
Efficient Computation of General Modules for
𝒜ℒ𝒞 Ontologies (Extended Abstract)
Hui Yang

1
, Patrick Koopmann

2
, Yue Ma

1
, Nicole Bidoit

1

1LISN, CNRS, Université Paris-Saclay, Rue Raimond Castaing bâtiment 650, 91190 Gif-sur-Yvette, French
2Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Keywords
Ontologies, General Module, Deductive Module, Uniform Interpolation

We present a method for extracting general modules for ontologies formulated in the de-

scription logic 𝒜ℒ𝒞. Given an ontology 𝒪 and a signature Σ of concept and role names, a

general module is an ideally substantially smaller ontology that preserves all 𝒜ℒ𝒞 axioms that

are entailed by 𝒪 and can be expressed using only the names in Σ. As such, it has applications

such as ontology reuse and ontology analysis. In particular, if we want to reuse only a part

of an ontology in a new application, rather than using the entire ontology, we may first want

to extract a general module for the set of terms that are actually relevant for the application.

General modules may also serve as a restricted view of the ontology, focused on a small set of

terms of interest, which may make hidden relations between the terms visible. While classical
modules have the additional requirement that they are a subset of the original ontology, general

modules can also reformulate axioms from the input ontology, which can lead to smaller results

that are more focused on the provided signature, and thus potentially better suited for the

aforementioned applications. Another special case of general modules are uniform interpolants,
which are general modules that are complete formulated using only names from the provided

ontology. We believe that for application such as ontology reuse, this requirement is in fact

too strict and can even be counter-productive. However, so far, general modules have only

been investigated for lightweight description logics [1, 2]. Our main contributions are: 1) we

present the first method dedicated to computing general modules in 𝒜ℒ𝒞, 2) we provide a

formal analysis of some properties of the general modules we compute, 3) based on our methods,

we also obtain new methods for computing classical modules and uniform interpolants, and

4) using an evaluation on real-world ontologies we demonstrate the efficiency of our technique.

This work has been accepted by IJCAI 2023. For detailed results and proofs, please refer to the

extended version of the paper [3].

The main steps of our approach are shown in Figure 1. Essentially, our method works by

performing uniform interpolation on a normalized version of the input ontology, inspired

by the uniform interpolation method presented in [4]. Our normalization introduces fresh

concept names, called definers, which are eliminated in the final step. However, different

from [4], we put fewer constraints on the normal form and do not allow the introduction of

DL 2023: 36th International Workshop on Description Logics, September 2–4, 2023, Rhodes, Greece
$ yang@lisn.fr (H. Yang); p.k.koopmann@vu.nl (P. Koopmann); ma@lisn.fr (Y. Ma); nicole.bidoit@lisn.fr

(N. Bidoit)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:yang@lisn.fr
mailto:p.k.koopmann@vu.nl
mailto:ma@lisn.fr
mailto:nicole.bidoit@lisn.fr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Ontology 𝒪
Signature Σ

Ontology

Normal-

ization

Role

Isolation

RIΣ

Role

Forgetting

rolEΣ

Concept

Forgetting

conEΣ

Definer

Substitution/

Forgetting

Uniform Interpolant

Deductive Module: dmΣ

General Module: gmΣ, gm
*
Σ

Figure 1: Overview of our unified method for computing general modules, deductive modules, and

uniform interpolants

definers after normalization. As a result, our definer elimination step may reintroduce names

eliminated during uniform interpolation. This is not a problem, since our aim is not to compute

uniform interpolants of the input ontology. In contrast, eliminating definers as done in [4] can

cause an exponential blowup, and introduce concepts with the non-standard greatest fixpoint
constructor [5]. In the following, we give a short overview of our method.

Ontology Normalization An ontology 𝒪 is in normal form if every axiom is of the following

form:

⊤ ⊑ 𝐿1 ⊔ . . . ⊔ 𝐿𝑛 𝐿𝑖 ::= 𝐴 | ¬𝐴 | Q𝑟.𝐴, Q ∈ {∀,∃}.

For simplicity, we omit the “⊤ ⊑” on the left-hand side of normalized axioms. As an example,

the axiom 𝐴2 ⊑ 𝐴3 ⊔ ∀𝑠.𝐵3 is equivalent to ¬𝐴2 ⊔𝐴3 ⊔ ∀𝑠.𝐵3 in normal form.

As the first step, we normalize the input ontology 𝒪 using standard transformations. In

particular, we replace every concept 𝐶 occurring under role restrictions by a so-called definer
name 𝐷. For each definer 𝐷, we remember the concept 𝐶𝐷 that was replaced by it.

