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Abstract  
The issues of using the pivot point concept for the control of a conventional single-screw vessel 

are considered. The relevance of the task lies in the need for a more accurate assessment of the 

vessel's trajectory and the necessary area for maneuvering, since conventional single-screw 

vessels have low maneuverability, and their share in the total number of vessels exceeds 85%. 

For manual maneuvering of the vessel, using the pivot point, it is important to know the 

position of the pivot point relative to a fixed point of the vessel’s hull. Traditionally, this point 

was the gravity center/middle frame of the vessel. The disadvantage of the existing approaches 

to the calculation of the pivot point position was the use of a simplified calculation scheme 

”gravity center – pivot point”, which did not take into account the dependence of the pivot 

point position on the rotation center position. In previous works, the authors of this article 

proposed the “gravity center – rotation center – pivot point” calculation scheme, which made 

it possible to more accurately estimate the pivot point position, taking into account the position 

of the rotation center. In the refined scheme proposed by the author, the pivot point position 

was determined relative to the moving rotation center, which is not convenient for manual 

control. In this article, for a single-screw conventional vessel, a formula and graphs of pivot 

point position relative to a fixed point on the vessel’s hull (gravity center/middle frame) are 

obtained, for the refined calculation scheme “gravity center – rotation center – pivot point”. 

The obtained formulas and graphs of the pivot point position relative to a fix point (gravity 

center/middle frame) allow us to use them both for automatic and manual control of the vessel’s 

movement. Mathematical modeling of a single-screw conventional vessel movement in the 

closed circuit “Control object – Control system” was carried out for the two considered 

calculation schemes. The simulation results showed that the use of the refined calculation 

schem allows for a 23% more accurate assessment of the vessel’s trajectory and the required 

maneuvering area. 
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1. Introduction 

Over the past decades, the number and dimensions of vessels have grown at a much faster rate than 

the size of ports, as a result of which ports have become "crowded". There was an urgent need to create 

methods of managing ships in ports, narrows and other limited waters, which would allow reducing the 

area of maneuvering. One of the effective directions for solving this problem is the use of the concept 

of the pivot point – an alternative view of the processes of controlling the vessel’s rotation. A simple 
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deflection of the stern leads to the appearance of a lateral force and a moment from the stern. Under the 

action of this force and moment, the vessel receives simultaneously the lateral speed 𝑉𝑦 and the angular 

speed of rotation 𝜔𝑧 in the yawing channel. It is obvious that there is always a point on the longitudinal 

axis OX1 of the vessel, at a distance 𝑅 from the rotation center, at which the sum of the lateral 

velocity 𝑉𝑦 of the rotation center and the tangential velocity 𝑉𝜏 = 𝜔𝑧𝑅 from the rotation of the vessel is 

zero 

𝑉𝑦 +𝜔𝑧𝑅 = 0.      (1)  

This special point at a distance 𝑅 from the rotation center is called the pivot point (PP). The use of 

pivot point allows two movements of the vessel, lateral and rotational around the rotation center to be 

replaced by one rotational movement around the PP. This replacement significantly simplifies the 

representation of the vessel’s movement and allows to optimize the processes of controlling the vessel’s 

rotation. 

In article [5] author proposed to use a vector equation instead of the scalar equation (1) 

𝑉 + 𝜔х𝑅 = 0,      (2) 

where 𝑽 is the linear velocity vector of the vessel, 𝝎 is the angular velocity vector of the vessel, 𝑹 is 

the position vector of the PP in the linked coordinate system (LCS). 

