
A methodological approach for ontology-based meta-
modelling

Emanuele Laurenzi

FHNW University of Applied Sciences and Arts
Northwestern Switzerland, Riggenbachstrasse 16, 4600 Olten, Switzerland

Abstract
Ontology-based meta-modelling is a technique for the creation of domain-specific modelling languages
(DSMLs) grounded in an ontology. Such languages enable the design of ontology-based models having
the advantage of being both human and machine-interpretable. Thus, ontology-based meta-modelling
fosters the business-IT alignment in enterprises by establishing a shared layer of semantics with respect
to a domain of discourse among human and machine actors. In this paper, a methodological approach
for the ontology-based meta-modelling is proposed, to ensure rigor to the produced ontology-based
DSML. Specifically, the approach enables the creation of semantic rules that given a required domain-
specific adaptation, it propagates the changes to an ontology. A research project sets the motivational
context for the creation of an ontology-based DSML as well as provides real-world scenarios for the
evaluation of the proposed approach.

Keywords
ontology-based meta-modelling, domain-specific conceptual models, human-machine interpretable
models, business-IT alignment1

1. Introduction

There exist various enterprise modelling languages that provide sets of pre-defined modelling
constructs from which enterprise models can be created. For example, the standard Business
Process Modelling & Notation (BPMN 2.0) [1] is used for business process modelling. Although
such languages bring the benefit of creating uniform and sharable models across enterprises, in
practice they are not sufficiently expressive to address every application domain and sometimes
are too complex for domain experts to be fully understood [2]. The BPMN 2.0 specification, for
example, spans more than 500 pages and the definition of elements is distributed across different
sections and sometimes with conflicting semantics [3].

These issues can be overcome with an ontology-based meta-modelling approach [4], where
domain-specific adaptations are applied on modelling languages to either extend modelling
constructs, or to remove unnecessary concepts or properties. The approach substitutes the meta-
model with an ontology, which formalizes the semantics of modelling constructs with a W3C
standard like RDF(S). The advantages are manyfold. An ontology-based meta-model, in contrast
to a pure meta-model, enables automatic reasoning, thus resolving the above-mentioned
conflicting semantics. Also, it resolves the interoperability problem that exists among meta-
models of different meta-modelling tools. It also allows the creation of ontology-based models,
for which human and machine actors can have the same interpretation. In turn, the ontology-
based meta-modelling technique approach promotes the continuous business-IT alignment [5]
and creates the foundation for intelligent enterprises [6].

A set of operators for domains-specific adaptations of ontology-based meta-models have been
presented in [7]. This paper adds rigor to the domain-specific adaptations by proposing a
methodological approach that outputs semantic rules. These are triggered by the afore-

BIR-WS 2023: BIR 2023 Workshops and Doctoral Consortium, 22nd International Conference on Perspectives in
Business Informatics Research (BIR 2023), September 13-15, 2023, Ascoli Piceno, Italy

 emanuele.laurenzi@fhnw.ch (E. Laurenzi)
 0000-0001-9142-7488 (E. Laurenzi)

© 2023 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

http://ceur-ws.org/

mentioned operators and ensure the propagation of the desired adaptation from a visual to an
ontology representation.

The paper is structured as follows: Section 2 describes the background and related work,
ending with the problem statement. Section 3 introduces the patient transferal management case
and artifact requirements. Section 4 discusses the proposed methodology. Section 5 shows a
running example about how the methodology has been used and validates it. The paper concludes
with Section 6 with a summary and future work.

2. Background and related work

Meta-modelling is a renowned technique in the Enterprise Modelling (EM) discipline [8] and
enables the creation of domain-specific modelling languages (DSML) [9].

DSMLs capture concepts, relations and constraints tailored to specific problem domains or
application areas. Examples for DSMLs and respective domain-specific models can be found in
[10]. Domain-specific models offer a powerful means to company stakeholders (with different
skillset) to quickly share understanding of an addressed reality, thus supporting decision-making
to generate business value like the continuous Business-IT alignment, improvements of business
processes, and innovative business models [11].

