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Abstract
Definite descriptions, along with individual names, have been recently introduced in the context of
description logic languages, enriching the expressivity of standard nominal constructors. Moreover,
in the first-order modal logic literature, definite descriptions have been widely investigated for their
non-rigid behaviour, which allows them to denote different objects at different states. In this direction,
we introduce epistemic and temporal extensions of standard description logics, with nominals and the
universal role, additionally equipped with definite descriptions constructors. In the absence of the rigid
designator assumption, we show that the satisfiability problem for epistemic free description logics is
NExpTime-complete, while satisfiability for temporal free description logics over linear time structures
is undecidable.
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1. Introduction

Definite descriptions, like ‘the smallest planet in the Solar System’, are expressions having form
‘the 𝑥 such that 𝜙’. Together with individual names, such as ‘Mercury’, they are used as referring

expressions to identify objects in a given domain [1, 2, 3]. Definite description and individual
names can also fail to denote any object at all, as in the cases of the definite description ‘the
planet between Mercury and the Sun’ or the individual name ‘Vulcan’. Formal accounts that
address these aspects and still admit definite descriptions as genuine terms of the language,
on a par with individual names, are usually based on so-called free logics [4, 5, 6, 7]. These are
in contrast with classical logic approaches, in which individual names are assumed to always
designate, and where definite descriptions are paraphrased in terms of sentences expressing
existence and uniqueness conditions (an approach dating back to Russell [8]). Recently, definite
descriptions have been introduced into description logic (DL) formalisms [9, 10, 11] as well.

In modal settings, such as temporal or epistemic, referring expressions can also behave as
non-rigid designators, meaning that they can denote different individuals across different states
(epistemic alternatives, instants of time, etc.). For this reason, non-rigid descriptions and names
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have been widely investigated in first-order modal and temporal logics [12, 13, 14, 15, 16, 17, 18,
19]. However, with the exception of [20], non-rigid designators have received little attention in
modal DLs, despite the interest in temporal [21, 22, 23] and epistemic [24, 25, 26] extensions.

In this paper, we extend the free DLs proposed for the non-modal case in [10, 11], by: (i) adding
epistemic modalities, such as 2 (box, read as ‘it is known that’), or temporal ones, like 𝒰 (until);
(ii) introducing nominals built from definite descriptions of the form 𝜄𝐶 (read as ‘the object that is
𝐶’), where 𝐶 is a concept, alongside the standard ones based on individual names; (iii) dropping
the rigid designator assumption, hence allowing terms to behave as flexible individual concepts
across states. We study the complexity of formula satisfiability, showing that, without the rigid
designator assumption, this problem for epistemic free DLs is NExpTime-complete (same as the
logic S5×S5 [27]), whereas it becomes undecidable for temporal free DLs interpreted on linear
time structures (while it is decidable without definite descriptions and with the RDA [27]).

Proof details and examples are provided in an extended version of this article [28].

2. Epistemic and Temporal Free Description Logics

The DL S5𝒜ℒ𝒞𝒪𝜄
𝑢

is a modalised extension of the free DL 𝒜ℒ𝒞𝒪𝜄
𝑢 [10, 11]. Let NC, NR and NI

be countably infinite and pairwise disjoint sets of concept names, role names, and individual

names, respectively. The S5𝒜ℒ𝒞𝒪𝜄
𝑢

concepts and formulas are defined as:

𝐶 ::= 𝐴 | {𝜏} | ¬𝐶 | 𝐶 ⊓ 𝐶 | ∃𝑟.𝐶 | ∃𝑢.𝐶 | ◇𝐶, 𝜙 ::= (𝛼) | ¬𝜙 | 𝜙 ∧ 𝜙 | ◇𝜙,

where 𝜏 ::= 𝑎 | 𝜄𝐶 is an S5𝒜ℒ𝒞𝒪𝜄
𝑢

term, 𝑎 ∈ NI, 𝐴 ∈ NC, 𝑟 ∈ NR, 𝑢 is the universal role and
𝛼 is an S5𝒜ℒ𝒞𝒪𝜄

𝑢
axiom, denoting either a concept inclusion (CI ) of the form 𝐶 ⊑ 𝐷, or an

S5𝒜ℒ𝒞𝒪𝜄
𝑢

assertion of the form 𝐶(𝜏) or 𝑟(𝜏1, 𝜏2), where 𝐶,𝐷 are concepts, 𝑟 ∈ NR, and 𝜏, 𝜏1, 𝜏2
are terms. A term of the form 𝜄𝐶 is called a definite description, and a concept {𝜏} is a (term)

nominal. All the usual syntactic abbreviations are assumed, such as those for the box operator,
2𝐶 = ¬◇¬𝐶 , and for the reflexive versions, ◇+𝐶 = 𝐶 ⊔◇𝐶 and 2+𝐶 = 𝐶 ⊓2𝐶 .

