
Using Adaptive Activation Functions in Pre-Trained Artificial
Neural Network Models

Yevgeniy Bodyanskiya, Serhii Kostiuka

a Kharkiv National University of Radio Electronics, Nauky ave 14, Kharkiv, 61166, Ukraine

Abstract
Researchers continue developing new artificial neural network models and network training

methods for various data processing tasks. The current research areas include the development

of novel network architectures and activation functions. As the complexity of the models

increases, researchers tend to use pre-trained models as the basis for new solutions.

This paper introduces the adaptive activation function replacement method for pre-trained

artificial neural network models. The method enables the usage of adaptive functions instead

of their non-adaptive counterparts without spending time training the model from scratch. The

effectiveness of activation function replacement is evaluated on the image recognition task

using a CNN in PyTorch and the CIFAR-10 dataset.

Keywords 1
Adaptive activation function, pre-trained artificial neural network model, transfer learning,

deep neural network

1. Introduction

Artificial neural network models have become essential to modern data processing systems [1].

Convolutional neural networks (CNNs) serve as a core of image processing systems, enabling image

processing at scale [2] and machine-assisted driving [3]. Recurrent neural networks (RNNs) can process

sequential data, including video feeds [4] and historical data from industrial machinery [5]. The

attention-based models, including the Transformer-based models, show state-of-the-art results in

natural language translation [6], code generation [7], and language modeling [8-10].

Activation functions provide non-linearity to the network models. While the models in academic

studies often use continuous activation functions (Tanh, Sigmoid, etc.), the commercial models tend to

employ piece-wise linear activation functions (ReLU, PReLU, Hard Sigmoid, Hard Tanh, etc.) due to

their lower computational complexity. At the same time, researchers continue developing new

activation functions for different neural network architectures and data processing tasks [11].

One area of research is related to adaptive activation functions for deep neural networks. While

networks with adaptive activation functions tend to perform better than the base variants [12], such

networks are usually trained from scratch, limiting their applicability in production.

To achieve better performance on the selected datasets, researchers tend to increase the number of

trainable parameters in the model, add various layers to the network, and experiment with the overall

structure of the neural network. An increase in the number of layers and parameters of the model leads

to computational complexities in training and inference. As a result, there is a demand for optimizing

the training process and using pre-trained models for new data processing tasks [13].

We introduce the adaptive activation function replacement method for pre-trained artificial neural

network models. We demonstrate the method using a CNN model implemented in PyTorch [14]. We

compare the performance of the derived network, with and without activation function fine-tuning, to

the performance of the base network on the CIFAR-10 dataset [15].

ICST-2023: Information Control Systems & Technologies, September 21-23, 2023, Odesa, Ukraine.

EMAIL: yevgeniy.bodyanskiy@nure.ua (Y. Bodyanskiy); serhii.kostiuk@nure.ua (S. Kostiuk)
ORCID: 0000-0001-5418-2143 (Y. Bodyanskiy); 0000-0003-4196-2524 (S. Kostiuk)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

2. Related Works

Several research areas are related to the topic studied in this paper: non-adaptive activation functions

development, adaptive activation functions synthesis, network architecture synthesis and manipulation,

neural network pre-training, transfer learning, and fine-tuning.

Works [11-12,16] provide an overview of modern activation functions. Work [16] focuses on

adaptive activation functions and describes the impact of adaptive activation functions on the

effectiveness of the resulting model. The work studies parameterized standard and ensemble-based

functions. The work highlights that the extensive comparison of adaptive activation functions requires

their evaluation on the same dataset in the same base neural network architecture. However, the

researchers cite results from other papers instead of conducting an independent assessment.

Work [11] classifies activation functions by their characteristics, activation function properties, and

target applications. As a piece-wise linear activation, ReLU benefits from simpler gradients and lower

computational complexity. At the same time, ReLU shows moderately good results in the image

processing and classification domains, leading to its common usage in commercial models. In contrast,

the Sigmoid and Tanh activations are suboptimal for convolutional networks. The work studies Swish,

ESwish, PReLU, and APL among the adaptive functions. As stated, the impact of additional parameters

in adaptive activation functions on computational complexity is negligible compared to the overall

number of parameters in a deep neural network. The authors compare the performance of models with

different activation functions. The general model architecture remains the same across experiments,

with activation functions being the only difference. The authors train the derived models from scratch

and evaluate the performance on the same data set. The work highlights that the convergence of adaptive

functions dramatically depends on their parameter initialization. In general, the models with adaptive

functions demonstrate better convergence than their non-adaptive alternatives.

Works [17-21] introduce new adaptive activation functions for deep neural networks, include them

in different neural network models, and study their effectiveness on various datasets. The authors in

[17] combine elementwise attention with the ReLU activation function to create a learnable activation

function. The researchers in [20] replace all fixed activation functions in a BERT-based Transformer

architecture with an adaptive Rational Activation Function (RAF). When trained from scratch, the RAF

networks perform better than GELU on language modeling tasks. Work [19] introduces a continuous

adaptive alternative to the ReLU and SiLU activation functions and demonstrates its ability to change

the form and amplitude during training. Work [20] presents a piece-wise adaptive fuzzy activation

function. Depending on its parameters and the number of membership functions, this fuzzy activation

function can serve as a piece-wise approximation of continuous activations, such as Tanh and Sigmoid,

on a pre-defined interval. Work [21] introduces a universal adaptive activation function and studies its

ability to replace other non-adaptive activation functions.