The meta-modelling framework of Meta-Object Facility (MOF) [12] presents four levels of
abstraction where elements and relations of UML Class Diagram are used to create meta-models
for modelling standards. A paradigm that emerged in the recent years is the ontology-based meta-
modelling [4]. Differently from MOF, this new paradigm substitutes the meta-model with an
ontology, enabling the creation of ontology-based models as an instantiation of an ontology-based
meta-model.

Conceptually, an ontology-based model can be regarded as an instantiation of a conceptual
model. “Conceptual models are artifacts produced with the deliberate intention of describing a
conceptualized reality” [13] with the goal of supporting computationally human communication,
domain understanding and problem solving. Conceptual models are used to support the design
of databases, software, business processes, enterprises etc. [14]. Conceptual modelling received
continuous attention by scholars [15]. Guarino et al. [13] examine the fundamental notion of
conceptual models and characterize them with conceptual semantics and ontological
commitments.

Ontology-based models can therefore be regarded as conceptual models where the semantics
of a visual model is made formal through an ontology language, like RDF(S) [16]. Ontology-based
models are a powerful means of organizing, representing, and leveraging knowledge, facilitating
data integration, enabling intelligent systems, and enhancing decision-making processes.

There exists various and emerging works that strive to combine visual models with ontologies
or knowledge graphs. The authors in [17] focus on legacy data sources containing domain-specific
graphical models and export them into ontologies to make them queryable in a Linked Data
environment. The automatic transformation is made possible by an AODxx-to-RDF plugin. A
similar approach is discussed in [8]. Similarly, the plugin Archi-to-Neo4J2 converts a model in
ArchiMate language into a property graph. Compared to this plugin, the work of [18] provides a
more generic approach where any conceptual model can be transformed into a property graph
(also in Neo4J). The conceptual models can be created in EMF or ADOxx metamodeling platforms,
but also from the Ecore-based modeling platforms Papyrus (for UML, SysML, and UML profiles)
and Archi (for ArchiMate). Most recently, [19] proposed BPMN2KG as a transformation tool from
BPMN 2.0 process models into knowledge graphs.

The presented approaches are characterized by one-shot transformation from the graphical
to the ontology representation. Differently from these approaches, the ontology-based meta-
modeling gives continuity to the two knowledge representations, where the graphical one is in
continuous sync with the ontology representation, throughout language adaptations. As such, it
requires mechanisms that can ensure the continuous propagation of changes. For this, a set of ten

2 https://www.hosiaisluoma.fi/blog/archimate-neo4j

operators were proposed in [7] for domain-specific adaptations through ontology-based meta-
modeling. This paper describes a methodological approach that to a domain-specific adaptation
it follows the correct and rigorous definition of ontological statements. Hence allowing the
continuous sync between a visual modelling language and the respective ontology.

3. Patient transferal management case

The patient transferal management case derives from the Swiss research project Patient-Radar
[20]. To reduce costs and keep a high-quality treatment of patients affected by complex physical
surgeries, the project aimed to enable intersectoral collaboration between acute hospitals and
rehabilitation clinics, where rehabilitative expertise had to be brought early into the acute
somatic treatment process.

The process identification phase of BPM (Business Process Management) [21], led to the
identification of most crucial process as the patient transferal management process. The latter
can be defined as “a set of actions designed to ensure the coordination and continuity of care
received by patients as the transfer between different locations or levels of care” [22]. The set of
actions, also called administrative pathways, includes medical information and excludes the
treatment of the patient, which is referred to as clinical pathways [23]. Such collaboration takes
place within the complicated settings of the transferal management domain, where many domain
experts are involved, i.e., from acute hospitals, rehabilitation clinics, and health insurance for cost
reimbursements.

Following the best practices of BPM lifecycle [21], the patient transferal management process
had to be modelled before it could be analyzed to make it efficient. Since existing modelling
languages lacked specific elements such as hospital-related documents or activities, a DSML was
developed (see DSML4PTM [24]). The DSML provides all the relevant concepts and decision types
of the patient transferal management domain and also offers graphical notations that are familiar
to domain experts such as physicians, nurses and transferal manager, thus enabling them to
quickly understand and adapt models.

