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Abstract  
The need for more advanced Unmanned Systems (US) is supported by the development trends 

of world society. Artificial Intelligence (AI) plays an important role in maintaining the required 

level of US autonomy. AI-enabled US developers are focusing on the creation of the third 

generation of AI namely Feeling AI (FAI) for Autonomous Intelligent US (AIUS). One of the 

components of the FAI is a Cognitive Perception (CP) model, which overcomes the gap 

between the two paradigms "data from sensors" and "natural words", which was and is the 

main problem for the deployment of AIUS. The CP model considered in the work takes into 

account such cognitive processes as the mapping of data from sensors in iconic memory and 

its further processing in short-term memory by generalizing and abstracting in order to distill 

the sense of sensor data and represent it in the form of concepts. An important feature of 

cognitive perception is the sustainable aging of information and its forgetting over time. The 

article considers an algorithm that implements a model of cognitive perception with an aging 

mechanism. The results of computer experiments in which a wheeled warehouse robot was 

used as an AIUS showed that by adjusting the aging rate coefficients included in the CP model 

in accordance with the dynamic characteristics of the environment, it is possible to minimize 

the risks of violating the autonomy of the AIUS when making decisions in conditions of 

incomplete information. 
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1. Introduction 

Today, in everyday life, people widely use the services of the Internet of Things and autonomous 

US with AI [1-3]. The need for more advanced US is supported by the development trends of world 

society. The military domain, smart cities and smart machines, industrial USs that free a person from 

performing routine operations or functions in conditions dangerous to life and health, generate a 

growing demand for intelligent US [1, 4]. Despite significant progress in the field of US creation [5, 6], 

ensuring the necessary level of their autonomy remains an actual task [7]. AI plays an important role in 

solving this task. Today, new AI models are in demand, which are specially developed and adapted for 

the new generation of AIUS [6, 8, 9]. The scientific community is discussing the possibility of creating 

a general AI for the third generation for AIUS, which takes into account the features of US and has 

cognitive abilities that support autonomous decision-making in conditions of uncertainty and in an 

unfriendly environment [10, 11]. The design of the model and blueprint of FAI are proposed [7, 11, 

12]. One of the main components of the FAI architecture is the perception system, which implements 

such a cognitive function as the distillation of the sense of data from sensors [7]. The FAI architecture 

proposed in [7] shown in Figure 1. Four Knowledge Bases (KBs) are shown by circle tags. AIUS 

functions are implemented by nine FAI Engines. They are shown as hexagon tags. Their connections 

are done that show from which KB the engine uses knowledge. The perception engine of CP model 
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uses KB “What Is This”. The rest of the components of FAI architecture are used for decision-making 

and control. This article is devoted to the discussion of the model that is the basis of the СP system. The 

model of knowledge representation in the KB “What Is This” (Figure 1), the CP algorithm which 

distilling the sense of the data from sensors are discussed. Also, the results of computer experiments on 

the effect of the aging of data from sensors on the assessment of the meaning of situation are done. 

 
Figure 1: FAI architecture blueprint 

2. Problem Discussion 

Work [7] shows that the arsenal of AI approaches and models that can be adapted to solve the 

problem of cognitive perception by distilling the meaning of data from AIUS sensors can be divided 

into two groups: 1) oriented to processing data from sensors and 2) oriented to knowledge processing. 

The first group includes approaches of data from sensors fusion (intelligent analysis, extraction of 

knowledge from data streams, aggregation of disparate data [13, 14]). These models can be used at the 

stages of primary data processing, but they do not solve the problem of obtaining the meaning of a 

spatio-temporal data set from sensors. For the same reason, it is difficult to use "pure" models of 

artificial neural networks for applications to which AIUS belongs. AI models of another group, focused 

on knowledge processing including the distillation of knowledge represented in symbolic form [15], 

are capable to present the meaning of situation. In this case, the meaning is given by the concepts 

expressed by the words of natural language. A CP as FAI component overcomes this gap between the 

two paradigms "data from sensors" and "natural words", which was and is the main challenge for the 

deployment of AIUS. 

The knowledge-based AI approach, known as rule-based systems [16], allows the implementation 

of decision-making tasks, taking into account most of the above-mentioned features of US. Decision-

making in robotics, Internet of Things, smart machines is carried out on the rule-based inference engine 

[17]. They are widely used in embedded real-time systems, however, the problem of obtaining a 

meaning of the situation presented by data from sensors and giving it in a generalized form by concepts 

remains relevant. On the basis of the above analysis, in [12] it is proposed to solve the problem of 

distilling the meaning of data from sensors based on the approach of granular calculations and the 

conceptual model of L. Zadeh “Computing with Words” [18]. The information processing scheme in 

the CP system of AIUS using this approach is as follows. Data from the sensors are granulated after 

pre-processing. At the output of the granulation block, the data is presented on the set of all granules 

with fuzzy characteristics. Next, the data sense distillation block performs generalization and 

abstraction of data based on domain knowledge presented verbally by experts in the form of natural 



language word meanings. At the output of the distillation unit there are estimates of the data set, in the 

form of a small number of numerous fuzzy characteristics of the meaning of the whole situation. 