Role Forgetting Next, we apply role forgetting to eliminate role names outside the given

signature Σ. Existing methods to compute role forgetting either rely on an external reasoner

[6, 4] or introduce the universal role ∇ [7, 8]. The former approach can be expensive, while the

latter produces axioms outside of 𝒜ℒ𝒞. Our normal form allows us to implement a more efficient

solution within 𝒜ℒ𝒞, which relies on an integrated reasoning procedure and an additional

transformation step that produces so-called role isolated ontologies RIΣ(𝒪). For role isolated

ontologies, role forgetting is straightforward by the following result.

Theorem 1. Let rolEΣ(𝒪) be the ontology obtained as follows:

1. apply the r-Rule in Figure 2 exhaustively for each 𝑟 ∈ sigR(𝒪) ∖ Σ,

2. remove all axioms containing some 𝑟 ∈ sigR(𝒪) ∖ Σ.

If 𝒪 is role isolated for Σ, then rolEΣ(𝒪) is a role-forgetting for 𝒪 and Σ.

Concept Forgetting Inspired by [7, Theorem 1], we define a concept forgetting operator

conEΣ using A-Rule in Figure 2 in a similar way as defining rolEΣ. Applying the aforemen-

tioned procedure yields conEΣ(rolEΣ(RIΣ(𝒪))), which contains only of names in the signature

Σ or definers.



r-Rule :
𝐶1 ⊔ ∃𝑟.𝐷1,

⋃︀𝑛
𝑗=2{𝐶𝑗 ⊔ ∀𝑟.𝐷𝑗}, 𝐾𝐷

𝐶1 ⊔ . . . ⊔ 𝐶𝑛
, 𝐾𝐷 = ⊔1≤𝑖≤𝑛¬𝐷𝑖 or ⊔2≤𝑖≤𝑛 ¬𝐷𝑖

A-Rule :
𝐶1 ⊔𝐴1 ¬𝐴1 ⊔ 𝐶2

𝐶1 ⊔ 𝐶2

Figure 2: Inference rules used by our method.

Constructing the General Module To obtain our general modules gmΣ(𝒪) for 𝒪 and Σ,

we eliminate the introduced definers 𝐷 from conEΣ(rolEΣ(RIΣ(𝒪))). For this, we replace

each definer 𝐷 by 𝐶𝐷 , the concept replaced by 𝐷 in the normalization step.

Eliminating definers in this way may reintroduce previously forgotten names, which is why

our general modules are in general not uniform interpolants. This way, we avoid the triple

exponential blow-up caused by uniform interpolation in the worst case [9]. However, a single

exponential blow-up in the size of the input is still possible.

Proposition 1. For any ontology 𝒪 and signature Σ, we have ‖gmΣ(𝒪)‖ ≤ 2𝑂(‖cl(𝒪)‖). On the
other hand, there exists a family of ontologies 𝒪𝑛 and signatures Σ𝑛 s.t. ‖𝒪𝑛‖ is polynomial in
𝑛 ≥ 1 and ‖gmΣ𝑛

(𝒪𝑛)‖ = 𝑛 · 2𝑂(‖cl(𝒪𝑛)‖).

Optimized General Modules To obtain smaller general modules, we eliminate some definers

before substituting them, using an operation inspired by [10]. The resulting optimized general
modules are denoted by gm*

Σ(𝒪).

Deductive Modules and Uniform Interpolants Our method can also be used to compute

classical modules, which we do by tracing the inferences performed when computing the general

module gm*
Σ(𝒪). For applications that instead require uniform interpolants, such as logical

difference [11], we change the definer elimination step, and eliminate definers using an existing

uniform interpolation tool such as Lethe or Fame [4, 12].

Evaluation We evaluated our methods on 222 ontologies from the OWL Reasoner Evaluation

(ORE) 2015 classification track [13], from which we removed axioms not expressible in 𝒜ℒ𝒞.

For each ontology, we randomly generated 50 signatures consisting of 100 concept and role

names as in [8].

We implemented a prototype called GeMo
1

in Python 3.7.4. For each request (𝒪,Σ), GeMo

produced two types of general modules (gm and the optimized gm*), a classical module (dm), as

well as a uniform interpolant (gmLethe). To show that our general modules can serve as a better

alternative for ontology reuse and analysis, we compared them with the state-of-the-art tools

implementing module extraction and uniform interpolation for 𝒜ℒ𝒞: (i) ⊤⊥*-modules [14] as

implemented in the OWL API [15]; (ii) minM [8] that computes minimal deductive modules under

1

The prototype can be downloaded at https://hub.docker.com/r/yh1997/demo_gemo

https://hub.docker.com/r/yh1997/demo_gemo


Table 1
Success rates. The first (resp. second) best results is highlighted in red (resp. blue).