After opening the vector equation (2), the author obtained the projections of the vector 𝑹 =
(𝑅𝑥 , 𝑅𝑦, 𝑅𝑧) on the LCS axis. For practical maneuvering, the vessel’s longitudinal speed 𝑉𝑥, lateral 

speed 𝑉𝑦, and yawing angular speed 𝜔𝑧 are of greatest importance. In this case, the applicate 𝑅𝑧 = 0, 

and the abscissa 𝑅𝑥 and the ordinates 𝑅𝑦 of the vector 𝑹 are determined by the following equations 

{
𝑅𝑥 = −

𝑉𝑦

𝜔𝑧

𝑅𝑦 =
𝑉𝑥

𝜔𝑧
    

      (3) 

Figure 1 shows the geometric interpretation of the abscissa 𝑅𝑥 and the ordinate 𝑅𝑦 of the PP  

  Figure 1: The abscissa and ordinate of the pivot point 
 

As can be seen from Figure 1, the abscissa and ordinate of PP in LCS determine the position of 

turning circle center and the radius of turning circle 

 

 𝑅𝑐𝑖𝑟 = √𝑅𝑥
2 + 𝑅𝑦

2.      (4) 



It can be seen from equation (4) that the turning circle of the vessel with the same radius of turning 

circle 𝑅𝑐𝑖𝑟 can be carried out for different sets of values 𝑅𝑥 and  𝑅𝑦. The abscissa 𝑅𝑥 and the ordinate 

𝑅𝑦 of the PP determine the position of the vessel in turning circle. Since the vessel’s speed vector is 

always tangential to the turning circle (see Figure 1), for the abscissa of the pivot point 𝑅𝑥 > 0, 𝑉𝑦 < 0 

and the vessel’s nose is turned inside the turning circle. For the abscissa of the pivot point 𝑅𝑥 < 0, 𝑉𝑦 >

0 and the nose of the vessel is turned outside the turning circle. In these cases, the vessel moves with a 

drift angle, which increases the width of the traffic lane and the maneuvering area. Of practical interest 

is the case 𝑅𝑥 = 0, when the diametrical plane of the vessel is oriented tangentially to the turning circle 

and the vessel moves without a drift angle. This motion can also be used to moor without the bow or 

stern hitting the mooring wall. Controlling the position of the vessel in turning circle is possible only in 

the presence of sufficient or excess control [12-15]. Vessels with a number of controls less than 3, which 

include conventional single-screw vessels, are always oriented with the nose into the turning circle and 

move with a drift angle. This is explained by the fact that the lateral force from the rotation of the 

propeller and the deflection of the rudder in such vessels are always applied in the stern and abscissa of 

pivot point 𝑅𝑥 > 0. For such vessels, we can only talk about the minimization of the drift angle, the 

lane of the vessel and the maneuvering area, provided that the restrictions on the longitudinal movement 

speed are met. 

The purpose of the research is to develop a method, algorithm and software for the automatic control 

module of a single-screw conventional vessel in compressed waters, which will allow to reduce 

deviation errors from the predicted trajectory of movement and the area of maneuvering of the vessel, 

to reduce the influence of the human factor on control processes and to increase the safety of navigation. 
The task of the research is: analysis of literary sources dedicated to the problem of reducing the 

maneuvering area in compressed waters; development of the maneuvering method taking into account 

the refined scheme for calculating the pivot point position "Gravity center – Rotation center – Pivot 

point"; obtaining a linearized model of the steady motion of a single-screw conventional vessel in the 

control channels, taking into account the refined scheme for calculating the pivot point position; 

calculation of the pivot point position relative to a fixed point on the vessel's hull, for use during manual 

maneuvering; confirmation of the workability and effectiveness of the developed method, algorithmic 

and software by mathematical modeling in the MATLAB environment. 

2. Related works 

Many works by various authors are devoted to the study of automation issues and the use of a pivot 

point to optimize control processes.  

In particular, in the book by Henry H. Hooyer [1], chapter 1, is devoted to the use of the pivot point 

for maneuvering the vessel. The author writes that for a vessel standing in the water, the pivot point is 

always on the opposite side from the middle frame of the vessel, relative to the applied lateral force of 

the rudder or other lateral force. For a vessel moving in water, the rotation center is additionally shifted 

in the direction of the vessel’s movement. The author supports this conclusion with the example of two 

tugboats pushing the vessel with a log. The author also analyzes the influence of wind, trim, lateral 

force from the rotation of the propeller and the deflection of the rudder on the position of the pivot 

point. 

