
Towards Reactive Robotics with a Pinch of
Image-Schematic Reasoning
Mihai Pomarlan1, Kaviya Dhanabalachandran2 and Michael Beetz2

1Applied Linguistics Department, University of Bremen, Germany
2Institute of Artificial Intelligence, University of Bremen, Germany

Abstract
Today’s robots do not possess a deep understanding of interactions between physical objects that is
also available to their behavior generation modules and as such show brittle performance in realistic
environments. While this suggests a robot would therefore need more knowledge, its decisions should not
be too complicated to arrive at or else the robot risks losing track of what matters from its environment.
Thus, we investigate a mix of reactive approaches to robotics and reasoning, and propose a simplified
theory of typical changes between image schemas. We show how this theory could be integrated in a
robot’s perception-action loop, and describe some examples of using this theory to infer actions and
perception queries for various stages of a pouring task. We are integrating this inference procedure into
a simulated robot, but this integration is yet to be completed and as such, future work.
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1. Motivation

One of the hardest problems in AI-adjacent fields is to get an artificial agent to act in a com-
petent and intelligent way in the physical world. While today’s robots are testaments to the
performance of control engineering, they lack a deeper understanding of the affordances present
in their environment. Thus, we have industrial robot arms capable of precise control of the
forces they apply [1], and robots that display great robustness in maintaining balance on two
legs despite severe perturbations introduced by the kicks of onlookers [2, 3]. However, a robot
– a general-purpose manipulator as opposed to a specialized device – that can autonomously
cook an arbitrary recipe in a reasonable amount of time is beyond the current state of the art.
One cause for this state of affairs is that the problem of endowing robots with practical

knowledge of affordances – how to detect them, how to use them – is yet to be solved by the
robotics community. There is already research in discovering/learning affordances for robots
[4, 5], and there are theoretical models of how affordances could be ontologically described [6].
However, to the best of our knowledge, such research has not completed a connection between
theoretical descriptions of affordances and the behavior generation modules of a robot.
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The main question for a behavior generation module is what to do next; also important
is to decide what next to pay attention to, out of the context of an activity1. In general,
“what to do next” sounds like a planning problem, however planning is expensive and often
unnecessary [8, 9]. Usually, in everyday activities it is obvious, at least for humans, what needs
doing, and mistaken decisions can be rolled back at acceptable costs. Further, stopping to plan
means paying less attention to how the environment changes for good or ill. Therefore, we will
be interested in our line of work mostly on the reactive end of behavior generation techniques
for robots. However, having a robot generate its behavior by hard-coded reactions that are too
specific will make its performance brittle against what to us seem trivial changes.
Therefore we would like to endow our hypothetical reactive robot with some depth of

knowledge about physical objects and how they interact. At the same time, this knowledge
should not aspire to be a comprehensive description; rather, it is knowledge of what typically
happens, and what typically to do. We can add to the previous requirements somewhat more
formal ones. The robot’s theory of objects should offer the opportunity to abstract from
situation details and use the abstractions to arrive at action/perception decisions; it should
support inference chains of arbitrary length, if a situation demands it; but it should not require
backtracking.
In this paper, we present our ongoing work in this direction. Specifically, we will present a

simplified theory of image schemas whose aim is to describe how an agent would typically bring
about the change of one situation, described image schematically, into another situation, also
described image schematically. As examples, we illustrate our theory with various situations in
which a pouring action is to be performed.

2. Related Work

How to represent knowledge for commonsense reasoning is an active topic of research. E.g., [10]
introduces a general purpose knowledge management system able to incorporate symbolic and
subsymbolic information. An in-depth formalization of a theory of containment in first-order
logic is presented in [11]. In another work, a rule engine was used to infer the motions of an
autonomous car [12] by first inferring possible behaviors then choosing one candidate in a
conservative manner.
A promising building block for commonsense knowledge are image schemas. They are