We note that works [17-21] only evaluate the effectiveness of models trained from scratch. The

authors do not mention activation function replacement in pre-trained networks and do not reuse pre-

trained parameters from non-adaptive implementations for further training.

Works [22-24] propose and describe different artificial neural network models for text processing,

including the CNN, RNN, and Transformer variants. In [22], the authors propose variants of

Transformer and ImageNet with Swish as an adaptive sigmoid-based activation function. As stated, the

models with Swish “show strong performance” compared to non-adaptive activations on the language

translation and image classification tasks. [23] introduces a deep CNN-based network for text sentiment

analysis. The authors in [23] highlight the importance of unsupervised pre-training and learned

embeddings for initializing deep text processing models.

Work [24] presents DeepMoji, an RNN-based model for sentiment analysis. While [24] describes

the architecture and the principle of operation of DeepMoji, it is only available in a pre-trained form

without the original data set. Hence, independent researchers cannot modify the model, train it from

scratch, and replicate the results from the paper using the same data set.

Works [25-28] study architecture manipulation for pre-trained neural network models. [25]

overviews model compression methods for efficient deployment to resource-constrained devices and

specialized hardware accelerators. The authors of [26] review the knowledge distillation methods. The

reviewed methods use the teacher-student approach when the original (teacher) model remains

unchanged while the teacher trains the new (student) model from scratch. In [27], the authors combine

knowledge distillation with weight pruning for model compression. The authors apply fine-tuning to

recover the model performance after pruning. Work [28] proposes the removal of weights close to zero

and the associated connections between the nodes after each training epoch. To summarize, while works

[25-28] study modifications in the neural network architecture, they do not study the activation function

replacement in such architectures.

Works [13,29-31] study the application of fine-tuning, pre-training, and transfer learning techniques

in data processing tasks. [13] overviews techniques for efficiently training large artificial neural

network models, including pre-training and knowledge transfer. Some methods from this overview

propose using pre-trained shallow models as the first layers of larger language modeling models. Other

approaches include self-supervised and unsupervised pre-training of the whole model on a large dataset

with fine-tuning on a target dataset. Overall, the authors highlight the importance and perspectives of

pre-training for deep models like Transformers. Work [29] describes a multi-target evolutionary

architecture search approach for CNN with weights sharing and sub-sampling of the target models. The

trained network structure consists of pre-defined blocks, with a machine-readable configuration file as

the structure definition. The authors apply fine-tuning on the target dataset to recover the accuracy of

sub-sampled models. According to the paper and the reference implementation, the activation function

remains fixed during the architecture search and training. Work [30] studies the contribution of

individual layers in a recurrent Neural Machine Translation (NMT) model. The authors train a complete

model on the bi-lingual out-of-domain OpenSubtitles2018 dataset, partially freeze the layers, and

continue training on the target COPPA-V2 dataset. The experiment shows that the impact of individual

layers during training is relatively small, as the model can still adapt to the new dataset with partially

frozen layers. Work [31] overviews and evaluates the performance of transfer learning methods.

To our knowledge, the previous works do not study the methods of activation function replacement

in pre-trained artificial neural network models and the effectiveness of such replacement.

3. Method Design

Let 𝑁 be an 𝑛-layer artificial neural network model with sequentially connected layers. A

combination of its layers 𝐿 serves as a network description: 𝑁 = {𝐿1, 𝐿2, … , 𝐿𝑛}. Each individual layer

𝐿𝑖 implements a linear transformation together with a piece-wise non-linear transformation,

implemented by activation function 𝑓𝑖: 𝐿𝑖 = 𝑓𝑖(𝑋𝑖𝑊𝑖
𝑇 + 𝐵𝑖), where 𝑋𝑖 – the input tensor, 𝑊𝑖 – trainable

weights for linear transformation, 𝐵𝑖 – the bias tensor, and 𝑓𝑖 – the activation function.

Let 𝑁𝑜𝑟𝑖𝑔 be the original pre-trained 𝑛-layer artificial neural network model, while 𝑁𝑑𝑟𝑣 – the

derived network with its activation functions replaced. Hence 𝑁𝑜𝑟𝑖𝑔 and 𝑁𝑑𝑟𝑣 can be described as

𝑁𝑜𝑟𝑖𝑔 = {𝐿𝑜𝑟𝑖𝑔,1, 𝐿𝑜𝑟𝑖𝑔,2, … , 𝐿𝑜𝑟𝑖𝑔,𝑛} and 𝑁𝑑𝑟𝑣 = {𝐿𝑑𝑟𝑣,1, 𝐿𝑑𝑟𝑣,2, … , 𝐿𝑑𝑟𝑣,𝑛} correspondingly.

