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Abstract
Recently, the study of the unique characterisability and learnability of database queries by means of
examples has been extended to ontology-mediated queries. Here, we study in how far the obtained
results can be lifted to temporalised ontology-mediated queries. We provide a systematic introduction to
the relevant approaches in the non-temporal case and then show general transfer results pinpointing
under which conditions existing results can be lifted to temporalised queries.
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1. Introduction

Motivated by the challenge of constructing logical expressions from data examples, the unique
characterisability and learnability of queries, formulas, and concepts has been studied extensively
by the database, logic, and KR communities [1, 2, 3, 4, 5, 6]. Recently, significant progress has
been made for ontology-mediated queries, where one aims to characterise or learn a database
query under background knowledge, both in the passive sense (where sets of positive and
negative examples are given), see, e.g., [7], and in Dana Angluin’s sense of exact learning with
membership and/or equivalence queries [8], see, e.g., [9]. Also, rather general results have been
obtained about the characterisation and learnability of temporal queries, but so far without
ontologies [10]. Our aim here is to combine these two directions and study the temporalisation
of unique characterisability and learnability under description logic (DL) ontologies.

Let 𝒪 be an ontology and 𝒬 a class of conjunctive queries (CQs), which we assume for
simplicity to have a single answer variable. We say that a query 𝑞 ∈ 𝒬 fits a pair 𝐸 = (𝐸+, 𝐸−)
of finite sets 𝐸+ and 𝐸− of pointed data instances (𝒟, 𝑎) wrt 𝒪 if 𝒪,𝒟 |= 𝑞(𝑎) for all
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(𝒟, 𝑎) ∈ 𝐸+, and 𝒪,𝒟 ̸|= 𝑞(𝑎) for all (𝒟, 𝑎) ∈ 𝐸−. Then 𝐸 uniquely characterises 𝑞 wrt
𝒪 within 𝒬 if 𝑞 is the only (up to equivalence modulo 𝒪) query in 𝒬 that fits 𝐸 wrt 𝒪.
An ontology language ℒ admits (polysize) characterisations within 𝒬 if every 𝑞 ∈ 𝒬 has a
(polysize) characterisation wrt to any ℒ-ontology within 𝒬. Unique characterisations can be
used to illustrate, explain, and construct queries. They are also a ‘non-procedural’ necessary
condition for (polynomial) learnability using membership queries in Angluin’s framework of
exact learning, where membership queries to the oracle take the form ‘does 𝒪,𝒟 |= 𝑞(𝑎) hold?’
We focus our investigation on the class ELIQ of CQs that are equivalent to ℰℒℐ-concepts.

Examples, proofs, and further context can be found in the full version [11].

Non-temporal case. We begin by summarising the relevant results that will be used as a
black box in our investigation of temporalised queries. Let 𝒪 be an FO-ontology (typically in
some DL). Given queries 𝑞1, 𝑞2, we write 𝑞1 |=𝒪 𝑞2 and say that 𝑞1 is contained in 𝑞2 wrt
𝒪 if 𝒪,𝒟 |= 𝑞1(𝑎) implies 𝒪,𝒟 |= 𝑞2(𝑎), for any pointed data instance (𝒟, 𝑎). We utilise a
well-known reduction of containment to query entailment. An ontology 𝒪 admits containment
reduction if, for any CQ 𝑞(𝑥), there is a pointed data instance (�̂�, 𝑎) such that the following
conditions hold: 𝑞(𝑥) is satisfiable wrt 𝒪 iff 𝒪 and �̂� are satisfiable; there is a surjective
homomorphism ℎ : 𝑞 → �̂� with ℎ(𝑥) = 𝑎; and if 𝑞(𝑥) is satisfiable wrt 𝒪, then 𝑞 |=𝒪 𝑞′ iff
𝒪, �̂� |= 𝑞′(𝑎), for any CQ 𝑞′(𝑥). An ontology language ℒ admits containment reduction if every
ℒ-ontology does. For languages ℒ that admit containment reduction, a unique characterization
𝐸 of 𝑞 ∈ 𝒬 wrt 𝒪 is called a singular+characterisation if 𝐸+ = {�̂�}. It is easy to see that if
ℒ admits both (polysize) unique characterisations within 𝒬 and containment reduction, then
every 𝑞 ∈ 𝒬 has a (polysize) singular+characterisation. Containment reduction is a rather
general condition: FO without equality including DLs such as 𝒜ℒ𝒞ℋℐ and DL-Liteℋ [12]
(aka DL-Liteℋcore [13]) and also some DLs with limited counting such as DL-Liteℱ [12] (aka
DL-Liteℱcore [13]) admit containment reduction but 𝒜ℒ𝒞𝒬 does not.

