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Abstract 
The presented research is devoted to the problem of the influence of the human factor on the 

safety of aircraft in civil aviation. It analyzes the pilot’s flight style, which characterizes his 

individual characteristics of aircraft piloting. The analysis of flight style is carried out using a 

specially developed mathematical model. It is based on the Kruskal-Wallis criterion. This is a 

method of mathematical statistics that allows performing a comparative analysis of the 

parameters of several or more samples. The values of the pitch angle of the aircraft on the glide 

path were used as initial statistical data, that is when the aircraft was landing. The paper 

analyzes the data obtained during the performance of real flights of the Boeing-737-500 when 

it was piloted by a pilot of one of the Ukrainian airlines. Using the developed model, a 

comparative analysis of the average pitch value in four samples was carried out. The results of 

the statistical data processing showed that when a pilot performs repeated flights under normal 

flight conditions, its flight style does not change. The obtained result does not contradict the 

normal distribution law. The next stage of the research involves the study of changes in the 

pilot’s flight style in abnormal flight conditions, increased psychophysical tension of the pilot, 

and poor health. Thus, the pilot’s flight style can be one of the diagnostic parameters of the 

influence of the human factor on the safety of an aircraft flight. 
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1. Introduction 

In the technical operation of aircraft, one of the key tasks is to ensure the safety of their flights. It 

depends on many factors, and in particular:  

• on the technical condition of the aircraft;  

• weather and other external conditions;  

• pilot errors during piloting;  

• errors of the aviation engineering service during the maintenance and repair of the aircraft and 

other.  

Each of these factors is a random event that can appear itself at any time during the flight. Therefore, 

in order to minimize the negative appearance of the above mentioned factors, it is necessary to carry 

out a set of special procedures. 

Currently, special attention is paid to issues related to the influence of the human factor [1–13] on 

the safety of aircraft flights. According to statistics, this is due to the fact that most of the events that 

are prerequisites for air crashes or air crashes occur through human error. Therefore, the solution of 
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problems on this issue is not only of scientific, but also of practical interest. Scientific papers [14] 

highlight the tasks of the influence of the human factor on flight safety at various stages of an aircraft 

flight. In these works, the concept of pilot error can be divided into two categories: 

– the first category is a mistake made by the pilot as a result of an inadequate assessment of an 

abnormal flight situation or as a result of the pilot’s high psychophysiological tension in difficult aircraft 

flight conditions;  

– the second category of errors is a direct error, which is made by the pilot due to his individual 

characteristics, as well as because of his temporarily worsened psycho-emotional or physical condition. 

That is, an error of the second category is an error without the influence of an external factor as a 

causal link. In order to significantly reduce the risk of pilot error of the first category, it is necessary to 

periodically carry out anti-stress training on a simulator of a specific type of aircraft both for an 

individual pilot and training him as part of the crew [15, 16].  

To reduce the risk of a pilot error of the second category when piloting an aircraft, this paper 

proposes to monitor the pilot’s flight style. It is assumed that the pilot’s flight style, with sufficiently 

good professional training, maintained for the entire flight. A change in the flight style to varying 

degrees will indicate a pilot's tendency to make mistakes or about his poor health. 

The flight style of a pilot is a technique for piloting an aircraft, which is characterized by its 

individual characteristics. Usually, a pilot’s flight style is formed when pilot gains a certain piloting 

experience. It is unique and characteristic only for a particular pilot. 

In the presented research, the monitoring of flight style is carried out using the developed 

mathematical model. It is based on the Kruskal-Wallis statistical test. It allows a comparative analysis 

of the medians of several samples. The Kruskal-Wallis criterion is multidimensional and rank, widely 

used in psychology and other fields of science. 

Thus, the main goal of this paper is to study the pilot’s flight style under normal aircraft flight 

conditions using a specially developed mathematical model based on the Kruskal-Wallis statistical 

criterion. 

2. Methods and materials 

The transcription data of the aircraft Boeing-737-500 flight information was obtained from the 

airline for the analysis of flight styles. To do this, the sections of real flights were taken after 

approaching the glide path until landing.  

The landing approach took place at different airports, so the length of the glide path and, accordingly, 

the amount of data differ. To analyze the flight information data, the pitch amplitudes in the above flight 

segments were taken. For calculations, a computer algebra system from the class of computer-aided 

design systems Mathcad was used. Due to the fact that a shortened glide path negatively affects the 

psycho-physiological tension of pilots [14], it is advisable to determine whether the pilot’s flight style 

is preserved in different flight conditions.  