Depending on the implementation, networks 𝑁𝑜𝑟𝑖𝑔 and 𝑁𝑑𝑟𝑣 may share the same layers and

activation functions for a subset of layers:

 𝐿𝑜𝑟𝑖𝑔,𝑖 = 𝐿𝑑𝑟𝑣,𝑖 = 𝑓𝑖(𝑋𝑖𝑊𝑖
𝑇 + 𝐵𝑖) ∀ 𝐿𝑖 ∈ 𝐿𝑠𝑎𝑚𝑒 , 𝐿𝑠𝑎𝑚𝑒 ⊂ 𝐿𝑜𝑟𝑖𝑔 ∩ 𝐿𝑑𝑟𝑣.

As an alternative, the derived model may have all activation functions replaced while sharing the

same values of trainable weights:

𝐿𝑜𝑟𝑖𝑔,𝑖 = 𝑓𝑜𝑟𝑖𝑔,𝑖(𝑋𝑖𝑊𝑖
𝑇 + 𝐵𝑖), 𝐿𝑑𝑟𝑣,𝑖 = 𝑓𝑑𝑟𝑣,𝑖(𝑋𝑖𝑊𝑖

𝑇 + 𝐵𝑖)

 ∀ 𝐿𝑖,𝑜𝑟𝑖𝑔 ∈ 𝐿𝑜𝑟𝑖𝑔 , 𝐿𝑖,𝑑𝑟𝑣 ∈ 𝐿𝑑𝑟𝑣 , 𝐿𝑜𝑟𝑖𝑔 ∩ 𝐿𝑑𝑟𝑣 = ∅.

Assuming the neural network architecture is known, the activation functions 𝑓𝑜𝑟𝑖𝑔,𝑖 can be replaced

with the corresponding adaptive alternatives 𝑓𝑑𝑟𝑣,𝑖. As the output of each new layer 𝐿𝑖 depends on the

output of the previous layer 𝐿𝑖−1, changes in the hidden layers may change the distribution of their

output values, introduce errors to their output values, invalidate the trainable parameter values in each

subsequent layer, and require re-training of the following layers.

The replacement activation function 𝑓𝑑𝑟𝑣 shall strictly follow the shape and amplitude of the original

activation function 𝑓𝑜𝑟𝑖𝑔 to preserve the pre-trained parameter values 𝑊𝑖 and 𝐵𝑖 in the derived network.

In other words, the difference between the outputs of the original and the replacement activation

functions shall be zero for all input values 𝑧:

𝐸𝑓𝑖
= (𝑓𝑑𝑟𝑣,𝑖(𝑧) − 𝑓𝑜𝑟𝑖𝑔,𝑖(𝑧))

2
= 0  z ∈ ℝ .

In practice, we show that the original activation function can be replaced by its approximation,

assuming that the difference between their outputs on the whole range of input values is relatively low:

𝐸𝑓𝑖
= (𝑓𝑑𝑟𝑣,𝑖(𝑧) − 𝑓𝑜𝑟𝑖𝑔,𝑖(𝑧))

2
< ε  z ∈ ℝ .

3.1. Selection of Replacement Activation Functions

Achieving the zero difference between the outputs of the original and the replacement activation

function is possible if the original activation function is a corner case of the replacement activation

function. In this case, expressing the original activation function 𝑓𝑜𝑟𝑖𝑔 from the replacement adaptive

activation function 𝑓𝑑𝑟𝑣 requires selecting the corresponding activation function parameters 𝑃𝑑𝑟𝑣 =
{𝑝1; 𝑝2; … ; 𝑝𝑚} so that:

𝑓𝑑𝑟𝑣(𝑃𝑑𝑟𝑣; 𝑧) = 𝑓𝑜𝑟𝑖𝑔(𝑧).

For example, Adaptive Hybrid Activation Function (AHAF) can exactly replace SiLU when 𝑃𝑑𝑟𝑣 =
= {𝑝1; 𝑝2} = {1; 1}:

𝑓𝑜𝑟𝑖𝑔(𝑧) = SiLU(𝑧) = 𝑧𝜎(𝑧),

𝑓𝑑𝑟𝑣(𝑃𝑑𝑟𝑣; 𝑧) = AHAF(𝑝1; 𝑝2; 𝑧) = 𝑝1𝑧𝜎(𝑝2𝑧),

𝑓𝑑𝑟𝑣(𝑃𝑑𝑟𝑣; 𝑧) = AHAF(1; 1; 𝑧) = 1 ⋅ 𝑧𝜎(1 ⋅ 𝑧) = 𝑧𝜎(𝑧) = SiLU(𝑧).