A set of ten operators allowed the domain-specific adaptation of modelling languages. Since
these operators aim to crystallize the knowledge produced by the language adaptations formally
into an ontology, they take the name of “operators for the ontology-based meta-modelling”. The
10 operators for the ontology-based meta-modelling are the following: Operator 1: Create sub-
class; Operator 2: Update class; Operator 3: Delete sub-class; Operator 4: Create relation; Operator
5: Update relation; Operator 6: Delete relation; Operator 7: Create attribute; Operator 8: Assign
attribute type or value; Operator 9: Delete attribute; Operator 10: Update attribute. The operators
are further detailed in [7].

Figure 1 depicts the all the root concepts of the ontology-based metamodel.

Figure 1: Root concepts and properties of the ontology-based metamodel [25]

The different prefixes indicate a different provenance of the terms. Specifically, “do” stands for
domain ontology, “lo” stands for language ontology and “po” stands for palette ontology. Concepts
from the language ontology can be associated with concepts from a domain ontology through the
relation “lo:isMappedWith”. Concepts from the palette ontology are connected with concepts in
the language ontology through the relation “po:isRelatedTo”.

Theoretically, the relation “lo:isMappedWith” is explained by the mathematical formula for the
semantic mapping:

𝑀𝑀: 𝐿𝐿
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
�⎯⎯� S [26]

where the semantic mapping (M) relates concepts from the abstract syntax (L) to the domain
semantic (S). Similarly, the relation “po:isRelatedTo” is theoretically grounded in the relation
between concept in the meta-model (or abstract syntax) and graphical notation, where notation
visualizes concepts of the meta-model [27]. The palette ontology, in fact, contains all the graphical
properties of concepts that are specified in the ontology-based meta-model. The self-relation
“po:hasParent” is used to visualize the taxonomy among concepts in the modelling tool AOAME
[28]. Similarly, the relation “po:isSchownIn” allows the visualization of graphical notation grouped
by categories in the palette of AOAME.

Semantic rules ensure that the changes triggered by the operators are correctly propagated to
the ontology. A semantic rule consists of one or more triples in the form of subject-predicate-
object and insert, delete or update knowledge in the ontology-based meta-model. Each rule
supports at least one operator. In this sense, if an operator is triggered by a domain-specific
adaptation, the corresponding rule shall be instantiated. The instantiation contains the actual
changes that need to be carried over to the ontology. For example, let us assume that an
adaptation makes use of Operator 1: Create sub-class. The expected result is to create a sub-class
relation between two modelling elements. To achieve that, the operator is supported by the two
following semantic rules (1) insert the relation “po:hasParent” between the two palette element
instances (in the Palette Ontology) that relate to the two modelling elements that wants to be
connected; (2) insert the relation “rdfs:subClassOf” between the two modelling constructs (in the
Language Ontology) that wants to be connected. See visually depiction in Figure 2. These
semantic rules are, therefore, instantiated containing the actual instances of the palette element
class and the two actual classes representing two modelling constructs. Thus, once rule instances
are fired, the ontology-based meta-model are adapted with the new integration of the two
modelling constructs.

Figure 2: Semantic rules for the ontology-based meta-modelling [25]

4. Methodology for the Development of Semantic Rules

The design and evaluation of the semantic rules was supported by adapting the methodology
proposed by Grüninger and Fox [29]. In the following, the general steps of the methodology are

described. Next, the adapted one is described, which is tailored to the development of semantic
rules.

The methodology of Grüninger and Fox starts by explaining use case, from which informal
competency questions (CQ) are derived and written in natural language.

Then, concepts and relations are extracted from the questions to conceptualise an ontology.
Next, the ontology and competency questions are formalised through an ontology language and
a rule language, respectively. Lastly, the evaluation of the semantic queries or rules is performed
by executing them with respect to the ontology. In result, it should be shown that the expected
results are met. Hence, the ontology is tested by proving completeness theorems with respect to
the competency questions. The methodology has been successfully followed for the development
and evaluation of several ontologies (e.g., [30]) and also used as a basis for the renowned
Ontology Development 101 [31].