To solve this problem, a method based on the Kruskal-Wallis test was applied, which is a non-

parametric analogue of one-way variance analysis and detects differences in the distribution position. 

2.1. General information 

The great attention is paid to flight safety in civil aviation, although the occurrence of air crashes is 

unlikely. There are single events that lead to aviation accidents. Some of them are associated with 

inadequate reflexes of the human operator in the event of increased psychophysiological tension.  

To eliminate this phenomenon, it is necessary to evaluate the characteristics of the ergatic aircraft 

control system for preparing crews for special flight situations and systematize anti-stress training. In 

addition, it is necessary to create suitable conditions and crew prompts to prevent the above mentioned 

situations. To solve this problem, theoretical and experimental studies are required to develop methods 

for assessing the characteristics of an ergatic aircraft control system. Therefore, it is necessary to 

improve the functioning of ergatic and intelligent systems, to study the influence of operational factors 

on the aircraft performance indicators. In the process of many years of research, a connection was 

established between changes in the pilot’s psychophysiological tension and flight parameters. The main 



studies were carried out on integrated aircraft simulators for the roll angle. For the study, a section of 

the glide path was taken, on which, to create psychophysiological tension for pilots, failures were 

introduced [15] on the aircraft integrated simulator. Since the analysis of landing cannot be correctly 

simulated on aircraft integrated simulator, studies of the influence of psychophysiological tension were 

carried out directly on landing, depending on the length of the glide path [16]. The flights were 

considered in the director approach mode [17, 18]. 

2.2. Analysis of statistical data for homogeneity 

Let’s consider the method of building a model of a pilot’s flight style on a concrete example of 

statistical data. Statistical data for analysis are given in Table 1. This data consists of four datasets. Each 

dataset contains the results of pitch angle measurement during landing. The pilot for each dataset is the 

same. Landing is carried out on a Boeing 737-500. 

 

Table 1 
Datasets for four flights and same pilot 

Dataset 1 Dataset 2 Dataset 3 Dataset 4 

1.1 2.6 4.8 0.5 0.5 1.5 1.6 0.9 1.2 2.7 
1.2 2.7 4.5 0.8 1 0 1.8 0.2 2.5 2.7 
1.4 2.9 4.8 1.1 0.5 -1 1.4 1.4 2.8 3.5 
1.3 3 3.9 1.3 1.5 0 1.5 0.6 2.1 1.8 
1.3 2.7 3.7 1.5 1.9 1.5 1.7 1.9 2.1 2.5 
1.4 2.5 3.5 1.9 2.3 2.5 1.9 2.2 2.9 2.2 
1.5 2.7 2.7 2.1 1.9 0 2.4 2.5 2.8 0.5 
1.4 2.3 2.5 2.2 2.4 0.5 2.6 3.2 1.5 1.5 
1.5 2.4 2.3 2.6 1.7 0 2.9 3.6 2.3 2.7 
1.6 2.5 1.9 2.2 2.6 1 3.2 3.8 2.1 1.8 
1.7 2.7 2.3 1.9 2.8 1.5 3.6 4 1.7 1.5 
1.7 2.6 2.1 2.6 1.7 2 3.2 3.9 2.2 2.2 
1 2.8 2.9 2.3 1.4 -0.3 2.7 3.7 2.4 2.4 

1.8 2.9 2.7 1.8 1.9 1.4 2.4 3.5 2 2.1 
1.9 3 2.4 1.7 2.1 1.8 1.9 3.7 2.6 1.5 
1.5 3.1 2.9 1.5 2.5 2 1.4 3.9 2.2 1.8 
1.6 3.3 3.1 2.3 2.7 0.5 0 4.1 3 2.5 
2  3.5 3.1 2.5 1 1.2  2.2 2.1 