When parameter 𝑝2 is close to +∞, the sigmoidal part of AHAF gets close to the step function:

lim
𝑝2→ +∞

𝜎(𝑝2𝑧) = 𝜎(+∞ ⋅ 𝑧) = {
1, 𝑧 > 0
0, 𝑧 ≤ 0

so that AHAF can approximate ReLU when 𝑃𝑑𝑟𝑣 = {𝑝1; 𝑝2} = {1; +∞}:

𝑓𝑜𝑟𝑖𝑔(𝑧) = ReLU(𝑧) = {
𝑧, 𝑧 > 0
0, 𝑧 ≤ 0

,

𝑓𝑑𝑟𝑣(𝑃𝑑𝑟𝑣; 𝑧) = AHAF(1; +∞; 𝑧) = 1 ⋅ 𝑧𝜎(+∞ ⋅ 𝑧) = {
𝑧, 𝑧 > 0
0, 𝑧 ≤ 0

= ReLU(𝑧)

Modern computers have limited computation accuracy, so, in practice 𝑝2 can be selected as a

sufficiently large finite real number. Here and below, we use AHAF with 𝑃𝑑𝑟𝑣 = {𝑝1, 𝑝2} = {1,109} as

a sufficiently close approximation of ReLU:

𝑓𝑑𝑟𝑣(𝑃𝑑𝑟𝑣, 𝑧) = 𝐴𝐻𝐴𝐹(1; 1 ⋅ 109; 𝑧) = 1 ⋅ 𝑧𝜎(109 ⋅ 𝑧) ≈ {
𝑧, 𝑧 > 0
0, 𝑧 ≤ 0

≈ 𝑅𝑒𝐿𝑈(𝑧).

The same approach applies to replacing other adaptive activation functions, assuming that the

replacement activation function is a generalization of the original one. For example, AHAF can replace

the Swish activation function, when 𝑃𝑜𝑟𝑖𝑔 = {𝑝𝑜𝑟𝑖𝑔,1}, 𝑝𝑑𝑟𝑣,1 = 1, 𝑝𝑑𝑟𝑣,2 = 𝑝𝑜𝑟𝑖𝑔,1, 𝑃𝑑𝑟𝑣 =

{𝑝𝑑𝑟𝑣,1; 𝑝𝑑𝑟𝑣,2} = {1; 𝑝𝑜𝑟𝑖𝑔,1}:

𝑓𝑜𝑟𝑖𝑔(𝑃𝑜𝑟𝑖𝑔; 𝑧) = Swish(𝑝𝑜𝑟𝑖𝑔,1; 𝑧) = 𝑧𝜎(𝑝𝑜𝑟𝑖𝑔,1 ⋅ 𝑧),

𝑓𝑑𝑟𝑣(𝑃𝑑𝑟𝑣; 𝑧) = AHAF(𝑝𝑑𝑟𝑣,1; 𝑝𝑑𝑟𝑣,2; 𝑧) = 𝑝𝑑𝑟𝑣,1 ⋅ 𝑍𝜎(𝑝𝑑𝑟𝑣,2 ⋅ 𝑧),

𝑓𝑑𝑟𝑣(𝑃𝑑𝑟𝑣; 𝑧) = AHAF(1; 𝑝𝑜𝑟𝑖𝑔,1; 𝑧) = 1 ⋅ 𝑧𝜎(𝑝𝑜𝑟𝑖𝑔,1 ⋅ 𝑧) = Swish(𝑝𝑜𝑟𝑖𝑔,1; 𝑧).

In contrast, some adaptive activation functions are piece-wise linear activation functions. Such

adaptive activation functions can be an exact replacement only for a subset of other piece-wise linear

activation functions. For example, the F-neuron activation function can replace the HardTanh activation

function, assuming they have the same definition interval [𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥]:

𝑓𝑜𝑟𝑖𝑔(𝑧) = HardTanh(𝑧) = {

𝑧𝑚𝑖𝑛, 𝑧 < 𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥, 𝑧 > 𝑧𝑚𝑎𝑥

𝑧, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

𝑓𝑑𝑟𝑣(𝑃, 𝑧) = FNact(𝑃, 𝑧) = ∑ (𝐹𝑁𝑎𝑐𝑡,𝑗(𝑧) ⋅ 𝑝𝑗)𝑚
𝑗=1 = {

𝑧𝑚𝑖𝑛, 𝑧 < 𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥, 𝑧 > 𝑧𝑚𝑎𝑥

𝑧, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

where FNact(𝑃, 𝑧) is the F-neuron activation function, FNact,𝑗(𝑧) is the 𝑗-th membership function of

FNact(𝑃, 𝑧), 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚} – parameters of the F-neuron activation function, 𝑚 – the total number

of membership functions, 𝑝𝑗 = HardTanh(𝑧𝑚𝑖𝑛 + (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛)/(𝑚 − 1) ∗ (𝑗 − 1)).

When the original function is not piece-wise linear, the F-neuron activation function can only

provide a piece-wise linear approximation on an interval with limited accuracy. For example, an F-

neuron with 18 membership functions (1 left ramp, 16 triangle-shaped functions, 1 right ramp) can

approximate Tanh on the [−4.0; +4.0] interval with the maximum delta squared of 4 ⋅ 10−4.

Figure 1: Delta squared error for an F-neuron activation initialized as Tanh with 18 membership
functions compared to the base Tanh activation function.

In this case, the trainable parameters 𝑃𝐹𝑁𝑎𝑐𝑡
 are initialized as:

𝑃𝐹𝑁𝑎𝑐𝑡
= {𝑝1, 𝑝2, … , 𝑝18}, m = 18,

𝑝𝑗 = tanh (−4.0 +
4.0+4.0

17
∗ (𝑗 − 1)),

𝑃𝐹𝑁𝑎𝑐𝑡
≈ {−0.9993; −0.9992; … ; −0.031; +0.031; … ; … ; 0.9992; 0.9993}.