The purpose of the Grüninger and Fox methodology in our case is not of developing an
ontology, but support the rigorous development of semantic rules. The latter aims to update the
ontology of the meta-model that already exists. Thus, some part of the methodology is slightly
adapted to fit our purpose (see Figure 3).

Figure 3: Methodology to design and evaluate semantic rules for the propagation domain-

specific adaptations, in BPMN 2.0. Adapted from [29].

In the first step, domain-specific adaptations are described as a motivating scenario to design
semantic rules. Next, informal rules (instead of competency question) are described in natural
language. Finally, informal rules are transformed into SPARQL rules (instead of SPARQL queries).
The validation of the designed SPARQL rules is done with respect to its syntactic and semantic
correctness. The syntactic correctness is validated by executing the SPARQL rules with the
SPARQLer Update Validator3. To ensure that the SPARQL rule produces the expected outcome, it
is instantiated. This activity is underpinned by the patient transferal management case, which
contains typical domain-specific adaptations and covers all the 10 operators for ontology-based
meta-modelling. The SPARQL rule instances are fired against the ontology-based meta-model4. If
results match with the expected ones it is the proof that a SPARQL rule is semantically valid.
SPARQL rules that are syntactically and semantically validated were considered for their
implementation in the web service of AOAME. Specifically, the validated SPARQL rules were
incorporated in Java methods for the dynamic generation of SPARQL rule instances. The complete
list of methods is publicly available in a GitHub repository5.

4.1. Representation Language of the semantic rules

The SPARQL rules are represented in the W3C language specification SPARQL Update [32]. The
SPARQL Update provides graph update operations such as “INSERT DATA” and “DELETE DATA”
with which the 10 operators can be supported.

According to the W3C [33], an operation is defined as “an action to be performed that results
in the modification of data [..]” in a triplestore expressible as a single command, e.g. INSERT DATA
or DELETE DATA. A triplestore is a mutable container of ontologies, which in our case reflect the

3 http://www.sparql.org/update-validator.html
4 The tests are done in the ontology editor TopBraid: https://allegrograph.com/topbraid-composer/
5 https://github.com/manulaur/OntologyBasedModellingEnvironment-
WebService/blob/master/src/main/java/ch/fhnw/modeller/webservice/ModellingEnvironment.java

(1) Create
motivating
scenario

(2) Create
informal generic
semantic rules

(3) Formalize
generic rules,

e.g., in
SPARQL

(4) Validate
formalized rules

syntactically

(5) Instantiate
generic rules,

e.g., in
SPARQL

(6) Validate
instantiated

rules
semantically

Adjust
instantiated

rule(s)
Adjust rule(s)

methodology
started

yes

methodology
ended

are all the rules
syntactically
validated?

Are all the
instantiated rules

semantically
validated?

no

no

yes

afore-mentioned ontology-based meta-model. Operations on RDF(S) resources span classes,
properties and instances. Namely, the “INSERT DATA” supports those operators that imply the
creation of a resource, i.e., Operator 1 – Create sub-class, Operator 4 – Create relation, Operator 7
– Create attribute and Operator 8 – Assign concept, attribute type or value. The “DELETE DATA”
statement supports Operator 3: Delete sub-class, Operator 6: Delete relation, Operator 9: Delete
Attribute. The sequential use of both operations, first “DELETE DATA” and then “INSERT DATA”,
supports those operators where an update is completed, i.e., Operator 2: Update class, Operator 5:
Update relation and Operator 10: Update attribute.

5. Running Example for Semantic Rule 1 – Operator 1

In total, eleven semantic rules have been created with the proposed methodology. To avoid an
unnecessary stretch of this paper, the syntactic and semantic validation of only the first semantic
rule is reported. Therefore, the first rule is described with all the 6 steps of the proposed
methodology.