The two main approaches to compute𝐸− and obtain singular+characterisations for languages
with containment reduction are based on frontiers and splittings (aka dualities) [6]. A frontier
of 𝑞 wrt 𝒪 within 𝒬 is any set ℱ𝑞 ⊆ 𝒬 such that (𝑎) 𝑞 |=𝒪 𝑞′ and 𝑞′ ̸|=𝒪 𝑞, for all 𝑞′ ∈ ℱ𝑞 ;
and (𝑏) if 𝑞 |=𝒪 𝑞′′ for 𝑞′′ ∈ 𝒬, then 𝑞′′ |=𝒪 𝑞 or there is 𝑞′ ∈ ℱ𝑞 with 𝑞′ |=𝒪 𝑞′′. An ontology
language ℒ admits (polysize) finite frontiers within 𝒬 if every 𝑞 ∈ 𝒬 has a (polysize) finite
frontier wrt to any ℒ-ontology within 𝒬.

Theorem 1. (𝑖) DL-Liteℋ and the fragment DL-Lite−ℱ of DL-Liteℱ , in which 𝑅− is not functional
for any 𝐵 ⊑ ∃𝑅, admit polysize frontiers within ELIQ [14]. (𝑖𝑖) DL-Liteℱ does not admit finite
frontiers within ELIQ [14]. (𝑖𝑖𝑖) ℰℒ does not admit finite frontiers within ELIQ.

The frontier of a query supplies the negative examples for a singular+unique characterisation.

Theorem 2. If ℒ admits both (polysize) frontiers within 𝒬 and containment reduction, then ℒ
admits (polysize) singular+characterisations within 𝒬, with 𝐸− = ℱ𝑞 , for any 𝑞 ∈ 𝒬.

The second path to singular+characterisations is via finite splittings, which only exist if a
finite signature 𝜎 of predicates is fixed. Let 𝒬 be a class of queries and 𝒬𝜎 its restriction to 𝜎,
𝑄 ⊆ 𝒬𝜎 finite, and 𝒪 a 𝜎-ontology. A set 𝒮(𝑄) of pointed 𝜎-data instances (𝒟, 𝑎) is called
a split-partner for 𝑄 wrt 𝒪 within 𝒬𝜎 if, for all 𝑞′ ∈ 𝒬𝜎 , we have 𝒪,𝒟 |= 𝑞′(𝑎) for some



(𝒟, 𝑎) ∈ 𝒮(𝑄) iff 𝑞′ ̸|=𝒪 𝑞 for all 𝑞 ∈ 𝑄. An ontology language ℒ has general split-partners
within 𝒬𝜎 if all finite sets of 𝒬𝜎-queries have split partners wrt any 𝜎-ontology in ℒ.

Theorem 3. (𝑖)𝒜ℒ𝒞ℋℐ has exponential-size general split-partners within 𝜎-ELIQ, (𝑖𝑖) even wrt
to the empty ontology, no polysize split-partners exist within 𝜎-ELIQ [10].

Thus, ℰℒ has finite general split-partners but no frontiers within ELIQ, and DL-Lite−ℱ has finite
frontiers but no finite general split-partners within ELIQ. This is in contrast to the ontology-free
case where frontiers and splittings are more closely linked [6].

Theorem 4. If ℒ admits (polysize) general split-partners within 𝒬𝜎 and containment reduction,
then ℒ admits (polysize) singular+characterisations within 𝒬, with 𝐸− = 𝒮({𝑞}), for any
𝑞 ∈ 𝒬𝜎 .