1.8  4.1 3.3 2.5 1.3 0  2.1 2.3 
2  3.8 3.6 2.8 1.8 1.3  1.1 1.8 

1.7  3.3 2.9 3.1 2.5 1.9  0.8 2.5 
1.9  3.4 2.7 3.1 1.7 2.5  1.2 1.7 
1.9  3.8 3.21 2.8 0 2.4  2.5 2 
2.2  3.6 3.5 2.5 1.8 2.8  0.8 2 
2.3  3.5 4 2.3 0 2.6  0.9 1.8 
2.5  3.2 3.6 2.6 1.6 3.2  1.3 2.5 
2.6  2.8 3.2 1.9 1.3 3.4  1.7 2.8 
2.4  2.6 2.7 1.5 1.7 2.4  2.1 3.2 
2.3  2.2 2.5 1.3 -0.5 1.6  2.2 3.9 
2.5  1.9 1.8 1 0.5 2  2.1 4.5 
2.4  1.5 1.7 0.8 0.3 1.6  2.7 4.6 
2.5  1.2 1.4 0.6 3.2 2.4  2.5 4 
2.6  0.9 1.1 0.2 2.7 0.8  2.1 4.2 
2.4  0.7 0.7 0 0 0.7  2.8 4.8 



 
Dataset 1 contains the results of 𝑘1 = 51 measurement and is placed in the first and second columns 

of Table 1. Dataset 2 contains the results of 𝑘2 = 136 measurement and is placed in the third – sixth 

columns of Table 1. Dataset 3 contains the results of  𝑘3 = 51 measurements and is placed in the 

seventh and eighth columns of Table 1. Dataset 4 contains the result of 𝑘4 = 68 measurement and is 

placed in the in the ninth and tenth columns of Table 1.  

The total amount of observation is equal to  

𝑁 = ∑ 𝑘𝑖

4

𝑖=1

= 306. 

Preliminary statistical analysis for each dataset was performed based on finding point estimates of 

statistical characteristics, namely the mathematical expectation, standard deviation, skewness and 

kurtosis.  

The results of statistical characteristics calculations are shown in Table 2. 

 

Table 2 
Statistical characteristics of datasets 

Dataset 
number 

Minimum 
value 

Maximum 
value 

Mean 
value 

Standard 
Deviation 

Skewness Kurtosis 

Dataset 1 1 3.3 2.149 0.587 –0.15 –1.058 
Dataset 2 –1 4.8 2.007 1.159 –0.1 –0.28 
Dataset 3 0 4.1 2.276 1.089 –0.195 –0.716 
Dataset 4 0.5 4.8 2.296 0.864 0.809 1.287 

 
Analysis of the numerical values of the statistical characteristics shows that the datasets are 

characterized by approximately the same mathematical expectations, but the variance for the first and 

fourth datasets is noticeably smaller, which can be explained by the smaller amount of observation. In 

addition, the fourth dataset is characterized by positive skewness and kurtosis values. 

The datasets volume of 51 and 64 observations is too small to reliably determine the density of the 

probability distribution for the measured data. It is natural to try to combine these data into one set. 

However, for this, it is necessary to conduct a detailed statistical analysis on the homogeneity of the 

initial samples. That is, it is necessary to check the hypothesis whether the specified datasets belong to 

the same population. 

Non-parametric methods can be used to solve this problem. The main property of these methods is 

the independence of decision-making reliability on the distribution law of the analyzed data. The 

literature considers a large number of methods that are robust to the type of distribution law, including 

sign methods, the Pearson test, the Wilcoxon test, the Mann-Whitney test, the Kruskel-Wallis method, 

and other variance analysis techniques. 

Since the analyzed datasets contain a different number of observations and their number is more 

than two, it is quite obvious that in this case an approach based on Kruskel-Wallis statistics can be 

applied. Let’s consider this approach in more detail. 

The first step in the calculation is to combine the available datasets into a single sample. The visual 

view of the implementation for the combined sample of the studied data is shown in the Figure 1. For 

this sample, numerical data are converted into their number in the corresponding order statistics. That 

is, for each value of the dataset, it is necessary to find its rank, which will be denoted by a function 

𝑅𝑎𝑛𝑘(𝑖), where 𝑖 ∈ [1; 𝑁] – counting number in sample, 𝑅𝑎𝑛𝑘(𝑖) ∈ [1; 𝑁]. It should be noted that the 

samples may contain the same values of the random variable. In this case, the ranks may not be integers. 

In the case of multiple repetitions of the sample value, it is necessary to replace the corresponding ranks 

with the corrected average values of these ranks.  

The rank statistics for the studied data are given in the Table 3. 

