experiments, we leveraged existing relevant datasets that provided gold-standard syn-
onymy annotations as far as possible. This was advantageous in two respects: 1) reusing existing
datasets significantly alleviates the high cost barrier, especially in terms of effort, to obtain new
gold-standard annotations for the task we address, and 2) existing datasets can be benchmarked
as standards. Our goal for data collection was to reach a sufficiently large domain-diverse set of
scientific synonyms.

ORKG As introduced above, the ORKG is a community-curated knowledge graph for scientific
information extracted from journal publications, conference proceedings, and other academic
literature [1, 2]. The ORKG is open to research from all domains ranging from life sciences to
computer science or social sciences; hence, extracted data are highly diverse. To construct the
ORKG dataset used in our study, we selected all entity pairs connected via a ’same as’ relation.2

CS-KG The second dataset utilizes the Computer Science Knowledge Graph (CS-KG) [18],
which is a large-scale automatically generated knowledge graph based on scientific publications
in computer science. CS-KG provides sets of alternative names for all entities contained in it.
These are taken to be synonyms and the sets of alternative names used as concepts without
further processing.

SemEval 2017 SemEval 2017 Task 10 was a task to extract keyphrases and relations from
scientific text [19]. The task data comes from journal articles in the domains of computer
science, materials science, and physics. Selected paragraphs were annotated with hypernym
and synonym relations. We use synonym pairs from both tagged train and test data for our
dataset.

1Data are available at https://zenodo.org/record/7971572.
2https://orkg.org/property/SAME_AS The selection reflects the state of the ORKG data as of November 2022.

https://zenodo.org/record/7971572
https://orkg.org/property/SAME_AS


SciERC The SciERC dataset is an extension of SemEval 2017 Task 10 and SemEval 2018 Task
7 [20]. It was created by annotating abstracts from AI research and consists of annotated data
for entity, relation, and co-reference classification. Due to the fact that a synonymy relation
was not part of the annotations for SciERC we sourced our data from annotated co-references
in train, test, and development data.

3.2. Data Cleaning

The collected data consisted of synonym pairs for ORKG and SemEval 2017 but co-reference
pairs for SciERC. In order to create synonym concepts we performed data cleaning and then
combined synonym pairs into larger concepts.

We lower-cased all data extracted from ORKG, SemEval 2017, and SciERC. Further, we
removed synonymy pairs where both entities were identical strings as well as duplications.
The ORKG data included entities consisting of hyperlinks, which were removed. All remaining
co-reference pairs from SciERC were considered potential synonyms. Coreference translates
to synonymy when the relation holds between noun phrases or nouns, but in other cases, for
instance coreference to articles, the relation does not translate to synonymy. Thus the given
dataset had to be appropriately filtered to suit our synonym identification task. From the pool
of co-reference pairs we removed all pairs where either one entity was a generic reference (e.g.
this) or one entity was a generalization of the broader second entity (e.g. normalization method
- method). Additionally, we performed a manual curation of ORKG and SciERC data to remove
incorrect of irrelevant pairs.

Finally, we combined the synonym pairs into larger concept clusters wherever possible. This
was done by identifying entity overlaps between pairs where one entity would occur in several
synonym pairs (e.g. data set - dataset; data - data set). Each resulting concept cluster was
assigned a randomly chosen entity from the cluster as preferred name for the entire cluster and
a whole number as ID.

3.3. Models

Four LLMs were selected for this study: SciBERT, RoBERTa, BART, and OpenAI GPT3 (text-
embedding-ada-002 variant) model. Both SciBERT and RoBERTa are transformer models based
on the BERT architecture and trained on a masked language task [21, 22]. We probe the 12-
layer versions roberta-base and scibert_scivocab_uncased. BART is a transformer
encoder-decoder (seq2seq) model; the authors describe the architecture as a generalization of
BERT and GPT-based systems [23]. The model is trained on both corrupting text with noise and
reconstructing the original text. We use the 6-layer version bart-base. The OpenAI model
we used for investigation — i.e., ‘text-embedding-ada-002’ — is a GPT3 based model specifically
adapted for embedding generation3. In terms of training materials, SciBERT differs from the
other models as it is trained on scientific publications while RoBERTa and BART are trained on a
range of books, news material, and web content. There is unfortunately no detailed information
publicly available about the training material used for OpenAI’s model.