Temporalisation. A temporal data instance is a sequence 𝒜0, . . . ,𝒜𝑛 of domain data instances
𝒜𝑖 with 𝑖 regarded as a timestamp. To query temporal data, one can equip standard CQs with
the operators of linear temporal logic LTL as proposed in [15, 16, 17, 18]. Within this framework,
various query languages that admit (polysize) unique characterisations and learnability have
been identified in the case when no background ontology is present [10]. Here, we assume that
the temporal data is mediated by a standard (non-temporal) DL ontology whose axioms are
supposed to be true at all times. We consider a few families of temporal queries defined in [10]
that are built from domain queries in a given class 𝒬 (say, ELIQ or conjunctions of concept
names, denoted 𝒫) using ∧ and the temporal operators ○ (at the next moment), ♢ (some time
later), ♢𝑟 (now or later), and U (strict until): the family LTL○♢♢𝑟

𝑝 (𝒬) of path queries of the form
𝑞 = 𝑟0∧𝑜1(𝑟1∧𝑜2(𝑟2∧· · ·∧𝑜𝑛𝑟𝑛)), where 𝑜𝑖 ∈ {○,♢,♢𝑟} and 𝑟𝑖 ∈ 𝒬; the family LTLU𝑝 (𝒬𝜎)
of path queries 𝑞 = 𝑟0∧ (𝑙1U (𝑟1∧ (𝑙2U (. . . (𝑙𝑛U𝑟𝑛) . . . )))), where 𝑟𝑖 ∈ 𝒬𝜎 , 𝑙𝑖 ∈ 𝒬𝜎 ∪{⊥};
and its subfamily LTLU𝑝𝑝(𝒬𝜎) of peerless queries in which 𝑟𝑖 ̸|=𝒪 𝑙𝑖 and 𝑙𝑖 ̸|=𝒪 𝑟𝑖. The subfamily
LTL○♢

𝑝 (𝒬) restricts LTL○♢♢𝑟
𝑝 (𝒬) to the operators ○ and ♢; note that ♢𝑞 ≡ ○♢𝑟𝑞.

Temporal queries have a few essential differences from the domain ones. First, no example set
can distinguish ♢𝑟(𝐴∧𝐵) from ♢𝑟(𝐴∧ (♢𝑟𝐵∧♢𝑟(𝐴∧ . . . ))) with sufficiently many alternating
𝐴, 𝐵. A syntactic criterion (excluding proper conjunctions that do not have a ○-neighbour) of
unique characterisability of queries in LTL○♢♢𝑟

𝑝 (𝒫), called safety, was found in [10]. Second,
containment reduction does not work anymore since to characterise, say, ♢𝐴 two positive
examples are needed. By generalising safety in a natural way, we obtain our first transfer result:

Theorem 5. Let ℒ admit (polysize) singular+characterisations within 𝒬 and 𝒪 be a ℒ-ontology
that admits containment reduction. Then 𝑞 ∈ LTL○♢♢𝑟

𝑝 (𝒬) is (polysize) uniquely characterisable
wrt 𝒪 within LTL○♢♢𝑟

𝑝 (𝒬) iff 𝑞 is safe wrt 𝒪; all 𝑞 ∈ LTL○♢
𝑝 (𝒬) are (polysize) uniquely charac-

terisable wrt 𝒪. If 𝒪 admits polysize singular+characterisations within 𝒬, then LTL○♢♢𝑟
𝑝 (𝒬) is

polynomially characterisable wrt 𝒪 for bounded temporal depth.

As a consequence of the above results, we obtain, e.g., that every safe query in LTL○♢♢𝑟
𝑝 (ELIQ)

is polynomially characterisable wrt any DL-Liteℋ or DL-Lite−ℱ ontology and exponentially
characterisable wrt any 𝒜ℒ𝒞ℋℐ-ontology. Our second transfer result is as follows:

Theorem 6. Let ℒ have (exponential-size) general split-partners within 𝒬𝜎 and let 𝒪 be a 𝜎-
ontology in ℒ that admits containment reduction. Then every 𝑞 ∈ LTLU𝑝𝑝(𝒬𝜎) is (exponential-size)
uniquely characterisable within LTLU𝑝 (𝒬𝜎).