In the article [2], the author considered an approximation method for calculating the position of the 

pivot point, which is based on the equations of steady motion of the linearized vessel model in the 

channels of lateral and angular motion (sway-yaw equations). According to the author, the position of 

the pivot point depends on the ratio of the sensitivity coefficients of the lateral force and moment to the 

deflection of the rudder, which can be calculated using six coefficients of the linearized model. 

Numerical simulation results confirmed that the estimation of the pivot point position using the 

linearized model correlates well with the estimations obtained for the full mathematical model of the 

channels of lateral and angular movements. The existence of similarity between the lateral speed and 

the angular speed of movement, known as the reduction effect in the turning maneuver (in the formula 

for determining the position of the pivot point, the applied lateral force is reduced), significantly 

expands the possibilities of applying the proposed approach using the assumption of steady motion. In 



other words, the ratio of lateral velocity to angular velocity, which determines the position of the pivot 

point, reaches a constant value long before the steady motion of the vessel itself begins. 

In the article [3] the author describes experiments being carried out for shipmasters at the training 

center in Port Revel, France, to study the behavior of a vessel’s pivot point. Bow and stern thrusters are 

used to simulate tugboats, which push the vessel bodily. As soon as the vessel acquires even an 

insignificant longitudinal speed, it begins to rotate, which is explained by the author by the change of 

shoulders from the thrusters to the rotation center. The author notes that this effect can be used in 

practice, namely, to turn around the center of gravity, the vessel needs to be stopped, to increase the 

steering moment, the vessel needs to accelerate, and to reduce the steering moment, the vessel needs to 

be braked, or even reversed. The author also extends the experience gained in the port of Revel to sailing 

vessels. 

Article [4] is one of the most important works in the theory of the pivot point. Using the example of 

a vessel backing out of a dock, the author explains that the traditional theory of the pivot point is 

incorrect. According to this theory, the vessel, after deflecting the rudder, should rotate around the pivot 

point, which is shifted to the stern, and safely leave the dock. But in practice, the vessel leans against 

the wall of the dock. The author explains this by the fact that after the rudder deflection, in addition to 

the moment, a lateral force is also created, which leads to simultaneous lateral and rotational movement. 

The author replaces the sum of these two movements with one rotational movement around another 

point - the pivot point. And this point is located in the bow of the vessel, which explains the leaning of 

the vessel on the wall of the dock. The author also formulates the concept of the center of lateral 

resistance (COLR) as the point of application of the resulting lateral hydrodynamic force and indicates 

that the position of the COLR depends on the center of gravity, the center of the underwater surface and 

the pressure field around the vessel. If the vessel has no speed, the COLR is between the center of 

gravity and the center of the underwater part of the vessel. If there is speed, the COLR shifts in the 

direction of the vessel’s movement and the amount of such a shift does not exceed 10% of the vessel’s 

length. The reason for COLR mixing is the redistribution of the pressure field around the vessel. The 

COLR is the fulcrum for the levers (center of rotation) and is not a pivot point. 

In the work [5] the author uses a vector equation to determine the position of the pivot point, which 

makes it possible to obtain the vector of the pivot point position in space through 3 linear and 3 angular 

velocities of the vessel. For practical maneuvering, it is enough to take into account only the 

longitudinal, lateral and angular (in the yawing channel) speed, and the pivot point, in this case, will be 

located in the plane of the local horizon and determined by the abscissa and ordinate of the pivot point. 

A simplified mathematical model of the vessel was considered and the values of the abscissa, ordinate, 

and modulus of the pole position vector due to the components of the external force in the projections 

on the linked coordinate system axis were determined. 

In the dissertation work [6] has been developed: a method for calculating the pivot point’s abscissa 

for any arbitrary maneuver of the vessel; a method of calculating the dimensions of the water area 

occupied by the turning vessel using the pivot point’s abscissa; a method of approximate determination 

of the pivot point’s abscissa for river vessels and vessels of mixed navigation, which allows taking into 

account trim. The use of the pivot point’s abscissa as a normalizing parameter of the vessel’s turning 

speed is substantiated. 