Further, the fuzzy characteristics of the meaning of the situation are used as input numerical variables 

of algorithms of the fuzzy logic systems in AIUS. At the output of this unit, the numerical values of the 

control signals are transmitted to the actuators of the AIUS and are implemented by various controllers. 

The CP model takes into account the main features of wildlife perception systems. First, at each 

moment of time, the meaning is calculated not of the complete situation, but of some fragment of the 

AIUS environment, allocated by the attention mechanism. The meaning of the complete situation is 

formed sequentially by moving attention from one fragment of the environment to another. Secondly, 

a sequentially formed description of the meaning of the complete situation is supported by else one 

cognitive mechanism of data aging. Thanks to this mechanism, the confidence that the calculated 

meaning of the situation corresponds to the real situation at the current time is formed taking into 

account the fact that the meaning of individual fragments was calculated earlier at different points in 

time. For the real conditions in which AIUS operates, it is especially important to take into account the 

dynamic characteristics of the environment in order to minimize the risks from the decisions made. If 

data aging is not taken into account, then the meaning of the complete situation, formed by a sequence 

of fragments, the meaning of which was calculated on the basis of data obtained long before the current 

time, may not correspond to reality at all. Thirdly, AIUS requires the dynamic control model with data 

aging mechanism. Decisions that are made only on the basis of current data are associated with no less 

risks. Static control models, in which the history of changes in the state of the environment and their 

dynamic characteristics are not taken into account, cannot support the autonomous functioning of AIUS 

in real conditions. 

This article examines the CP algorithm of distilling the meaning of data from sensors which takes 

into account above two cognitive mechanisms, namely attention and data aging. 

Before proceeding to the consideration of the algorithm for distilling the meaning of data from 

sensors in the CP system, the results of which demonstrate a significant reduction in the dimensionality 

of the AIUS control tasks, we will introduce basic definitions [12, 19]. 

3. A model of cognitive perception of data from sensors 

A FAI elementary portion of knowledge about the environment of AIUS is the Knowledge Granule 

(KG). Such a portion of knowledge has an External Meaning of KG (EMKG) and an Internal Meaning 

of KG (IMKG) in FAI [19]. 

3.1. External meaning of KG 

The formal definition of EMKG is as follows 

< 𝑁, 𝑘𝑛𝑜𝑤, {< 𝑀𝑖, (𝑎𝑖, 𝑏𝑖, 𝑣𝑖 , 𝑔𝑖) >, ∀𝑀𝑖 ∈ 𝛺𝑁} > (1) 

where N is the identifier of the KG; know is an sign model of N KG; ΩN = {Mi, i=1, 2,...,I} is set of KGs 

used to reveal the meaning of the N granule; Mi is the identifier of the KG of lower level of abstraction. 

Definition (1) specifies the parameters that are numerically evaluated: −1 ≤ 𝑎𝑖 ≤ +1 - is the 

expert's certainty that the concept Mi must be present (𝑎𝑖 = +1) in the definition to reveal the meaning 

of concept of N or absent (𝑎𝑖 = −1); bi is time delay when determining dynamic relations; 𝑣𝑖 is speed 

of aging of information regarding Mi; 𝑔𝑖 is informational completeness, which determines whether there 

is enough knowledge about the KG of Mi to understand the meaning of the KG of N. 

In the KB of FAI, the set of KGs is structured, the granules are arranged according to the levels of 

abstraction and includes the set of KGs: ΩKG =Ω0
KG ꓴ Ω1

KG…Ωi
KG…ꓴ Ωk

KG, where Ωi
KG is a subset of 

KGs of the ith level [17, 19]. The levels are localized according with types of restriction noted in L. 

Zadeh Restriction-Centered Theory [20]. There are three types of restriction: 

1) Restriction by quantitative abstraction. This is the sensors data granulating based on restrictions 

on the accuracy of the solution. 



2) Restriction by definitive abstraction. This is a mapping of a data quantitative constraint presented 

by data from sensors granules into a word semantic constraint presented by KGs. 

3) Restriction by generalizing abstraction. This is a mapping sense of words of lower level of 

abstraction into sense of words of upper level of abstraction. 

In this article two first types of restriction (quantitative and definitive abstractions) are combined 

at zero level. KG of zero level is presented by word and sense this word determines the external meaning 

data from sensor. Figure 2.a shows the representation of the EMKG of the one granule in the general 

case using the certainty factor function [19] which is given by a piecewise linear function with six 

parameters: a, b, c, d, e, f. In Figure 2.b shows an example of granulation of data from a distance sensor 

and representation of these data of the EMKGs of KGs. This sensory modality is represented by four 

granules that describe knowledge about a moving object-obstacle, which can be located either in the 1st 

sector, or in the 2nd, or in the 3rd, or there is a situation when there is no one within the reach of the 

sensor. 