3https://platform.openai.com/docs/models/overview



3.4. Clustering and evaluation

Based on the datasets described above, word embeddings are calculated for all scientific entities.
Each entity is treated as a separate sentence and encoded by the model independently of each
other. For SciBERT, RoBERTa, and BART token embeddings are extracted from the models
by network layer and aggregated to a single word embedding per layer by applying a mean
function across token embeddings. This is done using Python libraries transformers [24, version
4.23.1] and numpy [25, version 1.23.2]. For OpenAI’s GPT3 model the API provided by OpenAI
is used to access final layer word embeddings for the scientific entities in the datasets.

The analysis is performed on the basis of the resulting word embeddings. A kMeans algorithm
is applied with the number of concept clusters in each dataset given as parameter k. This means
that, for example, the algorithm is run with 𝑘 = 3000 for CS-KG data and 𝑘 = 117 for
the ORKG dataset. We used the kMeans implementation from Python package scikit-learn
[26, version 1.1.2]. We chose kMeans as a method of analysis, because it is a low resource
compute algorithm offering sound results for any starter investigative work on the theme
around clustering. Subsequently, an 𝐹1 score is adapted for the task and used to evaluate the
clustering results. Here, precision is defined as

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑚𝑎𝑥(
𝑡𝑝𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟

) (1)

where 𝑡𝑝𝑐𝑙𝑢𝑠𝑡𝑒𝑟 is the number of entities from the same concept appearing in the same cluster
and 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 the total number of entities in that cluster. Recall, on the other hand, is defined
here as follows:

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑚𝑎𝑥(
𝑡𝑝𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝑛𝑐𝑜𝑛𝑐𝑒𝑝𝑡

) (2)

where 𝑡𝑝𝑐𝑙𝑢𝑠𝑡𝑒𝑟 is defined as above and 𝑛𝑐𝑜𝑛𝑐𝑒𝑝𝑡 is the total number of entities in the relevant
concept. In both cases, the highest possible value reached across all concepts and clusters is
taken to be the recall or precision value for the clustering.

As an example, assume concept 𝐴 with 3 entities (data, dataset, data set), concept B with 2
entities (𝐹1, 𝐹1 score) and 2 clusters 𝑥 (data, 𝐹1) and 𝑦 (dataset, data set, 𝐹1 score). It follows that,
for concept 𝐴 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑚𝑎𝑥(12 ,

2
3) = 0.75 and 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑚𝑎𝑥(13 ,

2
3) = 0.75. For concept

𝐵, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑚𝑎𝑥(12 ,
1
3) = 0.5 and 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑚𝑎𝑥(12 ,

1
2) = 0.5. 𝐹1 is then calculated as the

harmonic mean of precision and recall, in this case 𝐹1 = 0.5.

4. Results

Tables 2 to 5 show the F1-scores achieved by kMeans clustering the embeddings extracted from
SciBERT, RoBERTa, BART, and OpenAI’s GPT3 models, respectively. The data is organized by
layer wherever embeddings are extracted from several hidden layers of the model.

The best 𝐹1 scores for all four datasets are achieved using OpenAI GPT3 (𝐹1̄ = 0.756).
Following are SciBERT (𝐹1̄ = 0.713), RoBERTa (𝐹1̄ = 0.691), and BART (𝐹1̄ = 0.683). Looking
beyond the aggregated scores across all datasets, the order of highest scoring model changes
slightly depending on the data: For CS-KG, SemEval 2017, and SciERC data the next best



Table 2
𝐹1 scores of kMeans clustering by SciBERT layer. Rounded to three decimals, highest score across
layers for each dataset marked in bold.

SciBERT layer
dataset

ORKG CS-KG SemEval 2017 SciERC

layer 1 0.601 0.897 0.573 0.713
layer 2 0.589 0.902 0.570 0.731
layer 3 0.616 0.895 0.576 0.702
layer 4 0.577 0.884 0.568 0.701
layer 5 0.599 0.875 0.561 0.695
layer 6 0.618 0.859 0.559 0.686
layer 7 0.623 0.813 0.556 0.682
layer 8 0.621 0.788 0.554 0.673
layer 9 0.628 0.786 0.561 0.674
layer 10 0.644 0.766 0.553 0.67
layer 11 0.623 0.791 0.561 0.681
layer 12 0.613 0.782 0.572 0.681

Table 3
𝐹1 scores of kMeans clustering by RoBERTa layer. Rounded to three decimals, highest score across
layers for each dataset marked in bold.