In the article [7], the author gives three important centers of the vessel rotation: the center of turning 

circle E, the physical center of the vessel rotation S and the pivot point P (imaginary center of rotation), 

which is the projection of the turning circle center on the longitudinal axis of the vessel. Examples of 

pivot point placement for various vessel movements are given: pure rotational movement around the 

rotation center S (yaw only); rotational movement around the rotation center S and lateral movement 

(Yaw+Sway); rotational movement around the rotation center S and longitudinal movement 

(Yaw+Surge); rotational movement around the rotation center S, lateral and longitudinal movements 

(Yaw+Sway+Surge). 

In the article [8], the author introduces the term "pivot point concept" – an alternative, to the classical 

theory, vision of the vessel’s rotation processes. The use of the provisions of the pivot point concept 

has been considered for several practical cases of conventional single-screw vessel maneuvering: 

minimization of the turning area; docking; reversal of a large vessel in the port. 

In work [9], the issues of using machine learning for clustering, classification and outlier detection 

of sea vessels trajectories in the port area were considered. Grouping trajectories into clusters of similar 



behavior can help gain an overall picture of vessel movement patterns and help the operator spot 

irregular movements. Detecting trajectories of irregular behavior among a large group of normal 

trajectories is the task of outlier detection. A similarity-based approach is used to solve the problems of 

clustering, classification, and outlier detection, which is well suited to the nature of ship trajectories and 

moving objects in general. The method of trajectories outlier detection developed by the authors makes 

it possible to increase the safety of navigation. 

In the article [10], the author proposed a system for forecasting the ship's maneuver using neuro-

evolution – a process of continuous learning of an autonomous control unit created using an artificial 

neural network. The control unit monitors the input signals of motion sensors and calculates the 

parameters of the maneuvering vessel model necessary for forecasting. The prediction result is 

transmitted to the navigator to warn of possible dangers. 

In work [11], the question of increasing the accuracy of predicting the movement of the vessel due 

to the integration of the vessel model and the machine learning (ML) module in the dynamic model of 

the vessel is considered. The ML module is used as a compensator for vessel model inaccuracies and 

allows to increase the amount of predefined knowledge about the vessel's movement, reduces the black 

box factor that usually occurs in forecasting. The predicted time is calculated to be 30 s, which is less 

than the actual time for docking operations. The proposed method was tested on the Research Vessel 

Gunnerus. The experiment showed that the inclusion of the ML module significantly increases the 

forecast accuracy. 

The article [12] discusses the issues of automatic control of the vessel’s movement around the pivot 

point. A three-point scheme for determining the position of the pivot point has been proposed: "Center 

of gravity – Center of rotation – Pivot point", in which the pivot point is counted from the center of 

rotation, and not from the center of gravity, as was previously believed. The formula of the rotation 

center displacement relative to the gravity center, depending on the longitudinal speed of the vessel has 

been obtained. For the linearized model of the vessel, the final formulas for calculating the controls are 

obtained, which ensure the rotation of the vessel around the given position of the pivot point. The 

control area and control lines were built, the coefficient of distribution of controls between the executive 

devices of the vessel was investigated. The optimal control of the vessel rotation around the pivot point 

was considered. 

In the works [13-15], other issues of using automatic control modules in automated system to solve 

functional problems have been also investigated: automatic route planning and automatic divergence 

[13]; automatic guidance of the optical axis of the CyScan measuring system to the center of the 

reflector, to increase the accuracy and reliability of the dynamic positioning system in case of strong 

side and keel sway [14]; automatic optimal control of the redundant structure of executive devices [15], 

etc. 

In the works [16-18], the issues of the strength of vessel hulls, the creation of materials resistant to 

corrosion and those that can withstand large loads, and the prediction of the type and size of damage, 

depending on the direction of application of external forces and moments, have been considered. The 

results obtained by the authors of the works can be taken into account in the algorithms of automatic 

control when maneuvering a vessel in compressed waters, in order to minimize damage in the event of 

a collision. 