⊤⊥*
-module minM Lethe Fame GeMo gmLethe

100% 84.34% 85.27% 91.25% 97.34% 96.17%

Table 2
Comparison of different methods (max. / avg. / med.).

Methods Resulting ontology length Time cost

minM 2,355 / 392.59 / 264 595.88 / 51.82 / 8.86

⊤⊥*
-module 4,008 / 510.77 / 364 5.94 / 1.03 / 0.90

Fame 9,446,325 / 6,661.01 / 271 526.28 / 3.20 / 1.17

Lethe 131,886 / 609.30 / 196 598.20 / 49.21 / 13.57

GeMo

gm 179,999 / 2,335.05 / 195

17.50 / 2.44 / 1.63gm* 21,891 / 466.15 / 166

dm 2,789 / 366.36 / 249

gmLethe 21,891 / 364.10 /162 513.15 / 3.08 / 1.68

𝒜ℒ𝒞ℋ∇
-semantics; (iii) Lethe 0.6

2
[4] and Fame 1.0

3
[12] that compute uniform interpolants.

Some of results are shown below.

• Success rate: We say a method succeeds on a request if it outputs the expected results

within 600s. Table 1 summarizes the success rate for the methods considered. After the

⊤⊥*
-modules, GeMo had the highest success rate.

• Resulting ontology length and run time: We used ontology length, which is the sum of the

sizes of the axioms in the ontology, as metric. Table 2 shows the length and run time for

the requests on which all methods were successful (78.45% of all requests). We observe

that our optimization gm* was effective, and lead to almost the best length in median, only

being improved by gmLethe, which however had longer run times. While our modules

were generally smaller than what was computed by the state-of-the-art, run-times could

almost compete with that of ⊤⊥*
-module-modules.

Conclusion The experiments validate the efficiency of our proposal and the quality of the

computed general modules. In the future, we want to optimize the concept elimination step to

obtain more concise general modules. Also, we would like to investigate how to generalize our

ideas to more expressive description logics.

2

https://lat.inf.tu-dresden.de/~koopmann/LETHE/

3

http://www.cs.man.ac.uk/~schmidt/sf-fame/

https://lat.inf.tu-dresden.de/~koopmann/LETHE/
http://www.cs.man.ac.uk/~schmidt/sf-fame/


References

[1] N. Nikitina, B. Glimm, Hitting the sweetspot: Economic rewriting of knowledge bases,

in: P. Cudré-Mauroux, J. Heflin, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J. X.

Parreira, J. Hendler, G. Schreiber, A. Bernstein, E. Blomqvist (Eds.), The Semantic Web -

ISWC 2012 - 11th International Semantic Web Conference, Proceedings, Part I, volume

7649 of Lecture Notes in Computer Science, Springer, 2012, pp. 394–409. URL: https://doi.

org/10.1007/978-3-642-35176-1_25. doi:10.1007/978-3-642-35176-1\_25.

[2] G. Alghamdi, R. A. Schmidt, W. Del-Pinto, Y. Gao, Upwardly abstracted definition-based

subontologies, in: A. L. Gentile, R. Gonçalves (Eds.), K-CAP ’21: Knowledge Capture

Conference, ACM, 2021, pp. 209–216. URL: https://doi.org/10.1145/3460210.3493564. doi:10.
1145/3460210.3493564.

[3] H. Yang, P. Koopmann, Y. Ma, N. Bidoit, Efficient computation of general modules for

𝒜ℒ𝒞 ontologies (extended version), 2023. arXiv:2305.09503, https://arxiv.org/abs/2305.

09503.

[4] P. Koopmann, LETHE: Forgetting and uniform interpolation for expressive description

logics, KI—Künstliche Intelligenz 34 (2020) 381–387.

[5] D. Calvanese, G. De Giacomo, Expressive description logics, in: The description logic

handbook: theory, implementation, and applications, 2003, pp. 178–218.

[6] Y. Zhao, G. Alghamdi, R. A. Schmidt, H. Feng, G. Stoilos, D. Juric, M. Khodadadi, Track-

ing logical difference in large-scale ontologies: A forgetting-based approach, in: The

Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, AAAI Press, 2019,

pp. 3116–3124. URL: https://doi.org/10.1609/aaai.v33i01.33013116. doi:10.1609/aaai.
v33i01.33013116.