“dynamic analog representations of spatial relations and movements in space [...] derived from
perceptual and motor processes” [13], and embodied patterns of sensori-motor experience [14].
As such, they offer a way to link situated, embodied activity with more abstract formal de-
scriptions, as evidenced by the possibility to formalize image schemas in image schema logic
(ISL) [15, 16]. Image schemas have been used to support hybrid, logical and simulation based
reasoning, in [17], and provided a vocabulary in which to learn rules from simulations of
pouring tasks in [18]. Previous work has suggested image schemas as a way to guide stacking
actions [19] and robot action selection more generally [20]. Our paper here is a continuation
and expansion of this latter line of work, in that we further develop the image schematic theory

1The definition of context from Turner is given as ”A context is any identifiable configuration of environmental,
mission-related, and agent-related features that has predictive power for behavior. [7]”



to be used in action selection.

3. Setting: Controlling a (mostly) Reactive Robot

We first clarify our assumptions about who the primary user of our image schematic theory
will be – i.e., what we mean when we say a robot is “(mostly) reactive”.

A robot is a physical system able to “perceive”2 and “act” in its environment in pursuit of goals.
A reactive robot is one that can achieve this with no internal representation of its environment
and with minimal complexity – it is “wired to do the right thing” [22, 8].
We believe however that in carving a niche for his reactive robotics research programme,

Rodney Brooks overstated the case against the then established deliberative methods in robotics.
We are not willing to abandon representations completely, therefore what we mean by “(mostly)
reactive robot” is one which has the resources to construct, maintain, and use explicit descrip-
tions of itself, its environment, and its goals at various levels of abstraction but which retains
the other features of reactivity.

A (mostly) reactive robot only needs to consider the entities and relations that exist now, and
what should exist as the completion of its goals. It will not search among alternative action
sequences to achieve its goals, but instead only considers what the typical action is that would
connect the present to the desired state of the world. It constantly monitors its environment
and is able at any point to abort an action.
Finally, the perception of a robot, reactive or not, is sensitive to the robot’s goals. This is

because an environment can be described in any number of ways, each choosing different
subsets of features to emphasize. Further, it is sometimes impossible to understand a sensory
signal outside of a context that includes expectations and goals.

4. An Image Schematic Theory of Typical Change

We construct a – much simplified, compared to ISL – theory of image schemas in defeasible
logic; we refer the reader to [23] for an overview of defeasible logic. Our logical theory is
a collection of defeasible rules, where each rule has a set of predicates as antecedent and a
predicate as consequent. The predicates are of arity at most two, and the rules cannot insert
entities in the consequent that are not present in the antecedent.

The core entities in our theory are of course image schemas, understood as reified relations
between participants that can be physical objects, features of such objects e.g. openings, or
physical phenomena e.g. forces.
Participants in a schema play particular roles. E.g., a Near schema has a Locatum and a

Relatum role. Note that while some schemas, such as Near, appear symmetric, we nonetheless
prefer to have an asymmetry in the roles in that it is often not symmetric on which participant
to act in order to bring about, or destroy the schema. If we say the cup, as locatum, is near the

2Psychological vocabulary such as “perceive”, “goal” etc is to be interpreted metaphorically when applied to robots.
We take an intentional stance [21] about sufficiently complex machines because it simplifies exposition and clarifies
what human functions the various parts of said machines are intended to mimic – at the risk of suggesting said
mimicry is successful.



table, the relatum, we don’t just mean the symmetric fact of their spatial proximity but also
that if we don’t want these objects to stay near, it is the cup upon which we will act. Several
relations can exist between schemas:

• combine: two image schemas coexist. They need not have participants in common.
combine is a symmetric and transitive relation, and it is understood that together, the
schemas in a combination describe a situation

• follows: an image schema exists after another in time. If s follows t, it cannot combine
with t (but may combine with a schema of the same type and participants) and also
follows every other schema that t combines with.

• requires: an image schema requires another one to hold before it can come into existence.
If two image schemas combine, their requirements combine.

• enables: an image schema is followed by another one which it helps bring into existence.