3. Materials and methods 

The object of research is the control processes of a single-screw conventional vessel using a pivot 

point. The research used a systematic approach, analysis and synthesis, methods of automatic control 

theory, solid body mechanics, aerodynamics and hydrodynamics, differential calculus, mathematical 

analysis, programming and mathematical modeling. Equipment was also used: a personal computer 

with the Windows 10 operating system and the Microsoft Office 2016 application package, the 

MATLAB-2019 environment with integrated application program libraries and specialized software 

developed by the authors: the program manager disp12.m, the complete mathematical model of the 

vessel ship12. m, Runge-Kuta numerical integration method runge12.m, external influences meteo.m, 

sensors for measuring ship movement parameters sensor.m, automatic control sysctr12.m etc. 



4. Results 

The control scheme of a conventional single-screw vessel is shown in Fig. 2.  

Figure 2: Control scheme of a conventional single-screw vessel 
 

The diagram shows: linked coordinate system OX1Y1Z1, gravity center GC, rotation center CoR, pivot 

point PP. The telegraph deflection Θ of the power plant leads to a change in revolutions (or the pitch of 

the propeller), which creates the propeller force 𝐹𝑥(Θ), lateral force 𝐹𝑦(Θ) and yaw moment 

 𝑀𝑧(Θ) = −𝐹𝑦(Θ)(𝑙 + Δ𝑥) relative to the rotation center . Rudder deflection 𝛿 leads to the creation of 

a lateral force 𝐹𝑦(𝛿), a yaw moment  𝑀𝑧(𝛿) = −𝐹𝑦(𝛿)(𝑙 + Δ𝑥) relative to the rotation center and 

additional resistance force 𝐹𝑥(𝛿) from the deflection 𝛿 of the rudder. 

The linearized model of longitudinal, lateral and angular movements can be written as 

{
 
 

 
 𝑚�̇�𝑥 =

𝜕𝑃𝑥

𝜕Θ
Θ −

𝜕𝐹𝑥

𝜕𝛿
δ −

𝜕𝐹𝑥

𝜕𝑉𝑥
𝑉𝑥                                   

𝑚�̇�𝑦 =
𝜕𝑃𝑦

𝜕Θ
Θ +

𝜕𝐹𝑦

𝜕𝛿
δ −

𝜕𝐹𝑦

𝜕𝑉𝑦
𝑉𝑦                                   

𝐼𝑧�̇�𝑧 = −
𝜕𝑃𝑦

𝜕Θ
Θ(l + Δx) −

𝜕𝐹𝑦

𝜕𝛿
δ(l + Δx) −

𝜕𝑀𝑧

𝜕𝜔𝑧
𝜔𝑧

,   (5) 

where 𝑚 is the mass of the vessel, 𝐼𝑧 is the vessel inertia moment in the yawing channel, 
𝜕𝑃𝑥

𝜕Θ
 is the 

sensitivity coefficient of the propeller thrust force 𝑃𝑥(Θ)  to the telegraph deflection angle Θ, 
𝜕𝑃𝑦

𝜕Θ
 is the 

sensitivity coefficient of the lateral force 𝑃𝑦(Θ) from the screw rotation to the telegraph deflection angle 

Θ, 
𝜕𝐹𝑥

𝜕𝛿
 is the sensitivity coefficient of the additional resistance force 𝐹𝑥(𝛿) to the steering deflection 

angle 𝛿, 
𝜕𝐹𝑦

𝜕𝛿
 is the sensitivity coefficient of the lateral force 𝐹𝑦(𝛿) to the angle of the rudder deflection 

𝛿, 
𝜕𝐹𝑥

𝜕𝑉𝑥
 is the sensitivity coefficient of the longitudinal resistance force of the hull 𝐹𝑥(𝑉𝑥)  to the 

longitudinal speed of the vessel 𝑉𝑥, 
𝜕𝐹𝑦

𝜕𝑉𝑦
 is the coefficient of sensitivity of the hull lateral resistance force 

𝐹𝑦(𝑉𝑦) to the lateral speed of the vessel 𝑉𝑦, 
𝜕𝑀𝑧

𝜕𝜔𝑧
 is the sensitivity coefficient of the hull resistance 

moment 𝑀𝑧(𝜔𝑧) to the angular rate of the vessel rotation 𝜔𝑧, 𝑙 is the shoulder from the rudder and the 

propeller to the middle frame, Δx is the rotation center displacement relative to the gravity center, 

depending on the longitudinal speed of the vessel. 