Given an epistemic frame F = (𝑊,∼), with𝑊 being a non-empty set of worlds (or states) and
∼ ⊆𝑊 ×𝑊 being an equivalence relation on 𝑊 , a partial epistemic interpretation based on F
is a triple M = (F,∆, ℐ), where: F is the frame of M; ∆ is a non-empty set, called the domain

of M (we adopt the so-called constant domain assumption [27]); and ℐ is a function associating
with every 𝑤 ∈𝑊 a partial interpretation ℐ𝑤 = (∆, ·ℐ𝑤) that maps every 𝐴 ∈ NC to a subset
of ∆, every 𝑟 ∈ NR to a subset of ∆×∆, the universal role 𝑢 to the set ∆×∆ itself, and every
𝑎 in a subset of NI to an element in ∆. In other words, every ·ℐ𝑤 is a total function on NC ∪ NR

and a partial function on NI. We say that M = (F,∆, ℐ) is a total epistemic interpretation if
every ℐ𝑤, with 𝑤 ∈𝑊 , is a total interpretation, meaning that ·ℐ𝑤 is defined as above, except
that it maps every 𝑎 ∈ NI to an element of ∆.

Given M = (F,∆, ℐ), with F = (𝑊,∼), we say that M satisfies the rigid designator assump-

tion (RDA) if, for every individual name 𝑎 ∈ NI and every 𝑤, 𝑣 ∈𝑊 , the following condition
holds: if 𝑎ℐ𝑤 is defined, then 𝑎ℐ𝑤 = 𝑎ℐ𝑣 , i.e., 𝑎 is a rigid designator. An individual name 𝑎 ∈ NI

is said to denote in ℐ𝑤 if 𝑎ℐ𝑤 is defined, and we say that it denotes in M if 𝑎 denotes in ℐ𝑤, for
some 𝑤 ∈𝑊 . Moreover, 𝑎 is called a ghost in M if, for every 𝑤 ∈𝑊 , 𝑎 does not denote in ℐ𝑤.
Dropping the RDA is the most general assumption, since rigid designators can be enforced by the



CI, ◇+{𝑎} ⊑ 2+{𝑎}. Also, partial interpretations generalise the classical ones: an individual
can be forced to denote at some state (i.e., not being a ghost) with the CI, ⊤ ⊑ ◇+∃𝑢.{𝑎}, and
at all states by the formula, 2+(⊤ ⊑ ∃𝑢.{𝑎}). Note that a ghost individual is vacuously rigid.

Given M = (F,∆, ℐ), with F = (𝑊,∼), and a world 𝑤 ∈𝑊 , we define the value 𝜏ℐ𝑤 of a
term 𝜏 in 𝑤 as 𝑎ℐ𝑤 , if 𝜏 = 𝑎, and as follows, for 𝜏 = 𝜄𝐶: (𝜄𝐶)ℐ𝑤 = 𝑑, if 𝐶ℐ𝑤 = {𝑑}, for some
𝑑 ∈ ∆; and undefined, otherwise. As for the extension of a concept 𝐶 in 𝑤, 𝐶ℐ𝑤 is as usual with
the following additions:

(◇𝐶)ℐ𝑤 = {𝑑 ∈ ∆ | ∃𝑣 ∈𝑊,𝑤 ∼ 𝑣 : 𝑑 ∈ 𝐶ℐ𝑣}, {𝜏}ℐ𝑤 =

{︃
{𝜏ℐ𝑤}, if 𝜏 denotes in ℐ𝑤,
∅, otherwise,

where a term 𝜏 is said to denote in ℐ𝑤 if 𝜏ℐ𝑤 is defined. A concept 𝐶 is satisfied at 𝑤 of M if
𝐶ℐ𝑤 ̸= ∅. An S5𝒜ℒ𝒞𝒪𝜄

𝑢
formula 𝜙 is satisfied at 𝑤 of M, written M, 𝑤 |= 𝜙, when:

M, 𝑤 |= 𝐶(𝜏) iff 𝜏 denotes in ℐ𝑤 and 𝜏ℐ𝑤 ∈ 𝐶ℐ𝑤 ,

M, 𝑤 |= 𝑟(𝜏1, 𝜏2) iff 𝜏1, 𝜏2 denotes in ℐ𝑤 and (𝜏ℐ𝑤1 , 𝜏ℐ𝑤2 ) ∈ 𝑟ℐ𝑤 ,

M, 𝑤 |= 𝐶 ⊑ 𝐷 iff 𝐶ℐ𝑤 ⊆ 𝐷ℐ𝑤 , M, 𝑤 |= ◇𝜓 iff ∃𝑣 ∈𝑊,𝑤 ∼ 𝑣 : M, 𝑣 |= 𝜓,

together with the usual interpretation of Boolean operators. An S5𝒜ℒ𝒞𝒪𝜄
𝑢

formula 𝜙 is satisfied

in M if there exists a world 𝑤 in M such that M, 𝑤 |= 𝜙, and it is partial (total) satisfiable if
there is a partial (total) modal interpretation M such that 𝜙 is satisfied in M.

For the temporal DL LTL𝒜ℒ𝒞𝒪𝜄
𝑢

, we build LTL𝒜ℒ𝒞𝒪𝜄
𝑢

terms, concepts, and formulas similarly
to the S5𝒜ℒ𝒞𝒪𝜄

𝑢
case, by using the temporal operator until, 𝒰 , for the construction of concepts,

𝐶 𝒰 𝐷, and formulas, 𝜙 𝒰 𝜓. LTL𝒜ℒ𝒞𝒪𝑢 is obtained by disallowing descriptions. The flow of

time is F = (N, <), where N is the set of natural number and < is the linear order on N. A
partial temporal interpretation, or partial trace, based on F, is a triple M = (F,∆, ℐ), defined
as in the epistemic case. We similarly define the notion of total trace. Given a partial trace
M = (F,∆, ℐ), with F = (N, <) and 𝑡 ∈ N (that we call an instant of M), the value of an
LTL𝒜ℒ𝒞𝒪𝜄

𝑢
term 𝜏 at 𝑡, the extension of an LTL𝒜ℒ𝒞𝒪𝜄

𝑢
concept 𝐶 at 𝑡, the satisfaction of a

LTL𝒜ℒ𝒞𝒪𝜄
𝑢

formula 𝜙 at 𝑡, are defined as for the modal case, by replacing the semantics of the
◇ modal operator with the following one for the 𝒰 temporal operator:

(𝐶 𝒰 𝐷)ℐ𝑡 = {𝑑 ∈ ∆ | there is 𝑢 ∈ 𝑇, 𝑡 < 𝑢 : 𝑑 ∈ 𝐷ℐ𝑢 and, for all 𝑣 ∈ (𝑡, 𝑢), 𝑑 ∈ 𝐶ℐ𝑣},
M, 𝑡 |= 𝜙 𝒰 𝜓 iff there is 𝑢 ∈ 𝑇, 𝑡 < 𝑢 : M, 𝑢 |= 𝜓 and, for all 𝑣 ∈ (𝑡, 𝑢), M, 𝑣 |= 𝜙.

An LTL𝒜ℒ𝒞𝒪𝜄
𝑢

formula 𝜙 (respectively, a concept 𝐶) is (partial or total) satisfiable, respectively,
if 𝜙 (respectively, 𝐶) is satisfied at instant 0 in some (partial or total) trace M, respectively.

Assertions are syntactic sugar, since 𝐶(𝜏) and 𝑟(𝜏1, 𝜏2) are captured by the following CIs,
respectively: ⊤ ⊑ ∃𝑢.{𝜏}, {𝜏} ⊑ 𝐶 ; and ⊤ ⊑ ∃𝑢.{𝜏1}, {𝜏1} ⊑ ∃𝑟.{𝜏2}. To avoid ambiguities,
we use parentheses when applying Boolean or modal operators to assertions. Thus, for instance,
the formulas ¬(𝐶(𝜏)) and ◇(𝐶(𝜏)) abbreviate, respectively, ¬(⊤ ⊑ ∃𝑢.{𝜏} ∧ {𝜏} ⊑ 𝐶) and
◇(⊤ ⊑ ∃𝑢.{𝜏} ∧ {𝜏} ⊑ 𝐶), whereas the assertions ¬𝐶(𝜏) and ◇𝐶(𝜏) stand, respectively,
for ⊤ ⊑ ∃𝑢.{𝜏} ∧ {𝜏} ⊑ ¬𝐶 and ⊤ ⊑ ∃𝑢.{𝜏} ∧ {𝜏} ⊑ ◇𝐶 . Finally, as already observed
for 𝒜ℒ𝒞𝒪𝜄