RoBERTa layer
dataset

ORKG CS-KG SemEval 2017 SciERC

layer 1 0.598 0.899 0.573 0.657
layer 2 0.582 0.902 0.57 0.681
layer 3 0.584 0.897 0.573 0.677
layer 4 0.593 0.88 0.556 0.684
layer 5 0.593 0.868 0.552 0.673
layer 6 0.589 0.854 0.557 0.667
layer 7 0.587 0.842 0.554 0.659
layer 8 0.578 0.813 0.553 0.643
layer 9 0.571 0.807 0.562 0.644
layer 10 0.579 0.799 0.558 0.639
layer 11 0.582 0.807 0.556 0.639
layer 12 0.604 0.793 0.561 0.634

performance is achieved using SciBERT, followed by RoBERTa and then BART models. The
order of best perfomance for the ORKG data is OpenAI GPT3, SciBERT, BART, and RoBERTa.

Generally, the clustering approach works best based on the CS-KG dataset across all models
(best 𝐹1: 0.914), followed by SciERC (0.816), ORKG (0.698), and SemEval 2017 data (0.597). This
ranking is independent of the model. When comparing the results from all four models and
datasets, it can be noted that very similar performances are achieved across models. The biggest



Table 4
𝐹1 scores of kMeans clustering by BART layer. Rounded to three decimals, highest score across layers
for each dataset marked in bold.

BART layer
dataset

ORKG CS-KG SemEval 2017 SciERC

layer 1 0.618 0.789 0.573 0.668
layer 2 0.604 0.784 0.572 0.651
layer 3 0.611 0.765 0.568 0.65
layer 4 0.597 0.752 0.559 0.642
layer 5 0.605 0.803 0.565 0.644
layer 6 0.597 0.874 0.562 0.663

Table 5
𝐹1 scores of kMeans clustering for OpenAI GPT3. Results rounded to three decimals.

dataset
ORKG CS-KG SemEval 2017 SciERC

0.698 0.914 0.597 0.816

difference in 𝐹1 score between models for the ORKG data is between RoBERTa and OpenAI
GPT3, which is a score difference of 0.094 (only focusing on the layer with best performance for
the model). Similarly, the biggest difference in best 𝐹1 score across models is 0.04 for CS-KG,
and 0.024 for SemEval 2017 data. For results based on SciERC data a slightly larger performance
difference between models can be observed. Between the score achieved on GPT3 (0.816) and
the best score achieved on the lowest performing model BART (0.668) lies a difference of 0.148.
Generally, the performance changes depend much more strongly on the underlying data than
the utilized model. These results are visualized in 1.

In an attempt to better understand our results, we calculated Pearsons’s 𝑟 between the best
𝐹1 score achieved by each dataset and the average number of entities per cluster. We found
that the score is highly correlated with the avg. number of entities per cluster for all models
we tested: 𝑟 = 0.908, 𝑟 = 0.96, and 𝑟 = 0.966, 𝑟 = 0.783 for SciBERT, RoBERTa, BART, and
OpenAI GPT3, respectively.

For all but OpenAI GPT3 we were able to extract embeddings from all network layers and
compare clustering results achieved on them. In general, the best scores were achieved on
embeddings extracted from one of the first three to four network layers, but there are a few
noticeable exceptions to this pattern. Firstly, results based on the ORKG data were best on later
layers for SciBERT and RoBERTa (10 and 12), but not for BART, where performance was best
on the first layer. In contrast, best performance for CS-KG data was achieved on layer two for
SciBERT and RoBERTa, but on the last layer six for BART. Figure 2 shows an illustration of these
opposing patterns. Additionally, it can be noted that there are larger performance differences
by layer for the CS-KG data overall, compared to the other datasets.



Figure 1: Best 𝐹1 score performances organized by model and dataset

Figure 2: 𝐹1 score results for ORKG and CS-KG data using models BART and SciBERT, illustrated as
scatter plot.

5. Discussion

We have probed word embeddings encoded by LLMs for synonymy information by comparing
clusters of embeddings, identified by kMeans, to pre-defined concept clusters of synonymous
scientific entities from four different datasets. Answering our RQ1, we report 𝐹1 performances
averaging around 0.7 to 0.75 across datasets and tested models. Our results suggest that
synonymy information is present and salient in the embeddings and can be leveraged through
clustering to correctly identify synonym sets. We conclude from these results that LLMs



encode information inline with the linguistic property of synonymy and that it is possible to
leverage this information to detect sets of synonymous scientific entities from their embedding
representation.