 



 
Figure 1: Data trend for a combined sample 
 

Table 3 
Ranks for initial statistics 

Dataset 1 Dataset 2 Dataset 3 Dataset 4 

43.5 213.5 305 20 20 75.5 86.5 35 48 227 
48 227 301.5 31 39 8.5 109 14.5 196.5 227 
63 248 305 43.5 20 1 63 63 239.5 276.5 

54.5 253 292.5 54.5 75.5 8.5 75.5 24.5 144.5 109 
54.5 227 286 75.5 123 75.5 96 123 144.5 196.5 
63 196.5 276.5 123 167 196.5 123 156 248 156 

75.5 227 227 144.5 123 8.5 179 196.5 239.5 20 
63 167 196.5 156 179 20 213.5 263.5 75.5 75.5 

75.5 179 167 213.5 96 8.5 248 282 167 227 
86.5 196.5 123 156 213.5 39 263.5 289 144.5 109 
96 227 167 123 239.5 75.5 282 296 96 75.5 
96 213.5 144.5 213.5 96 134.5 263.5 292.5 156 156 
39 239.5 248 167 63 3 227 286 179 179 

109 248 227 109 123 63 179 276.5 134.5 144.5 
123 253 179 96 144.5 109 123 286 213.5 75.5 
75.5 257 248 75.5 196.5 134.5 63 292.5 156 109 
86.5 270 257 167 227 20 8.5 298.5 253 196.5 

134.5  276.5 257 196.5 39 48  156 144.5 
109  298.5 270 196.5 54.5 8.5  144.5 167 

134.5  289 282 239.5 109 54.5  43.5 109 
96  270 248 257 196.5 123  31 196.5 

123  272.5 227 257 96 196.5  48 96 
123  289 268 239.5 8.5 179  196.5 134.5 
156  282 276.5 196.5 109 239.5  31 134.5 
167  276.5 296 167 8.5 213.5  35 109 

196.5  263.5 282 213.5 86.5 263.5  54.5 196.5 
213.5  239.5 263.5 123 54.5 272.5  96 239.5 
179  213.5 227 75.5 96 179  144.5 263.5 
167  156 196.5 54.5 2 86.5  156 292.5 

196.5  123 109 39 20 134.5  144.5 301.5 
179  75.5 96 31 16 86.5  227 303 

196.5  48 63 24.5 263.5 179  196.5 296 
213.5  35 43.5 14.5 227 31  144.5 300 
179  27 27 8.5 8.5 27  239.5 305 



 
The second step of the calculation is to determine the total ranks for each dataset separately, that is, 

to calculate the corresponding values according to the formulas 

𝑅𝑎𝑛𝑘𝑠𝑢𝑚(𝑗) = ∑ 𝑑𝑤,𝑗

𝑘𝑗

𝑤=1

, (1) 

where 𝑗 corresponds to the dataset number, i.e. 𝑗 ∈ [1; 4]. 
The third step of the calculation is to obtain the so-called Kruskel-Wallis statistic ℎ according to the 

formula  

ℎ =
12

𝑁(𝑁 + 1)
∑

(𝑅𝑎𝑛𝑘𝑠𝑢𝑚(𝑗))
2

𝑘𝑗

4

𝑗=1

− 3(𝑁 + 1). (2) 

For the case when the values in the sample are not repeated, formula (2) is final.  

If we have a sample with repetitions, it is necessary to calculate the correction factor according to 

this formula 

𝐶𝑐𝑜𝑟 = 1 −
1

(𝑁 − 1)𝑁(𝑁 + 1)
∑((𝑡𝑢 − 1)𝑡𝑢(𝑡𝑢 + 1))

𝑝

𝑢=1

, (3) 

where 𝑝 is the number of repeated values in the dataset, 𝑡𝑢 is the number of identical ranks in the  𝑢-th 

repetition group.  

Corrected value ℎ of statistic  

ℎ𝑐𝑜𝑟 =
ℎ

𝐶𝑐𝑜𝑟
. (4) 

The sample under the study contains repeated values. The merged dataset contains 48 duplicate 

values with a repetition range from 2 to 22. For a visualization of values repetitions, a series of 

distributions can be built; its graphical form for the initial data is shown in Figure 1. 

 

 
Figure 2: The probability mass function for the combined dataset 

 

For the studied dataset, the value of the ℎ statistic according to formula (2) is 3.008, the correction 

coefficient according to formula (3) is 0.999. Then, according to expression (4), we get the corrected 

value ℎ of the statistic, which is equal to 3.012. 

At the last step of the calculation, we need to find the decision threshold. If the adjusted value ℎ of 

the statistics is less than the threshold value, then a decision is made about the homogeneity of the data 



and the combination of the specified datasets into one is reasonable. Otherwise, a decision is made 

about the heterogeneity of the data.  