 

    а)     б) 

Figure 2: Graphical illustration of the determination of the zero-level EMKG: a) general view of the of 
the certainty factor function for one granule; b) an example of the definition of the EMKG modality of 
localization of objects around the robot 

 

The knowledge presentation in the form (1) will be illustrated using the example of a warehouse 

robot (co-bot [21]), namely a fragment of knowledge required for safe crossing of an unregulated 

intersection to continue moving along a given warehouse route. Figure 3 shows the situation when the 

co-bot on the entrance road of the intersection sequentially scans three other access roads in order to 

assess the situation (dangerous or safe to perform a maneuver at the intersection). 

 

 
Figure 3: An example of co-bot scanning situations at a crossroads 

 

In Figure 4 shows a fragment of the KB that defines the situation at the crossroads (Figure 3). 

Modeling and experiments were carried out with the co-bot prototype, the hardware of which is based 

on robot with a four-wheel drive Multi Chassis-4WD Robot Kit ATV chassis, Arduino Mega 

microcontroller, ESP8266 microcontroller and Motor shield kit. 
1. <3.EverywhereSafe, Everywhere safe, {<2.RSafe,(0.75,t,0.1,0.33)>, <2.LSafe,(0.75,t,0.1,0.33)>, 

<2.FSafe,(0.75,t,0.1,0.33)>}>; 
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2. <3. EverywhereDangerous, Everywhere dangerous, {<2.FDirecDang, (0.75, t, 0.1, 1.0)>, <2.LDirecDang, (0.75, t, 0.1, 

1.0)>, 2.RDirecDang, (0.75, t, 0.1, 1.0)>}>; 

3 <2.FSafe, Forward safe, {<1.FSafe1 (0.75, t, 0.1, 1.0)>, 1.FSafe2 (0.75, t, 0.1, 1.0)>}; 

4. <2.LSafe, Left safe, {<1.LSafe1 (0.75, t, 0.1, 1.0)>, 1.LSafe2 (0.75, t, 0.1, 1.0)>}; 

5. <2.RSafe, Right safe, {<1.RSafe1 (0.75, t, 0.1, 1.0)>, 1.RSafe2 (0.75, t, 0.1, 1.0)>}; 

6 <2.FDang, Forward safe, {<1.FDirecDang1 (0.75, t, 0.1, 1.0)>, 1.FDirecDang2 (0.75, t, 0.1, 1.0)>}; 

7. <2.LDang, Left safe, {<1.LDirecDang1 (0.75, t, 0.1, 1.0)>, 1.LDirecDang2 (0.75, t, 0.1, 1.0)>}; 

8. <2.RDang, Right safe, {<1.RDirecDang1 (0.75, t, 0.1, 1.0)>, 1.RDirecDang2 (0.75, t, 0.1, 1.0)>}; 

9. <1.FSafe1, Forward safe 1st-case, {<0.ObjectForward*0.Loc&1sector, (-0.75, t, 0.1, 0.33)>, 

<0.ObjectForward*0.Loc&2sector, (-0.75, t, 0.1, 0.33)>, <0.ObjectForward*0.Loc&3sector, (-0.75, t, 0.1, 0.33)>, }>; 

10. <1.LSafe1, Left safe 1st-case, {<0.ObjectLeft*0.Loc&1sector, (-0.75, t, 0.1, 0.33)>, <0.ObjectLeft*0.Loc&2sector, (-0.75, 

t, 0.1, 0.33)>, <0.ObjectLeft*0.Loc&3sector, (0.75, t, 0.1, 0.33)>}>; 

11. <1.RSafe1, Right safe 1st-case, {<0.ObjectRight*0.Loc&1sector, (-0.75, t, 0.1, 0.33)>, <0.ObjectRight*0.Loc&2sector, 

(-0.75, t, 0.1, 0.33)>, <0.ObjectRight*0.Loc&3sector, (-0.75, t, 0.1, 0.33)>}>; 

12. <1.FSafe2, Forward safe 2st-case, {<0.ObjectForward*0.DirMov&removed, (0.75, t, 0.1, 1.0)>}; 

13. <1.LSafe2, Left safe 2st-case, {<0.ObjectLeft*0.DirMov&removed, (0.75, t, 0.1, 1.0)>}; 

14. <1.RSafe2, Right safe 2st-case, {<0.ObjectRigh*0.DirMov&removed, (0.75, t, 0.1, 1.0)>}; 

15. <1.FDirecAlmSafe, Forward direction almost safe, {<0.ObjectForward*0.Loc&1sector, (-0.75, t, 0.1, 0.2)>, 

<0.ObjectForward*0.Loc&2sector, (-0.75, t, 0.1, 0.2)>, <0.ObjectForward*0.Loc&3sector, (0.75, t, 0.1, 0.2)>, 

<0.ObjectForward*0.DirMov&approached,(0.75,t, 0.1, 0.2)>, <0.ObjectForward*0.Speed&slow, (0.75, t, 0.1, 0.2)>}>; 