For steady motion of the vessel �̇�𝑥 = 0, �̇�𝑦 = 0, �̇�𝑧 = 0 and system (5) will take the form 

{
 
 

 
 

𝜕𝑃𝑥
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Θ −

𝜕𝐹𝑥

𝜕𝛿
δ −

𝜕𝐹𝑥
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𝑉𝑥 = 0                                  

𝜕𝑃𝑦
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𝜕𝐹𝑦

𝜕𝛿
δ −

𝜕𝐹𝑦

𝜕𝑉𝑦
𝑉𝑦 = 0                                   

−
𝜕𝑃𝑦

𝜕Θ
Θ(l + Δx) −

𝜕𝐹𝑦

𝜕𝛿
δ(l + Δx) −

𝜕𝑀𝑧

𝜕𝜔𝑧
𝜔𝑧 = 0

   (6) 

Let us find the longitudinal and lateral linear velocities, as well as the angular velocity of the steady 

motion of the vessel from system (6) 

 



{
 
 

 
 𝑉𝑥 =

𝜕𝑉𝑥

𝜕𝐹𝑥
(
𝜕𝑃𝑥

𝜕Θ
Θ −
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δ)                                  
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(
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Θ +

𝜕𝐹𝑦

𝜕𝛿
δ )                                  

𝜔𝑧 =
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𝜕𝑀𝑧
(−

𝜕𝑃𝑦

𝜕Θ
Θ(l + Δx) −

𝜕𝐹𝑦

𝜕𝛿
δ(l + Δx))

   (7) 

Substitute the equation of system (7) into the first and second equations of system (3) to determine the 

pivot point abscissa 𝑅𝑥 and ordinate 𝑅𝑦.  

 

{
  
 

  
 𝑅𝑥 = −

𝑉𝑦

𝜔𝑧
= −
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1

(𝑙+Δx)

(
𝜕𝑃𝑥
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Θ−
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δ)

(
𝜕𝑃𝑦
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Θ+

𝜕𝐹𝑦

𝜕𝛿
δ)

  (8) 

As can be seen from the first equation (8), the pivot point abscissa does not depend on the controls Θ 

and 𝛿, but depends only on the hydrodynamic characteristics of the vessel’s hull and the arm (𝑙 + Δx)  
of the lateral control forces to the center of rotation. The pivot point ordinate depends on controls Θ and 

𝛿, hydrodynamic characteristics of the vessel’s hull and arm (𝑙 + Δx). 
Since the pivot point position is calculated from the rotation center, which also shifts, depending on 

the vessel speed, it is important to know the movement of the pivot point relative to a fixed point on the 

vessel’s hull, for example, the middle frame. As can be seen from Figure 2, this distance is equal to 

𝑅𝑚𝑖𝑑 = Δ𝑥 + 𝑅𝑥     (9) 

After substituting equation (8) into equation (9), we get 

𝑅𝑚𝑖𝑑 = Δ𝑥 +
𝜕𝑉𝑦

𝜕𝐹𝑦

𝜕𝑀𝑧

𝜕𝜔𝑧

1

(𝑙+Δx)
     (10) 

Let us write equation (10) in relative values 

�̅�𝑚𝑖𝑑 = Δ𝑥̅̅̅̅ +
𝜕𝑉𝑦

𝜕𝐹𝑦

𝜕𝑀𝑧

𝜕𝜔𝑧

1

𝐿2
1

(𝑙+̅Δx̅̅ ̅̅ )
,    (11) 

where �̅�𝑚𝑖𝑑 =
𝑅𝑚𝑖𝑑

𝐿
 is the relative position of the pivot point, Δ𝑥̅̅̅̅ =

Δ𝑥

𝐿
 is the relative displacement of 

the rotation center, 𝑙 ̅ =
𝑙

𝐿
 is the relative shoulder of the rudder and the propeller to the middle frame. 