[7] Y. Zhao, R. A. Schmidt, Role forgetting for 𝒜ℒ𝒞𝒪𝒬ℋ(∇)-ontologies using an Ackermann-

based approach, in: C. Sierra (Ed.), Proceedings of the Twenty-Sixth International Joint

Conference on Artificial Intelligence, IJCAI 2017, ijcai.org, 2017, pp. 1354–1361. URL:

https://doi.org/10.24963/ijcai.2017/188. doi:10.24963/ijcai.2017/188.

[8] P. Koopmann, J. Chen, Deductive module extraction for expressive description logics,

in: C. Bessiere (Ed.), Proceedings of the Twenty-Ninth International Joint Conference on

Artificial Intelligence, 2020, pp. 1636–1643. URL: https://doi.org/10.24963/ijcai.2020/227.

doi:10.24963/ijcai.2020/227.

[9] C. Lutz, F. Wolter, Foundations for uniform interpolation and forgetting in expressive

description logics, in: T. Walsh (Ed.), IJCAI 2011, Proceedings of the 22nd International

Joint Conference on Artificial Intelligence, IJCAI/AAAI, 2011, pp. 989–995. URL: https:

//doi.org/10.5591/978-1-57735-516-8/IJCAI11-170. doi:10.5591/978-1-57735-516-8/
IJCAI11-170.

[10] M. Sakr, R. A. Schmidt, Fine-grained forgetting for the description logic 𝒜ℒ𝒞, in: O. Arieli,

M. Homola, J. C. Jung, M. Mugnier (Eds.), Proceedings of the 35th International Workshop

on Description Logics (DL 2022), volume 3263 of CEUR Workshop Proceedings, CEUR-

WS.org, 2022. URL: http://ceur-ws.org/Vol-3263/paper-17.pdf.

[11] M. Ludwig, B. Konev, Practical uniform interpolation and forgetting for 𝒜ℒ𝒞 tboxes with

applications to logical difference, in: C. Baral, G. D. Giacomo, T. Eiter (Eds.), Principles of

Knowledge Representation and Reasoning: Proceedings of the Fourteenth International

https://doi.org/10.1007/978-3-642-35176-1_25
https://doi.org/10.1007/978-3-642-35176-1_25
http://dx.doi.org/10.1007/978-3-642-35176-1_25
https://doi.org/10.1145/3460210.3493564
http://dx.doi.org/10.1145/3460210.3493564
http://dx.doi.org/10.1145/3460210.3493564
http://arxiv.org/abs/2305.09503
https://arxiv.org/abs/2305.09503
https://arxiv.org/abs/2305.09503
https://doi.org/10.1609/aaai.v33i01.33013116
http://dx.doi.org/10.1609/aaai.v33i01.33013116
http://dx.doi.org/10.1609/aaai.v33i01.33013116
https://doi.org/10.24963/ijcai.2017/188
http://dx.doi.org/10.24963/ijcai.2017/188
https://doi.org/10.24963/ijcai.2020/227
http://dx.doi.org/10.24963/ijcai.2020/227
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-170
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-170
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-170
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-170
http://ceur-ws.org/Vol-3263/paper-17.pdf


Conference, KR 2014, AAAI Press, 2014. URL: http://www.aaai.org/ocs/index.php/KR/

KR14/paper/view/7985.

[12] Y. Zhao, R. A. Schmidt, FAME: an automated tool for semantic forgetting in expressive

description logics, in: International Joint Conference on Automated Reasoning, Springer,

2018, pp. 19–27.

[13] B. Parsia, N. Matentzoglu, R. S. Gonçalves, B. Glimm, A. Steigmiller, The OWL reasoner

evaluation (ORE) 2015 competition report, J. Autom. Reason. 59 (2017) 455–482. URL:

https://doi.org/10.1007/s10817-017-9406-8. doi:10.1007/s10817-017-9406-8.

[14] B. C. Grau, I. Horrocks, Y. Kazakov, U. Sattler, Modular reuse of ontologies: Theory and

practice, Journal of Artificial Intelligence Research 31 (2008) 273–318.

[15] M. Horridge, S. Bechhofer, The OWL API: a java API for OWL ontologies, Semantic Web 2

(2011) 11–21. URL: https://doi.org/10.3233/SW-2011-0025. doi:10.3233/SW-2011-0025.

http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7985
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7985
https://doi.org/10.1007/s10817-017-9406-8
http://dx.doi.org/10.1007/s10817-017-9406-8
https://doi.org/10.3233/SW-2011-0025
http://dx.doi.org/10.3233/SW-2011-0025