16. <1.LDirecAlmSafe, Left direction almost safe, {<0.ObjectLeft*0.Loc&1sector, (-0.75, t, 0.1, 0.2)>, 

<0.ObjectLeft*0.Loc&2sector, (-0.75, t, 0.1, 0.2)>, <0.ObjectLeft*0.Loc&3sector, (0.75, t, 0.1, 0.2)>, 

<0.ObjectLeft*0.DirMov&approached, (0.75, t, 0.1, 0.2)>, <0.ObjectLeft*0.Speed&slow, (0.75, t, 0.1, 0.2)>}>; 

17. <1.RDirecAlmSafe, Right direction almost safe, {<0.ObjectRight*0.Loc&1sector, (-0.75, t, 0.1, 0.2)>, 

<0.ObjectRight*0.Loc&2sector, (-0.75, t, 0.1, 0.2)>, <0.ObjectRight*0.Loc&3sector, (0.75, t, 0.1, 0.2)>, 

<0.ObjectRight*0.DirMov&approached, (0.75, t, 0.1, 0.2)>, <0.ObjectRight*0.Speed&slow, (0.75, t, 0.1, 0.2)>}>; 

18. <1.FDirecAlmDang, Forward direction almost dangerous, {<0.ObjectForward*0.Loc&1sector, (-0.75, t, 0.1, 0.25)>, 

<0.ObjectForward*0.Loc&2sector, (0.75, t, 0.1, 0.25)>, <0.ObjectForward*0.DirMov&approached, (0.75, t, 0.1, 0.25)>, 

<0.ObjectForward*0.Speed&slow, (0.75, t, 0.1, 0.25)>}>; 

19. <1.LDirecAlmDang, Left direction almost dangerous, {<0.ObjectLeft*0.Loc&1sector, (-0.75, t, 0.1, 0.25)>, 

<0.ObjectLeft*0.Loc&2sector, (0.75, t, 0.1, 0.25)>, <0.ObjectLeft*0.DirMov&approached, (0.75, t, 0.1, 0.25)>, 

<0.ObjectForward*0.Speed&slow, (0.75, t, 0.1, 0.25)>}>; 

20. <1.RDirecAlmDang, Right direction almost dangerous, {<0.ObjectRight*0.Loc&1sector, (-0.75, t, 0.1, 0.25)>, 

<0.ObjectRight*0.Loc&2sector, (0.75, t, 0.1, 0.25)>, <0.ObjectRight*0.DirMov&approached, (0.75, t, 0.1, 0.25)>, 

<0.ObjectRight*0.Speed&slow, (0.75, t, 0.1, 0.25)>}>; 

21. <1.FDirecDang1, Forward direction dangerous 1st, {<0.ObjectForward*0.Loc&1sector, (-0.75, t, 0.1, 0.25)>, 

<0.ObjectForward*0.Loc&2sector, (0.75, t, 0.1, 0.25)>, <0.ObjectForward*0.DirMov&approached, (0.75, t, 0.1, 0.25)>, 

<0.ObjectForward*0.Speed&fast, (0.75, t, 0.1, 0.25)>}>; 

22. <1.LDirecDang1, Left direction dangerous 1st, {<0.ObjectLeft*0.Loc&1sector, (-0.75, t, 0.1, 0.25)>, 

<0.ObjectLeft*0.Loc&2sector, (0.75, t, 0.1, 0.25)>, <0.ObjectLeft*0.DirMov&approached, (0.75, t, 0.1, 0.25)>, 

<0.ObjectForward*0.Speed&fast, (0.75, t, 0.1, 0.25)>}>; 

23. <1.RDirecDang1, Right direction dangerous 1st-case, {<0.ObjectRight*0.Loc&1sector, (-0.75, t, 0.1, 0.25)>, 

<0.ObjectRight*0.Loc&2sector, (0.75, t, 0.1, 0.25)>, <0.ObjectRight*0.DirMov&approached, (0.75, t, 0.1, 0.25)>, 

<0.ObjectRight*0.Speed&fast, (0.75, t, 0.1, 0.25)>}>; 

24. <1.FDirecDang2, Forward direction dangerous 2st-case , {<0.ObjectForward*0.Loc&1sector, (0.75, t, 0.1, 1.0)>}>; 

25. <1.LDirecDang2, Left direction dangerous 2st-case, {<0.ObjectLeft*0.Loc&1sector, (0.75, t, 0.1, 1.0)>}>; 

26. <1.RDirecDang2, Right direction dangerous 2st-case, {<0.ObjectRight*0.Loc&1sector, (0.75, t, 0.1, 1.0)>}>; 

27. <0.ObjectRight*, Object in right allocated by attention, {<Event(0.Direc&right)>, <0.Loc>, <0.Speed>, <0.DirMov>}>; 

28. <0.ObjectForw*, Object in forward allocated by attention, {<Event(0.Direc&forw)>,<0.Loc>, <0.Speed>, 

<0.DirMov>}>; 