3.2. Practical Aspects of Activation Function Replacements

Researchers and companies use various data formats to describe, save and distribute their pre-trained

neural network models. To improve interoperability and simplify the practical application of the model,

the authors use various deep learning frameworks, such as PyTorch [14] and others. Generally, such

frameworks store their models in two separate pieces: the model description in code and the values of

its trainable weights in the binary files.

Hence, the implementation of the activation function replacement method is a four-step procedure:

1. Restore the original neural network structure in memory using the stored model description.

2. Replace the original activation functions with their adaptive alternatives to get the derived

network structure.

3. Load values of the original trainable parameters from the saved state.

4. Initialize the parameters of the adaptive functions so that the adaptive functions correspond to

the original ones, as described in Section 3.1.

Figure 2 illustrates the network initialization and activation function replacement procedure.

Figure 2: Network model initialization and activation function replacement from the description of the
original model description, the stored state, and the replacement rules described in Section 3.1.

In practice, modern deep learning frameworks allow combining steps 1, 3, and 4. To combine the

steps, the user shall define a new network in memory, use the same parameter names for common

weights, pre-initialize adaptive activation functions with the corresponding parameters, and load the

weights from the stored state. Figure 3 shows an example two-step implementation in PyTorch.

Figure 3: Loading pre-trained weights into a derived network with adaptive activation functions.

In this figure, “net” indicates a new network in memory, “saved_state_file_path” denotes the pre-

trained model’s state path, and “strict=False” instructs PyTorch to load parameters of the pre-trained

network, ignoring the adaptive activation function parameters missing from the original model.

3.3. Fine-Tuning Activation Function Parameters in a Pre-Trained Model

An imperfect approximation of the original activation function may cause degradation in the

artificial neural network model’s performance (classification accuracy, loss function values, etc.). The

replacement activation functions may provide an imperfect approximation of the original ones. The

adaptive activation function parameters can be fine-tuned separately from all other trainable parameters

to improve the performance and compensate for possible approximation errors. The non-activation

parameters shall be excluded from the training during the fine-tuning process. The following code

sample illustrates the approach (figure 4).

Figure 4: Fine-tuning the adaptive activation function parameters.

Where “net” is an instance of the artificial neural network model, “dataset” is the training data set,

“net.params()” returns all trainable parameters in the network, and “net.activation_params” returns the

list of parameters that belong to adaptive activation functions.

In the following sections, we empirically study the effectiveness of networks with fine-tuned

adaptive activation functions compared to the original networks and networks with adaptive activation

functions that were trained from scratch.

4. Experiment

We evaluate the performance of various neural network variants on the CIFAR-10 [15] data set.

Each element in the data set is a 3-channel image, 32x32 pixels in size. Each image in the data set

corresponds to one of 10 possible object classes. We use the 5:1 split between the training and the

testing data: 50000 images in the training subset and 10000 in the testing subset. During training, we

apply image augmentation using a random horizontal flip and a random affine transformation (shifting)

by at most 0.1 times vertically and horizontally.

The base neural network architecture is the VGG-like KerasNet [32] network. The architecture

includes:

• 4 two-dimensional convolutional layers with the corresponding activation functions.

• 2 layers of 2D max pooling and 2D dropout between the pairs of convolutional layers.

• 1 hidden fully connected layer with the corresponding activation function.

• 1 layer of dropout between the fully connected layers.

• 1 output fully connected layer with SoftMax on its output for classification.

The architecture changes based on the model variant (the reference network, the network with

AHAF, the network with the F-neuron activation). Still, the overall list of layers and the list of non-

activation components remains the same across all experiments. We run the experiments on a laptop

with NVIDIA GeForce GTX 1650 Max-Q and PyTorch [14] version 1.13.1. The implementation is

available on GitHub: https://github.com/s-kostyuk/af_replacement.

4.1. Reference Model Training from Scratch

We train four variants of the reference KerasNet model:

1. With the ReLU activation in all layers.

2. With SiLU in all layers.

3. With Tanh in all layers.

4. With Sigmoid in all layers.

We train each variant from scratch for one hundred epochs on the CIFAR-10 dataset. We record the

test set accuracy and the training set loss during to visualize and analyze the training process. We save

the resulting weights for further reference and activation function replacement. This experiment

provides the reference data for comparison with derived models.

4.2. Replacing Activation Functions in Pre-Trained Reference Model

We create the derivative models from the reference models by loading the pre-trained weights and

replacing the non-adaptive activation functions with the adaptive ones. This step generates four

different model variants:

1. With the AHAF activation in all layers, AHAF initialized as ReLU.

2. With the AHAF activation in all layers, AHAF initialized as SiLU.

3. With Tanh activation in the convolutional layers and the F-neuron activation in the second-to-

last fully connected layer, the F-neuron activation approximates Tanh with 18 membership functions.

4. With Sigmoid activation in the convolutional layers and the F-neuron activation in the second-

to-last fully connected layer, the F-neuron approximates Sigmoid with 18 membership functions.