As a consequence, we obtain that every query in LTLU𝑝𝑝(𝒬𝜎), where 𝒬𝜎 is the class of 𝜎-ELIQs,
is exponentially uniquely characterisable within LTLU𝑝 (𝒬𝜎) wrt any 𝒜ℒ𝒞ℋℐ ontology.

Learning. We apply our results on characterisability to learnability of queries in
LTL○♢♢𝑟

𝑝 (ELIQ) wrt ontologies in Angluin’s framework of exact learning [8]. In the non-
temporal case, exact learning of queries has recently been studied [6, 9, 14, 19]. Given some
class 𝒬 of queries and an ontology 𝒪, the learner aims to identify a target query 𝑞𝑇 ∈ 𝒬 using
membership queries of the form ‘does 𝒪,𝒟 |= 𝑞(𝑎) hold?’ to the teacher. It is assumed that the
target query 𝑞𝑇 uses only symbols that occur in the ontology 𝒪. We call 𝒬 polynomial query
(polynomial-time) learnable wrt ℒ-ontologies using membership queries if there is a learning
algorithm that receives an ℒ-ontology 𝒪 and an example (𝒟, 𝑎) with 𝒪,𝒟 |= 𝑞𝑇 (𝑎) with 𝒟
satisfiable under 𝒪, and constructs 𝑞𝑇 (up to equivalence wrt 𝒪) using polynomially many
queries of polynomial size (in time polynomial) in the size of 𝑞𝑇 ,𝒪,𝒟.

As we always construct example sets effectively, our unique (exponential) characterisability
results imply (exponential-time) learnability with membership queries. Obtaining polynomial-
time learnability from polynomial characterisations is more challenging and, in fact, not always
possible. We concentrate on ontologies formulated in fragments ℒ of the DL ℰℒℋℐℱ which
are in normal form [20], but conjecture that our results continue to hold in general. ℒ admits
polytime instance checking if 𝒪,𝒟 |= 𝐴(𝑎), for a concept name 𝐴, can be decided in polynomial
time. Meet-reducibility is in polytime if it can be checked in polytime whether an ELIQ is
equivalent to a proper conjunction of ELIQs wrt to an ℒ-ontology. The following is shown by
lifting the techniques for the non-temporal case developed in [19, 14] to the temporal case:

Theorem 7. Let ℒ be an ontology language that contains only ℰℒℋℐℱ-ontologies in normal
form and that admits polysize frontiers within ELIQ that can be computed. Then:

(𝑖) The class of safe queries in LTL○♢♢𝑟
𝑝 (ELIQ) is polynomial query learnable wrt ℒ-ontologies

using membership queries.

(𝑖𝑖) The class LTL○♢♢𝑟
𝑝 (ELIQ) is polynomial query learnable wrt ℒ-ontologies using membership

queries if the learner knows the temporal depth of the target query in advance.

(𝑖𝑖𝑖) LTL○♢
𝑝 (ELIQ) is polynomial query learnable wrt ℒ-ontologies using membership queries.

If ℒ further admits polynomial-time instance checking and polynomial-time computable frontiers
within ELIQ, then in (𝑖𝑖) and (𝑖𝑖𝑖), polynomial query learnability can be replaced by polynomial-
time learnability. If, in addition, meet-reducibility wrt ℒ-ontologies is in polynomial time, then
also in (𝑖) polynomial query learnability can be replaced by polynomial-time learnability.

Theorem 7 fully applies to DL-Lite−ℱ as it enjoys all properties mentioned, while DL-Liteℋ
enjoys all properties mentioned except that meet-reducibility can be checked in poly-time. Most
importantly, DL-Lite−ℱ and DL-Liteℋ admit polynomial time computable frontiers [14].

Outlook. Many interesting and challenging problems remain to be addressed. For instance, is
it possible to overcome some of our negative results for unique characterisability by admitting
some form of infinite (but finitely presentable) examples? Some results in this direction without
ontologies are obtained in [21].
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