29. <0.ObjectLeft*, Object in left allocated by attention, {< Event(0.Direc&left)>,<0.Loc>, <0.Speed>, <0.DirMov>}>; 

30.  <0.DirMov, direction of movement,{<approach,(-300,-25,25,300,300,300)>,<remove,(-300,-300,-300,-25,25, 300)>}>; 

31. <0.Speed, Speed of movement, {<stop, (0,0,0,0.2,0.4,4.0)>, <slow, (0,0.5,0.8,1.3,1.5,4.0)>, <fast, 

(0,1.3,2.0,4.0,4.0,4.0)>}>; 

32. <0.Direc, Direction of the ultrasonic sensor, {<left, (-90,-90,-90,-35,-25,90)>, <forward, (-90,-35,-25,25,35,90)> <right, 

(-90, 25, 35, 90, 90 ,90)>}>; 

33. <0.Loc, Object location, {<1sector,(0,0,0,40,60,300)>, <2sector,(0,40,60,90,110,300)>, 

<3sector,(0,90,110,135,165,300)>}>. 

 

Figure 4: A fragment of the KB that defines the situation at the crossroads 

The CP of co-bot based on following sensors: 10 infrared reflection sensors ky-033 for detecting 

marks on the floor, an ultrasonic sensor HC-SR04, installed on a rotary platform with a servo drive 

SG90, and an odometer sensor H206. The situation around the robot is represented by the environment 



map built on the basis of data from an ultrasonic sensor on a servo drive that sets the direction and 

measures the location of the object identified by the sensor. The speed of the moving object-obstacle 

and its direction of movement are calculated, too. In Figure 3, the model for displaying the current state 

of the co-bot's environment is proposed in the form of a two-dimensional spatial map. Figure 3 shows 

a simplified version, when the space covering the sensor is divided into 3 directions. Calculations of 

the fuzzy characteristics of granules of 0 level were carried out with a model of 18th sectors with a 

viewing angle of ±15 degrees and a sensor distance measurement error of ±5 cm and a rotary platform 

positioning accuracy of ±7 degrees. The definition of the meaning of these KGs (Figure 4) is given on 

their domain scales as shown in Figure 2.b. The granules are distributed by levels of abstraction. The 

level is indicated by the first digit of the KG identifier, for example, 0.Speed indicates that the speed 

sensor modality belongs to the 0th level. This portion of knowledge (Figure 4, line 31) defines EMKG 

of three KGs in the form of concepts of speed of movement, namely the object-obstacle does not move 

(stop), moves slowly (slow) and moves fast (fast). The determination of the EMKG of these granules 

is set on the universe of movement speed in cm/s by the parameters of the certainty factor function, as 

shown in Figure 2. At the zero level of KB, 11 granules are defined. These are four KGs of the 0.Loc 

modality with KG identifiers 1sector, 2sector, 3sector, which determine whether the object-obstacle is 

located in the 1st, 2nd, or 3rd sector; three KGs stop, slow, fast of 0.Speed modality (movement speed 

of object-obstacle) and two KGs approach, remove of 0.DirMov modality, which determine whether 

the object approaches or moves away from the co-bot and three KGs left, forward, right of 0.Direc 

modality. In the definitions of EMKG in Figure 4, the identifiers of the KGs are coupled to the 

identifiers of the sensory modality to which they belong. For example, the link to the fast KG of the 

0.Speed modality is given in the form 0.Speed&fast. In the definition of three structures of the object-

obstacle deserves special attention. When the rotary platform is set in a certain position, for example, 

right+75°, the data obtained characterizes this certain direction. Therefore, they must be "tied" to this 

value, namely the readings of the 0.Direc modality sensor. The asterisk at the end of the identifier 

indicates that it is a structure of same level granules. with three modalities (in Fig. 3,). For example, the 

structure with identifier 0.ObjectRight* (27 line in Figure 4) defines 8 KGs of three modalities 0.Loc, 

0.Speed, 0.DirMov. The notation Event(0.Direc&right) means that as soon as an event occurs (the 

rotating platform will take the right+75° position), the attention mechanism will "focus" on this 

direction and all data received from the sensors of modalities indicated in structure definition are stored 

in these 0.Direc&right* structure. 

3.2. Internal meaning of KG 

Building models of the "general sense of something" is the main task of such AI branch as artificial 

general intelligence [22, 23]. Another view on meaning is proposed for FAI CP model [12, 19]. IMKG 

is a numerical assessment of the degree of correspondence of EMKG (1) with the situation represented 

by data from sensors. The numerical value of the estimate of the IMKG depends, firstly, on the 

parameters in (1) of the corresponded EMKG, and secondly, on the IMKGs indicated in (1) and 

calculated for the same data from the sensors. In other words, the IMKG is an assessment of the 

correspondence of the parameterized verbal representation of the sense of KG to the data from the 

sensors, on the basis of which the EMKG is determined. A formal computational model of the IMKG 

is given [19]. IMKG is quantified based on fuzzy Certainty Factor (CF). In [12], fuzzy CF was 

introduced as a fuzzy LR number X follows 

𝑿: {𝑥|𝑚𝑿(𝑥), ∀𝑥 ∈ [−𝑞,+𝑞], 𝑞 ≥ +1} (2) 

with a Gaussian L-R membership function [24, 25] 