Displacement rotation center relative to the gravity center can be calculated using the formula 

Δ𝑥 =
𝐿

2
(1 −

𝑉𝑚𝑎𝑥

𝜂𝑉𝑥+𝑉𝑚𝑎𝑥
)    (12) 

or in relative quantities 

 Δ𝑥̅̅̅̅ =
1

2
(1 −

1

𝜂�̅�𝑥+1
) =

1

2
(
𝜂�̅�𝑥

𝜂�̅�𝑥+1
)    (13) 

where �̅�𝑥 =
𝑉𝑥

𝑉𝑚𝑎𝑥
 is the reduced longitudinal speed of the vessel, 𝜂 =

2𝜉

1−2𝜉
 , 𝜉 is the coefficient 

determined by the ratio of the rotation center maximum displacement to the vessel length. 

Equations (11) and (13) determine the dependence �̅�𝑚𝑖𝑑 = 𝑓(𝑉�̅�).  
Figure 3 shows the dependence of the rotation center position Δ𝑥̅̅̅̅  relative to the middle frame, the 

pivot point position �̅�𝑥 relative to the rotation center and the pivot point position �̅�𝑚𝑖𝑑 relative to the 

middle frame on the reduced longitudinal speed of the vessel 𝑉�̅�. As can be seen from the graphs, when 

the vessel's speed increases, the position of the rotation center Δ𝑥̅̅̅̅  shifts forward, and the position of the 

pivot point �̅�𝑥 relative to the rotation center �̅�𝑥 shifts back. This leads to the fact that the sum of these 

movements �̅�𝑚𝑖𝑑 (pivot point displacement relative to the gravity center/middle frame) varies in a much 

smaller range. 

So, for the entire range of forward speeds, the pivot point position relative to the middle frame is 

within 𝑅𝑚𝑖𝑑 = (0,25 − 0,4)𝐿, and for the entire range of reverse speeds, the pivot point position 

relative to the middle frame is within  𝑅𝑚𝑖𝑑 = (0,2 − 0,25)𝐿. The pivot point is always within the 

vessel's hull, forward of the middle frame. The shortest distance between the pivot point and the middle 

frame is achieved at the reverse speed 𝑉𝑥 = −0,5𝑉𝑚𝑎𝑥 and is about 𝑅𝑚𝑖𝑑 = 0,2𝐿.  

 



 Figure 3: Dependence �̅�𝑚𝑖𝑑 , Δ𝑥̅̅̅̅ , �̅�𝑥 on the reduced longitudinal speed of the vessel 

4.1. Experiment 

Figures 4,5 present the results of mathematical modeling in the Matlab environment. 

Figure 4: Graphs of changes over time of the single-screw vessel’s movement parameters in turning 
circle: blue color – taking into account the rotation center displacement, red color – without taking 
into account the rotation center displacement 



Figure 5: Turning circles of the conventional single-screw vessel: blue color – taking into account the 
rotation center displacement, red color – without taking into account the rotation center 
displacement 
 

In the given graphs: Vx [m/s] is the longitudinal speed of the vessel, Xg [m] is the longitudinal 

displacement of the vessel, Vy [m/s] is the lateral speed of the vessel, Yg[m] is the lateral displacement 

of the vessel, ωz[dg/s] is the yaw rate, Course[dg] is the vessel’s course, betasm[dg] is the drift angle, 

teta[dg]] is the telegraph deflection angle, delta[dg] is the stern deflection angle. 

Figure 4 presents the graphs of changes over time in the single-screw vessel’s movement parameters 

in turning circle, obtained taking into account the displacement of the rotation center, are marked in 

red, and those obtained without taking into account the displacement of the rotation center, are marked 

in blue. 

Figure 5 presents the turning circles of the conventional single-screw vessel, obtained taking into 

account the displacement of the rotation center, are marked in red, and those obtained without taking 

into account the displacement of the rotation center, are marked in blue. 