5.1. Semantic Rule 1: Modelling Elements Integration from different Modelling
Languages

(1) Create a motivating scenario.
Within the patient transferal management case, there are situations where particular activities
shall be executed only if certain conditions hold to true, thus independently from a pre-defined
process flow. For example, the acute hospital decides on whether to start performing the
admission for the incoming patient, which includes preparing all the needed resources. This is
only possible after the transferal date has been agreed upon between the acute hospital and
rehabilitation clinic and after the cost reimbursement form has been sent to the health insurance.
Another example is on decisions that need to be taken if the patient’s situation worsens.

Therefore, at run time, a discretionary task can be executed independently from a process
flow, as soon as certain conditions evaluate to true, else they are skipped.

Such a scenario motivated the integration of the BPMN Manual Task with the CMMN
Discretionary Task where the latter is sub-class of the former. Semantically, a discretionary task
can be regarded as specialization of a manual task because the human actor can still decide
whether to execute the task or not.

The first semantic rule, thus, aims to support the integration of two modelling elements from
different modelling languages (Discretionary Task of CMMN and BPMN Manual Task) with the
relation rdfs:subClassOf.

(2) Create informal semantic rules (to Integrate Modelling Elements).
The integration between modelling elements from different modelling languages requires a rule
that creates the following two properties (1) Create one object property
po:hasParentPaletteConstruct in the Palette Ontology between the instance of the class
po:PaletteElement (instance son) and the instance of the class po:PaletteElement (instance parent).
Instance son and instance parent relate to the modelling construct that is to be extended and the
modelling construct that extends, respectively. Both modelling constructs are classes in the
Language Ontology. The object property po:hasParentPaletteConstruct ensures a taxonomy
among the instances that contain the graphical notations. The taxonomy is then graphically
displayed in the palette of the modelling tool AOAME. (2) Next, create one property
rdfs:subClassOf in the Language Ontology between the modelling construct chosen for extending
a class (source class) and the one that is being extended (target class). This action creates the
desired integration between the two modelling constructs in the Language Ontology. It also
ensures that the class taxonomy in the Language Ontology is consistent with the above-
mentioned graphically displayed taxonomy of the notation.

(3) Formalize generic rules (SPARQL Rule 1 to Integrate Modelling Elements).
The informal rule for modelling elements integration is implemented by the SPARQL operation
“INSERT DATA”. The latter fits the purpose of inserting one property
po:hasParentPaletteConstruct between two instances and one property rdfs:subClassOf, between
two classes.

SPARQL Rule 1 is shown in Table 1 and contains (1) the prefixes rdfs, po and lo that are used
in the two statements. The prefix rdfs refers to the syntax of the RDF(S) ontology language. The
prefix po refers to the Palette Ontology and lo to the Language Ontology. (2) the operation
“INSERT DATA”, the two statements that allow the creation of the two properties. The two
properties are shown in bold. (3) two comments above each statement.

All the variables written in italics po:InstanceParent, po:InstanceSon, lo:sourceClass and
lo:targetClass will be replaced with concrete resources when the SPARQL Rule 1 is instantiated.

The rest of the SPARQL rules are shown with the same look as in Table 1.

(4) Validate SPARQL rules syntactically.
The syntactic validation of the SPARQL rules were performed through the SPARQLer Update
Validator. Figure 4 shows the screenshot that proves the syntactic validation of SPARQL Rule 1.
The upper part of the figure contains the SAPRQL rule described in Table 1, while the bottom of
the figure shows the output. The output does not contain any errors, which means that SPARQL
Rule 1 is syntactically correct.