𝑚𝑿
𝐿(𝑥) = 𝑒𝑥𝑝( − (𝑥 − 𝛼)2/2 ⋅ (𝜈𝐿 ⋅ 𝑡𝐿)

2), ∀𝑥 ∈ [−1, 𝛼]  

𝑚𝑿
𝑅(𝑥) = 𝑒𝑥𝑝( − (𝑥 − 𝛼)2/2 ⋅ (𝜈𝑅 ⋅ 𝑡𝑅)

2), ∀𝑥 ∈ (𝛼,+1] (3) 



with three parameters: (–1.0 ≤ α ≤ +1.0) is CF; tL is the time interval that has passed since the moment 

of receiving the data; tR is the time interval that has passed since the data change; vL and vR are the 

normalized aging rates. Time interval tR is used when impact of data aging on certainty is modelled. 

Presumed certainty is a numerical estimate of fuzzy CF that takes into account the aging of data and 

is calculated on the basis of (2) and (3) by formula (4). 

𝑐𝑓 = 𝛼 ⋅ 𝑘𝑡 (4) 

where  𝑘𝑡 = 1 −
∑ 𝑚𝑿

𝐿(𝑥)∀𝑥∈[−1,𝛼) +∑ 𝑚𝑿
𝑅(𝑥)∀𝑥∈(𝛼,+1]

𝐶𝑎𝑟𝑑([−1,+1])−1
; 

 Card(X) is scalar cardinality of a fuzzy set X. 

The aging of the data over time leads to the presumed certainty tends to zero and over time to a 

complete lack of certainty, that is, cf ≈ 0. For cases when time intervals are small (or from the moment 

of receiving data, or, in special cases, from the moment of data change), the certainty does not change 

much compared to α, that is, cf ≈ α. Thus, the numerical value of the IMKG is fuzzy CF and if needed 

Presumed CF (PCF). 

The FAI CP algorithm for computing IMKG is shown below in Figure 5. 

4. Experiments with appliance FAI CP computing algorithm of IMKG 

The experiments are devoted to the study the cognitive mechanisms of attention and data aging. The 

PCF computation of complete situation at the intersection, formed by attention as a sequence of data 

fragments (Figure 3), obtained at different time before the current time is being considered. The aging 

of the data received from the AIUS sensors over time and, as a result, of the aging of the IMKG 

describing the PCF is computed. The case is being considered, when the co-bot drove up the entrance 

road to the intersection, as shown in Figure 3, stopped to obtain data and build a model of the complete 

situation at the intersection. Attention mechanism carry out the scanning of the environment by step-

by-step positioning from right to left of the rotary platform on which the ultrasonic sensor is installed. 

According to the technical characteristics of the sensor, the number and sequence of passing the 

following positions by the rotary platform (in the directions of the sensor's vision) are set: right+75°, 

right+45°, forward+15°, forward–15°, left–45°, right–75°. Building a situation model of one such fragment 

(turning the platform from the current position to the next direction, receiving and processing data from 

the sensor and calculating according to the FAI CP computing algorithm of IMKG) takes 200 ms. When 

setting up the fuzzy CF model in the considered experiment, 100 ms of real time was taken as a unit of 

time tL and tR in (3). Accordingly, parameter b in (1) is related to the real time of the experiment by 

ratios of 1:100.  

The state of the co-bot's environment (intersection map) at an arbitrary moment of time t is 

represented by IMKG in the form of PCF on the next set of granules: 

𝑐𝑓𝑟𝑖𝑔ℎ𝑡+75° 𝑠𝑒𝑐 1(𝑡), 𝑐𝑓𝑟𝑖𝑔ℎ𝑡+75° 𝑠𝑒𝑐 2(𝑡), 𝑐𝑓𝑟𝑖𝑔ℎ𝑡+75° 𝑠𝑒𝑐 3(𝑡), 

𝑐𝑓𝑟𝑖𝑔ℎ𝑡+45° 𝑠𝑒𝑐 1(𝑡), 𝑐𝑓𝑟𝑖𝑔ℎ𝑡+45° 𝑠𝑒𝑐 2(𝑡), 𝑐𝑓𝑟𝑖𝑔ℎ𝑡+45° 𝑠𝑒𝑐 3(𝑡), 

𝑐𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑+15 𝑠𝑒𝑐 1(𝑡), 𝑐𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑+15°
𝑠𝑒𝑐 2

(𝑡), 𝑐𝑓
𝑓𝑜𝑟𝑤𝑎𝑟𝑑+

15°
𝑠𝑒𝑐 1

(𝑡), 

𝑐𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑–15° 𝑠𝑒𝑐 1
(𝑡), 𝑐𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑–15° 𝑠𝑒𝑐 2