The decision threshold is determined according to the chi-square distribution tables. The number of 

degrees of freedom is equal to a value that is one less than the number of combined datasets. Let’s take 

a significance level of 0.05. Then for three degrees of freedom the decision threshold is 7.81. 

In our case ℎ𝑐𝑜𝑟 = 3.012 < ℎ𝑡ℎ = 7.81. Therefore, the hypothesis about the homogeneity of the 

data given in Table 1 is accepted. 

Hence, we conclude that combining four datasets into one is statistically justified. 

2.3. Checking the data model for a normal distribution 

A preliminary analysis of the combined dataset provides the following point estimates of the 

statistical characteristics 

𝑚𝑖𝑛(𝑑) = −1; 
𝑚𝑎𝑥(𝑑) = 4.8; 

𝑚𝑒𝑎𝑛(𝑑) = 2.14; 
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑑)  = 1.017; 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑑) = −0.074; 
𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑑) = 0.219. 

To describe the combined dataset, let’s try to use the normal distribution law with the density of the 

form 

𝑓(𝑥) =
1

1.017√2𝜋
𝑒−

(𝑥−2.14)2

2.068 . 

The distribution histogram for the combined dataset (for the case of nine clustering intervals) and 

the theoretical probability density function are shown in Figure 1. 

 

 
Figure 3: The distribution histogram for the combined dataset and the theoretical probability density 
function 

 

Even a visual analysis of the histogram and the theoretical probability density distribution shows 

their convergence. To make a final decision, Pearson’s chi-square goodness-of-fit test was applied.  



The calculation gives the value of the parameter 𝜒2 = 8.885. For a significance level 0.05 and six 

degrees of freedom, the critical value is 12.59. So, the calculated value is less than the threshold, so we 

make a decision about the possibility of applying the normal distribution law for the pilot’s flight style 

model in the case of normal operation of the equipment without failures. 

3. Results and discussions 

As a result of the research, it was found that with different landing approaches, i.e. with a different 

amount of data, combining four datasets into one is statistically justified. This suggests that with 

different psychophysiological loads, using a non-parametric method, it was found that the pilot’s flight 

style and quality of piloting technique do not change [19–29]. 

However, when evaluating the quality of piloting technique, it must be taken into account that the 

formation of flight style is carried out without the analysis that is presented in this paper. Various 

interpretations are possible when determining the laws of distribution. For the already formed flight 

style, the most effective will be a comparison of flights without failures and with failures introduced 

before approaching the glide path on the integrated aircraft simulator. 

It follows from the above that it is necessary to create a data bank of flight styles using flight 

parameters based both on simulators and on real flights (Figure 1). For each type of aircraft, systems 

and recommendations should be developed for processing data and some recommendations should be 

issued by the instructors. 

 

 
Figure 4: Scheme of the data bank of flight style using flight parameters 

4. Conclusions 

The paper is devoted to the solution of important scientific problem of ensuring flight safety, related 

to the human factor in terms of improving piloting style in cases of aircraft equipment failure, worsening 

weather conditions and features of the location of the airfield. To track the stressful situation affecting 

the pilot, statistical data processing is usually performed regarding the trends of the measured indicators. 
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However, such trends have the small sample size, which reduces the effectiveness of building 

mathematical models and synthesizing algorithms for detecting changes in the pilot’s flight style. 

The paper discusses the issue of substantiating the possibility of combining measured data arrays 

for various stressful situations. The solution of this task is based on the Kruskal-Wallis statistical test 

which confirmed the proposed hypothesis about combining data arrays. Using the proposed method, a 

comparative analysis of the pilot’s flight style was carried out during four real flights of the Boeing-

737-500 aircraft. The results of statistical data processing showed that when performing these flights 

under normal flight conditions, the pilot’s flying style does not change. The generalized statistical 

model of the pilot’s flight style data does not contradict the normal distribution law. 

The obtained result of the statistical analysis of the data of the pilot’s flight style makes it possible 

to develop a method for continuous monitoring of the pilot’s flight style during the flight in order to 

reduce the risk of pilot error of the second category. 

Based on the conducted research, the following recommendations can be made: 

1. It is necessary to collect data for each pilot in various stressful situations during the approach of 

the aircraft to land and form appropriate data banks. 

2. The ability to merge data arrays must be checked based on Kruskal-Wallis test. 

Future research directions will be related to the synthesis and analysis of procedures for processing 

the collected data to identify the stressful situation based on the pilot’s flight style. 
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