Figure 4: Syntactic Validation of SPARQL Rule 1

(5) Instantiate SPARQL rules.
To instantiate SPARQL Rule 1, the expected results from the use case concerning the integration
between the BPMN Manual Task and the CMMN Discretionary Task is considered. That is, the
Discretionary Task is added as a sub-class of the Manual Task. Figure 5 shows the
conceptualisation of this use case. The two arrows in Figure 5 indicate the two properties that
are expected be added by the two statements (or triple) of the SPARQL rule instance. These

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX po:<http://fhnw.ch/modellingEnvironment/PaletteOntology#>
PREFIX lo:< http://fhnw.ch/modellingEnvironment/LanguageOntology#>
INSERT DATA {
//enter parent relation between two palette Element instances (triple 1)
po:InstanceSon po:paletteConstructHasParentPaletteConstruct po:InstanceParent.
//enter subClassOf relation between two Modelling Element classes (triple 2)
lo:sourceClass rdfs:subClassOf lo:targetClass .
}

Table 1. SPARQL Rule 1 – Integrate modelling elements from different modelling

properties are the rdfs:subClassOf relation between the Discretionary Task and the Manual Task
and the po:hasParent object property between the two instances of po:PaletteElement.

Figure 5: Conceptualisation of the use case for the integration of CMMN Discretionary Task

with BPMN Manual Task

The instance of SPARQL Rule 1 is described in Table 3. The prefixes bpmn and cmmn on top of
the rule instance replace the generic lo prefix seen in SPARQL Rule 1 (in Table 1). Both prefixes
refer to two ontologies, reflecting the linguistic view of the BPMN and CMMN modelling
languages, respectively.

(6) Validate SPARQL rules semantically.
To validate the semantic correctness of SPARQL Rule 1, its instance in Table 2 was fired against
the ontology. For this, the ontology editor TopBraid Composer6 was used. Figure 6 shows the
result of the rule instance execution. As shown by the two arrows, the two triples contain the two
new properties that have been added to the ontology. Hence, the Discretionary Task and the
Manual Task are integrated as expected (consistent to the use case in Figure 5), which proves that
SPARQL Rule 1 is semantically correct.

6 https://allegrograph.com/topbraid-composer/

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX po:<http://fhnw.ch/modellingEnvironment/PaletteOntology#>
PREFIX bpmn:< http://ikm-group.ch/archimeo/BPMN#>
PREFIX cmmn:< http://ikm-group.ch/archimeo/CMMN#>
INSERT DATA {
//enter parent relation between the two palette Element instances (triple 1)
po:DiscretionaryTask po:hasParentPaletteConstruct po:ManualTask .
//enter subClassOf relation between the two Modelling Element classes (triple 2)
cmmn:DiscretionaryTask rdfs:subClassOf bpmn:ManualTask .
}

Table 2. An instance of SPARQL Rule 1

6. Conclusion

This paper presented a methodology for the ontology-based meta-modelling. The methodology
of Grüninger and Fox [29] was adapted for the rigorous development and evaluation of semantic
rules. The latter ensure the correct propagations of the language adaptations. In total, 11 SPARQL
rules were developed, each of which implements one or more operators. For space reasons, in
this paper only the first semantic rule has been shown. The rest have already been implemented
in the form of Java methods and are publicly available in a GitHub repository7.

As future work, I am investigating the use of the proposed methodology for the creation and
formalization of user-friendly visual constraints to a SHACL [34] language. The aim is to enable
domain experts to visually create, constrain and validate ontology-based models.

References

[1] OMG, “Business Process Model and Notation (BPMN), Version 2.0.” Object Management Group OMG,
2011.

[2] U. Frank, “Domain-specific modeling languages: Requirements analysis and design guidelines,” in
Domain Engineering, I. . Reinhartz-Berger, A. . Sturm, T. . Clark, S. . Cohen, and J. Bettin, Eds. Berlin
Heidelberg: Springer , 2013, pp. 133–157.

[3] C. Natschläger, “Towards a BPMN 2.0 ontology,” in Lecture Notes in Business Information Processing,
Nov. 2011, pp. 1–15, doi: 10.1007/978-3-642-25160-3_1.

[4] K. Hinkelmann, E. Laurenzi, A. Martin, and B. Thönssen, “Ontology-Based Metamodeling,” in
Business Information Systems and Technology 4.0. Studies in Systems, Decision and Control,
Dornberger R., Ed. Springer, Cham, 2018, pp. 177–194.