A (mostly) reactive robot would use our theory by first creating a combination of image
schemas that describe its goals. Already, the theory would be able to infer from this some other
basic image schematic consequences – see the pouring example below – and what questions
to ask of perception about the actual state of the world. Once available, perception results
would also be described as a combination of image schemas, and a follows relation would be
asserted between schemas in the goal description, and schemas in the actual state description.
Further, for each schema 𝑠𝑘 in the goal description, an individual 𝑑𝑘 would be created and the
relationship 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠(𝑠𝑘, 𝑑𝑘) would be asserted. The theory is then able to identify the types
and participants of image schemas 𝑑𝑘, as well as further questions to ask of perception. In a
further loop, depending on whether schemas 𝑑𝑘 are found to hold in the actual state, either
enables relations are asserted or further requirements are introduced, this time for the schemas
𝑑𝑘 themselves.

Thus, at every iteration of its perception-inference-action loop, the robot would start from its
top-level goals and their enablers, and the results of the previous perception queries. It will then
set up an inference problem for our theory with the goals and requirements as a combination
of image schemas representing a goal situation, and the perception results and enablers as a
representation of the actual situation. The result of inference is a new set of perception queries
to ask for the next step, as well as what the current requirements are to achieve the goals, some
of which map actions to undertake (other requirements may be that certain natural processes
unfold, e.g. falling, where the robot should enable this unfolding through its actions).

Note that typically an image schema may have several requirements; however, it is often the
case that these requirements should be fulfilled in sequence, hence it is enough to consider only
one requirement at a time, and treat already fulfilled requirements as enablers. The fact that a
schema is an enabler will result in perception queries being generated about it – we want to
monitor that the parts of the world state that are helping us achieve a goal stay the way we
want them to.



4.1. Example: Pouring

We provide the image schematic theory and some examples of its application in an openly
accessible repository3 which the reader is kindly invited to consult for more details.
The examples consist of a pouring task, where the goal is for “coffee” to be inside a “bowl”

and outside a “cup”. Already from this combination of image schemas, our theory can also
conclude that the cup should not be in the coffee. The examples then show the steps through
which a robot will construct a tree of intermediary goals and perception queries.

• if the actual state is the coffee in the cup, then it must exit the cup, and it will do so
through a waypoint that is the cup’s opening

• if the coffee must exit the cup, then the cup’s opening must not be blocked
• if the opening is not blocked, then typically it will be gravity that impels a fluid to exit a
container

• if gravity is acting on an object, that object is falling
• to fall from a source through a waypoint, the source must be above the waypoint – from
this, it is then inferred that the cup must be tipped in order to start pouring

• to fall into a destination through a waypoint, the waypoint must be above the destination
– from this, it is then inferred that the bowl should be upright before we can start pouring

Further, every time an image schema describing placement or movement is identified as a goal,
requirement, or enabler, appropriate perception questions are generated about its participants.
Note that the inferences in our example are not specific to the coffee pouring situation in

our example. Rather, they are fairly general inferences about the operation of containers, the
nature of falling, nearness and aboveness, and the typical choice of physical interaction to cause
a particular kind of movement in some types of objects.

5. Conclusion and Future Works

In this paper, we have articulated the inference needs for a kind of robotic behavior generation
that we called “(mostly) reactive” and how they could be fulfilled by a theory of typical change
between image schemas. We have given an example of such a theory via several situations
related to pouring, but the theory actually contains some more general knowledge about
container behavior and some spatial, movement, and force schemas, in particular those related
to verticality.
The theory itself is in development and we are adding more knowledge about the other

image schemas from the classical lists. Also, we are in the process of integrating our inference
system into the control architecture of a simulated robot that aims to perform a pouring task in
a fairly realistic environment, though one in which perception is more powerful than real robot
perception would be.
We do aim to eventually integrate our approach on a real robot, but we expect the problem

of formulating perception queries, and of interpreting their results, to be significantly more

3https://github.com/mpomarlan/silkie and the theory and examples are in the examples/pouring_is folder of this
repository.

https://github.com/mpomarlan/silkie


difficult. On the other hand, one of the core assumptions of our approach – that perception
should not produce some comprehensive ground truth but rather a good-enough for a specific
purpose summary while being informed by top-down expectations – does have, in our opinion,
the chance to ameliorate some of the difficulties of robot perception.
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