(𝑡), 𝑐𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑–15° 𝑠𝑒𝑐 3
(𝑡), 

𝑐𝑓𝑙𝑒𝑓𝑡−45° 𝑠𝑒𝑐 1(𝑡), 𝑐𝑓𝑙𝑒𝑓𝑡−45° 𝑠𝑒𝑐 2(𝑡), 𝑐𝑓𝑙𝑒𝑓𝑡−45° 𝑠𝑒𝑐 3(𝑡), 

𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 1(𝑡), 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 2(𝑡), 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 3(𝑡). (5) 

In (5), for example, 𝑐𝑓𝑟𝑖𝑔ℎ𝑡+75° 𝑠𝑒𝑐 1(𝑡) denotes the PCF that assesses the confidence in the presence 

of an object-obstacle in the 1st sector in the right+75° direction (Figure 3). In graphic form in Figure 

6, not all KG from (5) are given, but only four. The blue color shows the values of 𝑐𝑓𝑟𝑖𝑔ℎ𝑡+75° 𝑠𝑒𝑐 1 of 

KG right+75°sec1. Values 𝑐𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑–15° 𝑠𝑒𝑐 1 are shown in red. 



Input is data from sensors modality, domain KB in the form of a structure Figure 4, in which the KG is the 

definition of “What is it” (Figure 1) in the form of prototypes (1). 

Output is set of fuzzy CF (α, tL, tR)KGil,  KGil   Ωl
KG,  Ωl

KG Ω0
KG ꓴ Ω1

KG…ꓴ Ωk
KG 

Precalculations of time delays 

while l ≤ L, where l = 1,2,…,L, L is quantity of levels of KB do 

  while n ≤ N, where n = 1,2,…,N, N is quantity of KG of lth levels do 

  tln
L = tln

L +1; tln
R = tln

R +1; 

 end while 

end while 

 if data from the sensor was not received then goto end IMKG 

Step 1. Quantitative and Definitive Abstraction 

while j≤ J, where J is quantity of modality sensors do 

 get x* data from sensor j 

  while h≤ H, where H is quantity of sensor IGs do 

 Calculate fuzzy CF: 
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Step 2. Generalizing Abstraction 

while l ≤ L, where l = 1,2,…,L, L is quantity of levels of KB do 

  while n ≤ N, where n = 1,2,…,N, N is quantity of KG of lth levels do 
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Figure 5: FAI CP computing algorithm of IMKG 

Yellow and green colors show the values of presumed certainty of 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 3 and 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 2, 

respectively. On the column charts in Figure 6, the value of PCF (4) is indicated on the ordinate axis, 

and time on the scale of 1:100 ms is indicated on the abscissa axis. The following time fragment is 

given for the 7th moments of time t. 

𝑡 = 2, 𝑟𝑖𝑔ℎ𝑡+75°: 𝑐𝑓𝑟𝑖𝑔ℎ𝑡+75° 𝑠𝑒𝑐 1 = −0.94, 𝑐𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑–15° 𝑠𝑒𝑐 1 = 0, 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 2 = 0, 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 3 = 0 

𝑡 = 4, 𝑟𝑖𝑔ℎ𝑡+45°: 𝑐𝑓𝑟𝑖𝑔ℎ𝑡+75° 𝑠𝑒𝑐 1 = −0.16, 𝑐𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑–15° 𝑠𝑒𝑐 1 = 0, 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 2 = 0, 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 3 = 0 

𝑡 = 12, 𝑙𝑒𝑓𝑡−75°: 𝑐𝑓𝑟𝑖𝑔ℎ𝑡+75° 𝑠𝑒𝑐 1 = −0.01, 𝑐𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑–15° 𝑠𝑒𝑐 1 = −0.05, 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 2 = −0.94, 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 3 = 0.94 

𝑡 = 14, 𝑟𝑖𝑔ℎ𝑡+75°: 𝑐𝑓𝑟𝑖𝑔ℎ𝑡+75° 𝑠𝑒𝑐 1 = −0.02, 𝑐𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑–15° 𝑠𝑒𝑐 1 = −0.02, 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 2 = 0.16, 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 3 = −0.16 

𝑡 = 16, 𝑟𝑖𝑔ℎ𝑡+45°: 𝑐𝑓𝑟𝑖𝑔ℎ𝑡+75° 𝑠𝑒𝑐 1 = −0.003, 𝑐𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑–15° 𝑠𝑒𝑐 1 = 0.02, 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 2 = −0.05, 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 3 = 0.05 

𝑡 = 18, 𝑓𝑜𝑟𝑤𝑎𝑟𝑑+15°: 𝑐𝑓𝑟𝑖𝑔ℎ𝑡+75° 𝑠𝑒𝑐 1 = 0.003, 𝑐𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑–15° 𝑠𝑒𝑐 1 = 0.007, 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 2 = −0.02, 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 3 = 0.02 