As can be seen from the above results of mathematical modeling, the established diameter of the 

turning circle of conventional single-screw vessel without taking into account the rotation center 

displacement is 550m, and the established diameter of the turning circle of conventional single-screw 

vessel taking into account the rotation center displacement is 480m. The turning circle area, taking into 

account the rotation center displacement, decreased by 23%.   

5. Discussion 

The issues of automatic and manual control of the rotation of a single-screw conventional vessel 

around the pivot point are considered. The solution this problem is related to the need to clarify the 

trajectory of the vessel in turning circle and reduce the maneuvering area in ports and other restricted 

waters, since single-screw conventional vessels have low maneuverability, and their share in the total 

number of vessels exceeds 85%.  

The known scheme "gravity center – pivot point" for calculating the pivot point position does not 

take into account the displacement of the rotation center relative to the gravity center/middle frame, 

which occurs when the speed of the vessel changes [1-8]. For the known scheme, the abscissa of the 



pivot point of a single-screw conventional vessel is practically independent of controls, which is not 

true.  

In previous works [12], the authors proposed a refined scheme "gravity center – rotation center – 

pivot point" for calculating the pivot point position, which took into account the displacement of the 

rotation center and allowed to more accurately estimate the trajectory of the vessel and the maneuvering 

area. However, the position of the pivot point in the proposed scheme was determined relative to the 

rotation center (and not relative to a fixed point on the vessel's hull), which did not allow it to be used 

for manual control. 

The use of machine learning techniques [9-11] to identify vessel characteristics, including the 

position of the rotation center and pivot point, has great promise in the future. However, the application 

of such methods requires significant computing power and time and can only be used in automatic 

vessel motion control systems. For conventional single-screw vessels, the use of such control systems 

is not economically feasible due to the significant difference between the capabilities of the executive 

devices structure and the capabilities of automatic control system.  

In this article, a method of automatic and manual control of a single-screw conventional vessel using 

a pivot point has been developed, which allows to more accurately determine the position of the pivot 

point, the trajectory of the vessel and, due to this, to reduce the maneuvering area by 23%. This is 

achieved by using a refined scheme for calculating the pivot point position, taking into account the 

position of the rotation center. For the possibility of manual control, formulas were obtained and graphs 

were drawn that determine the pivot point position relative to a fixed point on the vessel's hull (gravity 

center/middle frame).  

The obtained results can be applied to the manual or automatic control of a single-screw 

conventional vessel, provided that it is integrated into an automated system of an on-board controller 

with automatic rotation control module.  

The obtained results are reproducible and can be used in practice both with manual control and with 

automatic control. 

Further work may be related to the optimization of the maneuvering area based on the analysis of 

two components - the abscissa and the ordinate of the pivot point. 

6.  Conclusion 

A method of controlling a single-screw conventional vessel using a pivot point has been developed.  

Literary sources devoted to the study of the use of the pivot point for vessel maneuvering were 

analyzed.  

Methods of automatic and manual control of a single-screw conventional vessel rotation around the 

pivot point have been developed, which allow to more accurately determine the turning circle trajectory 

and, due to this, to reduce the maneuvering area.  

This is explained by the use of a scheme for calculating the pivot point position, which takes into 

account the displacement of the rotation center from the speed of the vessel.  

For manual control, graphs are obtained that determine the pivot point position relative to a fixed 

point on the vessel's hull (gravity center/middle frame).  

The workability and effectiveness of the developed methods were verified by mathematical 

modeling in the MATLAB environment.  

The theoretical significance of the obtained result lies in the development of the automatic and 

manual control methods of a single-screw conventional vessel rotation around pivot point using a 

refined scheme for calculating the pivot point position.  

The practical significance of the obtained result lies in the possibility of applying the developed 

methods for automatic and manual control of a single-screw conventional vessel rotation around the 

pivot point, more accurate prediction of the movement trajectory and, due to this, reducing the 

maneuvering area by 23%.  
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