𝑢 [11], we point out that formulas are just syntactic sugar in ℳℒ𝒜ℒ𝒞𝒪𝜄
𝑢
, since a CI

𝐶 ⊑ 𝐷 can be internalised [29, 30] as a concept of the form ∀𝑢.(𝐶 ⇒ 𝐷).



We also remark on a counter-intuitive behaviour without the RDA assumption. Let us consider
the following formula: ({𝑎} ⊑ 2𝐶) ∧◇({𝑎} ⊑ ¬𝐶). This formula, while unsatisfiable if the
RDA is assumed, is satisfiable without the RDA, since it is satisfied in an epistemic or temporal
interpretation that interprets the individual name 𝑎 differently in different states.

On S5𝒜ℒ𝒞𝒪𝜄
𝑢

satisfiability, we show the following, by adapting a quasimodel technique [27]
to cover the case of possibly uninterpreted individual names not constrained by the RDA.

Theorem 1. Partial S5𝒜ℒ𝒞𝒪𝜄
𝑢

formula satisfiability without the RDA is NExpTime-complete.

Concerning LTL𝒜ℒ𝒞𝒪𝜄
𝑢

satisfiability, we have the following negative results, the proof of
which is based on Degtyarev et al. [31] (related results appear also in Hampson and Kurucz [32]).

Theorem 2. Formula satisfiability in LTL𝒜ℒ𝒞𝒪𝑢 without the RDA, and in LTL𝒜ℒ𝒞𝒪𝜄
𝑢

with RDA,

is undecidable.

Undecidability holds already for total satisfiability. Similar results apply also to LTL𝑓
𝒜ℒ𝒞𝒪𝜄

𝑢
,

interpreted on finite traces (using the standard translation of temporal DLs into temporal first-
order logic [27], and the reduction of the latter satisfiability from finite to infinite traces [33]).

3. Discussion and Future Work

We conducted a preliminary study on modal free description logics, in particular on the epistemic
free DL S5𝒜ℒ𝒞𝒪𝜄

𝑢
, and on the temporal free DL LTL𝒜ℒ𝒞𝒪𝜄

𝑢
. Syntactically, these DLs extend the

classical 𝒜ℒ𝒞𝒪𝑢, with nominals and the universal role, by including definite descriptions and
epistemic or temporal operators. Semantically, we interpret these DLs over modal interpretations
that allow for non-denoting terms and non-rigid designators. We show that, while formula
satisfiability is NExpTime-complete for S5𝒜ℒ𝒞𝒪𝜄

𝑢
, it becomes undecidable for LTL𝒜ℒ𝒞𝒪𝜄

𝑢
.

On the epistemic side, as future work we plan to: (i) consider frames for the propositional
modal logics K4, T, S4, or KD45, to model different doxastic or epistemic attitudes [27]; (ii)
investigate non-rigid descriptions and names in the context of non-normal modal DLs [34, 35, 36],
to avoid the logical omniscience problem (i.e., an agent knows all the logical truths and all
the consequences of their background knowledge), which affects all the systems extending
K [37, 38]; (iii) address less expressive DL languages, such as ℰℒ𝒪𝜄

𝑢, in an epistemic setting,
and connect them with the recently investigated standpoint DL family [39, 40].

On the temporal side, we believe that the negative results presented here do not entirely
undermine the use of definite descriptions on a temporal dimension. For applications in temporal
conceptual modelling and ontology-mediated query answering [41, 42], it is worth exploring
whether more encouraging results can be obtained in fragments restricting the use of temporal
operators (limited, e.g., to the 2 operator only), or constraining the DL dimension (as in
LTL𝒜ℒ𝒞𝒪𝜄 , without the universal role, or in the TDL-Lite family [43]).

Finally, we are interested in studying in this setting the complexities of other problems
than formula satisfiability. Related to interpolant and explicit definition existence [44, 45, 46],
the referring expression existence problem [11], i.e., deciding the existence of an individual’s
description given a signature and an ontology, is of particular interest to our modal free DLs.
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