We evaluate the performance of derived networks directly after the replacement. This experiment

allows validating the replacement approach and studies the effect of imperfect replacements when used

with piece-wise linear adaptive activation functions.

4.3. Activation Function Fine-Tuning

We fine-tune the activation function parameters in the derived models to compensate for

approximation errors and improve the classification performance. We freeze all trainable parameters,

except the activation function parameters, during fine-tuning. We fine-tune for 50 additional epochs on

the same CIFAR-10 dataset, so there is no need to adapt the architecture for a new dataset.

We record the test set accuracy and the training set loss during the fine-tuning process. We save the

activation function parameters for subsequent visualization. This experiment allows to evaluate the

impact of activation function fine-tuning on model’s performance and the form of activation functions.

4.4. Training Models with Adaptive Activation Functions from Scratch

We train four additional variants of the KerasNet model from scratch:

1. With the AHAF activation in all layers, AHAF initialized as ReLU.

2. With the AHAF activation in all layers, AHAF initialized as SiLU.

3. With Tanh activation in the convolutional layers and the F-neuron activation in the second-to-

last fully connected layer, the F-neuron activation approximates Tanh with 18 membership functions.

4. With Sigmoid activation in the convolutional layers and the F-neuron activation in the second-

to-last fully connected layer, the F-neuron approximates Sigmoid with 18 membership functions.

We record the training time, the test set accuracy, and the training set loss. This experiment allows

to compare the training time and the resulting effectiveness between models with replaced activation

functions and the models originally trained with adaptive activations.

5. Results and Discussions

We recorded and evaluated the results of the experiments. We structure this section as the following:

1. Validation of the parameter initialization and the form for adaptive activation functions.

2. Evaluation of the activation function form after pre-training with all other parameters frozen.

3. Comparison of the performance recordings for different variants of the KerasNet model.

5.1. Validation of Activation Function Replacement

We visualize the activation function form for adaptive activation functions directly after the

activation function replacement. As the visualization shows, the form of AHAF activations (grey;

AHAF-as-RELU and AHAF-as-SiLU) directly follows the form of the corresponding original functions

(black; ReLU and SiLU correspondingly). Hence, we confirm that the AHAF activation can be a direct

replacement of ReLU and SiLU activations (figures 5,6).

Figure 5: The form of ReLU-like AHAF after replacement.

Figure 6: The form of SiLU-like AHAF after replacement.

The visualizations for F-neuron activations show that while the replacement is not perfect, the

differences between the original functions (black) and the replacement function (grey) are hard to spot.

Hence, the parameter initialization is correct for the F-neuron activations (figures 7,8).

Figure 7: Activation form of the F-neuron activation as Tanh after replacement

Figure 8: Activation form of the F-neuron activation as Sigmoid after replacement

5.2. Adaptive Activations’ Form After Fine-Tuning

We visualize the activation function form for the AHAF and F-neuron activation variants after fine-

tuning. The visualization shows that the form of fine-tuned activation functions (grey) noticeably

diverges from the original form (black). We note serious deformation of the sigmoid-like F-neuron

activations which indicates poor applicability of Sigmoid for convolutional networks. Hence, we

confirm that the activation function fine-tuning works and the activation function form changes

depending on the requirements of the model (figures 9-12).

Figure 9: Activation form of AHAF as ReLU after fine-tuning

Figure 10: Activation form of AHAF as SiLU after fine-tuning

Figure 11: Activation form of the F-neuron activation as Tanh after fine-tuning

Figure 12: Activation form of the F-neuron activation as Sigmoid after fine-tuning

5.3. Performance Of the Model Variants

We compare the test set accuracy between all variants of the KerasNet model. We group by the

results by the reference activation functions used in such networks:

1. Linear units – SiLU-like and ReLU-like.

2. Bounded functions – Tanh-like and Sigmoid-like.

The fine-tuned model with the ReLU-like AHAF activations shows the best test set accuracy on the

CIFAR-10 dataset. AHAF successfully replaces the original ReLU activation functions and adapts its

form during fine-tuning but tends to overfit on the final epochs. While the overall training time is longer,

activation function replacement together with activation function fine-tuning shows itself as a viable

solution when the pre-trained model with non-adaptive functions is already available. As expected, the

test set accuracy after the AHAF-based activation function replacement is the same as the accuracy of

the reference models after one hundred epochs. Table 1 demonstrates the training results for models

with linear unit activations.

Table 1
Performance of model variants with SiLU-like and ReLU-like activations.

Variant CNN AF FFN AF Accuracy,
%

Training
Epoch

Training Time,
minutes

Reference ReLU ReLU 82.41 96 17.41
AHAF, from scratch ReLU-like ReLU-like 82.46 96 24.78
AHAF, AF replaced ReLU-like ReLU-like 82.17 100 -

AHAF, fine-tuned AF ReLU-like ReLU-like 82.64 148 9.13
Reference SiLU SiLU 81.57 98 18.00

AHAF, from scratch SiLU-like SiLU-like 81.84 98 25.42
AHAF, AF replaced SiLU-like SiLU-like 81.54 100 -

AHAF, fine-tuned AF SiLU-like SiLU-like 81.95 143 8.64

The model with the Tanh-like F-neuron activation trained from scratch shows the best test set

accuracy on the CIFAR-10 dataset. One potential explanation to such results is poor applicability of

Tanh and Sigmoid activations for convolutional neural networks. Training the model from scratch

allows modification of the activation function form and hence better propagation of the signal between

the layers. As expected, the F-neuron-based activation function replacement gives different results to

the reference model, but the actual difference is negligible (about 0.01%). Even for networks with Tanh-

like and Sigmoid-like activations, activation function replacement together with activation function

fine-tuning is a viable option when the pre-trained model is already available. Table 2 demonstrates the

training results for models with bounded activations.