[5] K. Hinkelmann, A. Gerber, D. Karagiannis, B. Thoenssen, A. van der Merwe, and R. Woitsch, “A new
paradigm for the continuous alignment of business and IT: Combining enterprise architecture
modelling and enterprise ontology,” Comput. Ind., vol. 79, pp. 77–86, 2016, doi:
10.1016/j.compind.2015.07.009.

[6] P. Haase, D. M. Herzig, A. Kozlov, A. Nikolov, and J. Trame, “Semantic Web 0 (0) 1 metaphactory: A
Platform for Knowledge Graph Management,” Semant. Web J., 2019, Accessed: Sep. 07, 2022.
[Online]. Available: http://www.knime.com.

[7] E. Laurenzi, K. Hinkelmann, S. Izzo, U. Reimer, and A. van der Merwe, “Towards an Agile and
Ontology-Aided Modeling Environment for DSML Adaptation,” in Advanced Information Systems
Engineering Workshops. CAiSE 2018. Lecture Notes in Business Information Processing, Jun. 2018, pp.
222–234, doi: 10.1007/978-3-319-92898-2_19.

[8] D. Karagiannis, “Conceptual Modelling Methods: The AMME Agile Engineering Approach,” in
Informatics in Economy, G. Silaghi, R. Buchmann, and C. Boja, Eds. Springer, Cham, 2018, pp. 3–19.

[9] U. Frank, “Domain-Specific Modeling Languages: Requirements Analysis and Design Guidelines,” in
Domain Engineering, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 133–157.

[10] D. Karagiannis, M. Lee, K. Hinkelmann, and W. Utz, Domain-Specific Conceptual Modeling. Springer

7https://github.com/manulaur/OntologyBasedModellingEnvironment-
WebService/blob/master/src/main/java/ch/fhnw/modeller/webservice/ModellingEnvironment.java

Figure 6: Semantic validation of SPARQL Rule 1 - modelling elements integration

International Publishing, 2022.
[11] R. T. Burlton, R. G. Ross, and J. A. Zachman, “The Business Agility Manifesto Building for Change,”

2017.
[12] OMG, “Meta Object Facility (MOF) Core Specification,” Object Management Group, 2016.
[13] N. Guarino, G. Guizzardi, and J. Mylopoulosc, “On the Philosophical Foundations of Conceptual

Models,” Front. Artif. Intell. Appl., vol. 321, pp. 1–15, Dec. 2020, doi: 10.3233/FAIA200002.
[14] G. Guizzardi and J. Mylopoulos, “Taking It to the Next Level: Nicola Guarino, Formal Ontology and

Conceptual Modeling,” Front. Artif. Intell. Appl., vol. 316, pp. 223–241, 2019, doi: 10.3233/978-1-
61499-955-3-223.

[15] L. M. L. Delcambre, S. W. Liddle, O. Pastor, and V. C. Storey, “Articulating Conceptual Modeling
Research Contributions,” in Advances in Conceptual Modeling. ER 2021. Lecture Notes in Computer
Science, vol. 13012, I. . Reinhartz-Berger and S. Sadiq, Eds. Cham: Springer, 2021, pp. 45–60.

[16] W3C, “RDF Schema 1.1.” https://www.w3.org/TR/rdf-schema/ (accessed Apr. 13, 2023).
[17] R. A. Buchmann and D. Karagiannis, “Enriching linked data with semantics from domain-specific

diagrammatic models,” Bus. Inf. Syst. Eng., vol. 58, no. 5, pp. 341–353, Oct. 2016, doi:
10.1007/S12599-016-0445-1/TABLES/1.

[18] M. Smajevic and D. Bork, “From Conceptual Models to Knowledge Graphs: A Generic Model
Transformation Platform,” in MoDELS’21: ACM/IEEE 24th International Conference on Model Driven
Engineering Languages and Systems (MODELS) – Tools & Demonstrations, 2021, pp. 610–614, doi:
10.1109/MODELS-C53483.2021.00093.