𝑡 = 24, 𝑙𝑒𝑓𝑡−75°: 𝑐𝑓𝑟𝑖𝑔ℎ𝑡+45° 𝑠𝑒𝑐 1 = −0.002, 𝑐𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑–15° 𝑠𝑒𝑐 1 = −0.003,

𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 2 = 0.94, 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 3 − 0.94 (6) 



In (6), each line contains data for a separate time moment. So, for example, the second line shows 

the data for time t=4, when the rotary platform is positioned in the right45° direction and contains the 

presumed certainty values of four KGs at this time: 

𝑐𝑓𝑟𝑖𝑔ℎ𝑡+75° 𝑠𝑒𝑐 1, 𝑐𝑓𝑓𝑜𝑟𝑤𝑎𝑟𝑑–15° 𝑠𝑒𝑐 1, 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 2, 𝑐𝑓𝑙𝑒𝑓𝑡−75° 𝑠𝑒𝑐 3. Since the data of the right75° 

direction were obtained earlier by two units of time, the presumed certainty of the granule right75°sec1 

according to (4) was calculated taking into account aging at t=2 units of time. The presumed certainty 

of the last three KGs was calculated on the basis of very old data, since data from these directions had 

not yet been received. Therefore, the value of their presumed certainty is cf=0, there is complete 

uncertainty about the presence or absence of an object-obstacle in these sectors. IMKG in the form of 

presumed certainty in (6) are calculated for the largest value of the data aging rate coefficient vL=vR=1. 

Therefore, the presumed certainty of the right75°sec1 KG, the value of which was obtained at the 

previous monitoring step, approaches zero 𝑐𝑓𝑟𝑖𝑔ℎ𝑡+75° 𝑠𝑒𝑐 1 = −0.16, despite the fact that two time units 

earlier (200 ms) it was equal to 𝑐𝑓𝑟𝑖𝑔ℎ𝑡+75° 𝑠𝑒𝑐 1 = −0.94. 

In Figure 6 shows the results of the calculation of the IMKG of the same KG for the same time 

fragment for different data aging rate coefficients.  

 

 
а) vR=vL =1.0 b) vR=vL=0.75 

 
c) vR=vL =0.5 d) vR=vL =0.25 

 
i) vR=vL =0.1     g) vR=vL =0.01 

Figure 6: Dependence of the PCF of IMKG on the data aging speed coefficient 
 



The analysis of the column charts show that the coefficients vL, vR significantly affect the presumed 

certainty. When vL=vR=1.0, 3-5 units of time are enough to obtain complete uncertainty in the 

previously obtained data. On the other hand, when vL=vR=0.01 (Figure 6.g), the data practically does 

not age over time, which is very dangerous for decision-making in a dynamic environment, when the 

situation changes over time. This is consistent with the data of cognitive sciences [26]. The analysis of 

column charts in the presence of data on the dynamic characteristics of the environment allows to 

choose the values of the coefficients of the aging rate in such a way as to minimize the risks of AIUS 

when making decisions [27]. 

5. Conclusion 

FAI, as a blueprint of AI of the new generation, is intended to ensure the autonomy of the operation 

of the third generation AIUS. Along with other cognitive functions, FAI embodies such a function as 

the reception of data from sensors. The CP model considered in the paper takes into account such 

cognitive processes as the mapping of sensory information in iconic memory and its further processing 

in short-term memory by generalizing and abstracting data from sensors. An important feature of 

cognitive perception is permanent forgetting over time due to the aging of information stored in short-

term memory. The listed cognitive processes are embodied in the CP model in the form of models of 

EMKG and IMKG, which are based, in turn, on the model of the fuzzy CF. Conducted computer 

experiments with the CP model confirmed the functionality of the data aging mechanism and its impact 

on the confidence of decision-making in AIUS. It is shown, firstly, that the CP model distills the 

meaning of data from sensors and represents it at a high level of abstraction, and this opens up the 

possibility of using FLS as a decision-making and control mechanism in AIUS. Secondly, the CP 

model, due to the substantial reduction in the size of the FLS decision-making space, also solves the 

problem of large computing resources, which is important for real-time processing. Thirdly, setting the 

time parameters of the CP model, namely t, vL, vR to the dynamic characteristics of the environment, 

significantly affects the increase in the level of autonomy. With small values of vL=vR≈0, AIUS's 

knowledge of its environment does not age over time, which is very dangerous for decision-making in 

a dynamic environment in conditions of limited information, and conversely, with large values of 

vL=vR≈1, knowledge is quickly forgotten. With the availability of data on the dynamic characteristics of 

the environment, it becomes possible to choose the values of the aging rate coefficients in such a way 

as to minimize AIUS risks when making decisions. Computer modeling and experiments with the AIUS 

prototype confirm the possibility of using the CP model as a base component of FAI supported AIUS 

autonomy, which opens up possibilities for further development of this direction. 

In the future, it is planned to develop a FAI learning model in operational mode with the aim of 

automatically tuning the time parameters of the CP model to the dynamic properties of the AIUS 

environment. 
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