Table 2
Performance of model variants with Tanh-like and Sigmoid-like activations.

Variant CNN AF FFN AF Accuracy,
%

Training
Epoch

Training Time,
minutes

Reference Tanh Tanh 79.97 100 18.35
Fuzzy, from scratch Tanh Tanh-like 81.04 100 21.22
Fuzzy, AF replaced Tanh Tanh-like 79.97 100 -

Fuzzy, fine-tuned AF Tanh Tanh-like 80.34 150 8.11
Reference Sigmoid Sigmoid 60.17 100 18.63

Fuzzy, from scratch Sigmoid Sigmoid-like 60.55 100 21.36
Fuzzy, AF replaced Sigmoid Sigmoid-like 60.43 100 -

Fuzzy, fine-tuned AF Sigmoid Sigmoid-like 61.16 147 9.10

Figures 13 and 14 demonstrate the training process for models with linear units and bounded

functions correspondingly.

Figure 13: The training process for network variants with SiLU and ReLU activations

Figure 14: The training process for network variants with Tanh and Sigmoid activations

6. Conclusions

This paper introduces the method of activation function replacement in pre-trained artificial neural

network models. The method allows experimenting with various adaptive activation functions without

the need in model re-training. The reference implementation of the activation function replacement

method in PyTorch is provided in the paper. We evaluate several variants of the KerasNet model on the

CIFAR-10 dataset: the reference pre-trained model with non-adaptive activation function, the derived

model with replaced activation functions and the derived model trained from scratch. The empirical

results confirm the possibility of replacing the Sigmoid and Tanh activations with the corresponding

piece-wise approximations without significant changes in the test set accuracy. The instances of AHAF

and the F-neuron activation are used as the example adaptive activation functions. The experiment

shows the effectiveness of activation function replacement in combination with activation function fine-

tuning for improving the test set accuracy of a pre-trained model.

7. References

[1] A. Paleyes, R.-G. Urma, N. D. Lawrence, Challenges in deploying machine learning: A survey of

case studies, ACM Computing Surveys 55 (2022) 1–29. doi:10.1145/3533378.

[2] E. Yurtsever, J. Lambert, A. Carballo, K. Takeda, A survey of autonomous driving: Common

practices and emerging technologies, IEEE Access 8 (2020) 58443–58469.

doi:10.1109/access.2020.2983149.

[3] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, B. Lee, A survey of modern deep

learning based object detection models, Digital Signal Processing 126 (2022) 103514.

doi:10.1016/j.dsp.2022.103514.

[4] S. Grigorescu, B. Trasnea, T. Cocias, G. Macesanu, A survey of deep learning techniques for

autonomous driving, Journal of Field Robotics 37 (2020) 362–386. doi:10.1002/rob.21918.

[5] Y. Wang, M. Perry, D. Whitlock, J. W. Sutherland, Detecting anomalies in time series data from

a manufacturing system using recurrent neural networks, Journal of Manufacturing Systems 62

(2022) 823–834. doi:10.1016/j.jmsy.2020.12.007.

[6] S. Ranathunga, E.-S. A. Lee, M. P. Skenduli, R. Shekhar, M. Alam, R. Kaur, Neural machine

translation for low-resource languages: A survey, ACM Computing Surveys 55 (2023) 1–37.

doi:10.1145/3567592.

[7] F. F. Xu, U. Alon, G. Neubig, V. J. Hellendoorn, A systematic evaluation of large language models

of code, in: Proceedings of the 6th ACM SIGPLAN International Symposium on Machine

Programming, ACM, 2022. doi:10.1145/3520312.3534862.

[8] GPT-4 Technical Report, Technical Report, OpenAI, 2023. doi:10.48550/ARXIV.2303.08774.

[9] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M.

Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S.

Gugger, M. Drame, Q. Lhoest, A. Rush, Transformers: State-of-the-art natural language

processing, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing: System Demonstrations, Association for Computational Linguistics, 2020.

doi:10.18653/v1/2020.emnlp-demos.6.

[10] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional

transformers for language understanding, in: Proceedings of the 2019 Conference of the North,

Association for Computational Linguistics, 2019. doi:10.18653/v1/n19-1423.

[11] S. R. Dubey, S. K. Singh, B. B. Chaudhuri, Activation functions in deep learning: A comprehensive

survey and benchmark, Neurocomputing 503 (2022) 92–108. doi:10.1016/j.neucom.2022.06.111.