[19] S. Bachhofner, E. Kiesling, K. Revoredo, P. Waibel, and A. Polleres, “Automated Process Knowledge
Graph Construction from BPMN Models,” in Database and Expert Systems Applications. DEXA 2022.
Lecture Notes in Computer Science, 2022, vol. 13426 LNCS, pp. 32–47, doi: 10.1007/978-3-031-
12423-5_3/FIGURES/5.

[20] U. Reimer and E. Laurenzi, “Creating and maintaining a collaboration platform via domain-specific
reference modelling,” in EChallenges e-2014 Conference : 29-30 October 2014, Belfast, Ireland., 2014,
pp. 1–9.

[21] M. Dumas, M. La Rosa, J. Mendling, and H. Reijers, Fundamentals of Business Process Management,
2nd ed. Springer-Verlag Berlin Heidelberg, 2018.

[22] C. Parry, E. Mahoney, S. A. Chalmers, and E. A. Coleman, “Assessing the Quality of Transitional Care,”
Med. Care, vol. 46, no. 3, pp. 317–322, Mar. 2008, doi: 10.1097/MLR.0b013e3181589bdc.

[23] R. Lenz and M. Reichert, “IT support for healthcare processes – premises, challenges, perspectives,”
Data Knowl. Eng., vol. 61, no. 1, pp. 39–58, Apr. 2007, doi: 10.1016/j.datak.2006.04.007.

[24] E. Laurenzi, K. Hinkelmann, U. Reimer, A. Van Der Merwe, P. Sibold, and R. Endl, “DSML4PTM: A
Domain-Specific Modelling Language for Patient Transferal Management,” in ICEIS 2017 -
Proceedings of the 19th International Conference on Enterprise Information Systems, 2017, vol. 3, pp.
520–531, doi: 10.5220/0006388505200531.

[25] E. Laurenzi, “An Agile and Ontology-Aided Approach for Domain-Specific Adaptations of Modelling
Languages,” University of Pretoria, 2020.

[26] D. Harel and B. Rumpe, “Modeling Languages: Syntax, Semantics and All That Stuff, Part I: The Basic
Stuff,” Weizmann Science Press of Israel, 2000.

[27] D. Karagiannis and H. Kühn, “Metamodelling Platforms,” in In Proceedings of the 3rd International
Conference EC-Web 2002 -- Dexa 2002, Aix-en-Provence, France, 2002, LNCS 2455, 2002, p. 182.

[28] E. Laurenzi, K. Hinkelmann, and A. van der Merwe, “An Agile and Ontology-Aided Modeling
Environment,” in The Practice of Enterprise Modeling. PoEM 2018., Oct. 2018, pp. 221–237, doi:
10.1007/978-3-030-02302-7_14.

[29] M. Grüninger and M. S. Fox, “Methodology for the Design and Evaluation of Ontologies,” Ind. Eng.,
vol. 95, pp. 1–10, 1995.

[30] K. Hinkelmann, E. Laurenzi, A. Martin, D. Montecchiari, M. Spahic, and B. Thönssen, “ArchiMEO: A
Standardized Enterprise Ontology based on the ArchiMate Conceptual Model,” in Proceedings of the
8th International Conference on Model-Driven Engineering and Software Development, Mar. 2020, pp.
417–424.

[31] N. F. Noy and D. L. Mcguinness, “Ontology Development 101: A Guide to Creating Your First
Ontology,” Palo Alto, 2001.

[32] W3C, “SPARQL Update - A language for updating RDF graphs,” 2008.
[33] W3C, “SPARQL Query Language for RDF,” 2008. .
[34] W3C, “Shapes Constraint Language (SHACL),” 2017. .

	1. Introduction
	2. Background and related work
	3. Patient transferal management case
	4. Methodology for the Development of Semantic Rules
	4.1. Representation Language of the semantic rules

	5. Running Example for Semantic Rule 1 – Operator 1
	5.1. Semantic Rule 1: Modelling Elements Integration from different Modelling Languages

	6. Conclusion
	References