We further identify that the quality of the detection seems to depend much more strongly on
the underlying data than on the model employed for the task. In our experiments concerning
RQ2, OpenAI GPT3 gave the best performance, followed by SciBERT and RoBERTa with only a
slight drop in performance. Of all tested models, only SciBERT is explicitly trained on scientific
publications. While we expected this to be an advantage for encoding synonymous scientific
entities, we observe only a slightly better clustering performance based on SciBERT-encoded
embeddings compared to RoBERTa and BART and the best performance overall from OpenAI’s
GPT3 model. Our analysis suggests that there is at most a small advantage of training on
scientific data compared to non-scientific data for the task of recovering synonymy structure of
scientific entities. With the methodology employed here, we cannot fully explore why this is the
case, but it might be that sufficiently large scale models encounter enough relevant information
during training in order to not need specialization for scientific language for the synonymy
detection task. Due to better availability of large-scale models trained on non-scientific text
data, our findings could inform future research to utilize these models as an avenue for the
synonymy detection task for scientific text data.

Performance differences for the different datasets seem to depend at least in part on the
size of the concepts and potentially on other unidentified factors. One explanation for the
effect of concept size could be that larger concepts, not limited to two or three entities, might
provide more information on the target concept, guiding the clustering process. An additional
potential factor in the performance differences might be related to morphological similarity
in the concepts. The CS-KG dataset, based on which best clustering performance is achieved,
contains some concepts structured as follows: A scientific entity (e.g. activation function) is
contained in the concept set with a number of variations that share the same initial term but are
supplemented with additional more generic terms (e.g. activation function process, activation
function processing). This means that in these cases concepts have not only a strong semantic
similarity but also a strong morphological similarity. Possibly, the high clustering performance
needs to be in part attributed to this additional available information.

Concerning RQ3 we could not reach conclusive evidence as to which network layers are best
suited for querying synonymy information. We observe that the optimal layer depends both on
the model as well as the dataset. With the exception of the ORKG data embedded by SciBERT
or RoBERTa and the CS-KG data embedded with BART we reach optimal performance in the
lower to mid-ranger layers (≤ 4). This is congruent with findings by Sajjad et al. [16], who find
a stronger alignment between embedding clusters and WordNet synonymy sets in lower to
middle layers than in higher layers, and Jawahar et al. [6], who identify encoding of semantic
information in mid-range layers. The different layer optimum for the ORKG dataset (layer 10
for SciBERT, 12 for RoBERTa) could speak to an underlying structural difference in the data
compared to SemEval 2017 and SciERC. Further investigation is needed to identify the reasons
for theses differences.



5.1. Limitations

Only some of the data used in this study was specifically annotated with regard to the synonymy
relation. Specifically, from SciERC we base our further selection on co-reference data. We
performed both automatic as well as manual data cleaning to correctly identify synonym pairs
contained in the co-reference data, but manual cleaning was done in only one round by a single
curator. It is likely that there are remaining instances where data overlaps with hyper- or
hyponym relations and further data cleaning efforts would increase the data quality with regard
to only containing strictly defined synonymy relations.

While we have chosen to investigate models that can create contextualized word embeddings,
for this study we had to limit the analysis to pseudo-static representations nonetheless. This
was done because some of the datasets used for our experiments contained only the scientific
entities without any additional sentence context in which they appeared (namely ORKG and
CS-KG data). To keep conditions comparable across all tested data we opted to embed all terms
as free-standing entities outside of their sentence context.

5.2. Future Work

We have provided some evidence that semantic information inline with synonymy is implicit in
LLMs and can be leveraged to recover synonymy structure from word embeddings. Further
research could build on the findings presented here in two directions. One possibility is to
extend the research to other types of relations (e.g. antonyms, hyponyms etc.). The other
possibility is to use these findings to explore practical applications of the approach presented
here for the task of knowledge graph normalization. Further work could e.g. fine-tune LLMs
for use in clustering of existing KG entities. The analysis presented here, utilizing kMeans
as a clustering algorithm on embeddings, likely does not capture the full extent of available
synonymy information present in the investigated LLMs. As a comparatively simple approach,
it should rather be considered a lower boundary for the task, which can be improved with
additional probing experiments and additional LLM task fine-tuning.
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