[12] A. D. Jagtap, K. Kawaguchi, G. E. Karniadakis, Adaptive activation functions accelerate

convergence in deep and physics-informed neural networks, Journal of Computational Physics 404

(2020) 109136. doi:10.1016/j.jcp.2019.109136.

[13] X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, Y. Yao, A. Zhang, L. Zhang, W. Han,

M. Huang, Q. Jin, Y. Lan, Y. Liu, Z. Liu, Z. Lu, X. Qiu, R. Song, J. Tang, J.-R. Wen, J. Yuan, W.

X. Zhao, J. Zhu, Pre-trained models: Past, present and future, AI Open 2 (2021) 225–250. doi:

10.1016/j.aiopen.2021.08.002.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style, high-performance deep

learning library, in: H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett

(Eds.), Advances in Neural Information Processing Systems, volume 32, Curran Associates, Inc.,

2019. URL: https://proceedings.neurips.cc/paper/9015.pdf.

[15] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images, Technical

Report, University of Toronto, Toronto, Ontario, 2009. URL:

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

[16] A. Apicella, F. Donnarumma, F. Isgrò, R. Prevete, A survey on modern trainable activation

functions, Neural Networks 138 (2021) 14–32. doi:10.1016/j.neunet.2021.01.026.

[17] D. Chen, K. Xu, Arelu: Attention-based rectified linear unit, CoRR abs/2006.13858 (2020). URL:

https://arxiv.org/abs/2006.13858. arXiv:2006.13858, pre-print.

[18] H. Fang, J.-U. Lee, N. S. Moosavi, I. Gurevych, Transformers with learnable activation functions,

2022. doi:10.48550/ARXIV.2208.14111. arXiv:2208.14111, pre-print.

[19] Y. Bodyanskiy, S. Kostiuk, Adaptive hybrid activation function for deep neural networks, System

research and information technologies (2022) 87–96. doi:10.20535/srit.2308-8893.2022.1.07.

[20] Y. Bodyanskiy, S. Kostiuk, Deep neural network based on f-neurons and its learning (2022).

doi:10.21203/rs.3.rs-2032768/v1, pre-print.

[21] B. Yuen, M. T. Hoang, X. Dong, T. Lu, Universal activation function for machine learning,

Scientific Reports 11 (2021). doi:10.1038/s41598-021-96723-8.

[22] P. Ramachandran, B. Zoph, Q. V. Le, Searching for activation functions, in: 6th International

Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,

2018, Workshop Track Proceedings, OpenReview.net, 2018. URL: https://openreview.

net/forum?id=Hkuq2EkPf.

[23] A. Severyn, A. Moschitti, Twitter sentiment analysis with deep convolutional neural networks, in:

Proceedings of the 38th International ACM SIGIR Conference on Research and Development in

Information Retrieval, ACM, 2015. doi:10.1145/2766462.2767830.

[24] B. Felbo, A. Mislove, A. Søgaard, I. Rahwan, S. Lehmann, Using millions of emoji occurrences

to learn any-domain representations for detecting sentiment, emotion and sarcasm, in: Proceedings

of the 2017 Conference on Empirical Methods in Natural Language Processing, Association for

Computational Linguistics, 2017. doi:10.18653/v1/d17-1169.

[25] B. L. Deng, G. Li, S. Han, L. Shi, Y. Xie, Model compression and hardware acceleration for neural

networks: A comprehensive survey, Proceedings of the IEEE 108 (2020) 485–532.

doi:10.1109/jproc.2020.2976475.

[26] J. Gou, B. Yu, S. J. Maybank, D. Tao, Knowledge distillation: A survey, International Journal of

Computer Vision 129 (2021) 1789–1819. doi:10.1007/s11263-021-01453-z.

[27] N. Aghli, E. Ribeiro, Combining weight pruning and knowledge distillation for CNN compression,

in: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), IEEE, 2021. doi:10.1109/cvprw53098.2021.00356.

[28] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu, A. Liotta, Scalable training of

artificial neural networks with adaptive sparse connectivity inspired by network science, Nature

Communications 9 (2018). doi:10. 1038/s41467-018-04316-3.

[29] Z. Lu, G. Sreekumar, E. Goodman, W. Banzhaf, K. Deb, V. N. Boddeti, Neural architecture

transfer, IEEE Transactions on Pattern Analysis and Machine Intelligence 43 (2021) 2971–2989.

doi:10.1109/tpami.2021.3052758.

[30] B. Thompson, H. Khayrallah, A. Anastasopoulos, A. D. McCarthy, K. Duh, R. Marvin, P.

McNamee, J. Gwinnup, T. Anderson, P. Koehn, Freezing subnetworks to analyze domain

adaptation in neural machine translation, in: Proceedings of the Third Conference on Machine

Translation: Research Papers, Association for Computational Linguistics, 2018.

doi:10.18653/v1/w18-6313.

[31] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, A comprehensive survey on

transfer learning, Proceedings of the IEEE 109 (2021) 43–76. doi:10.1109/jproc.2020.3004555.

[32] F. Chollet, Train a simple deep cnn on the cifar10 small images dataset — keras 1.2.2., 2017. URL:

https://github.com/keras-team/keras/blob/1.2.2/examples/cifar10_cnn.py, online.

