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Abstract
MHS-MXP is an ABox abduction algorithm for DL, that leverages the divide-and-conquer strategy of the
effective but incomplete MergeXplain and jointly uses the Minimal Hitting Set algorithm (MHS) to track
the search-space exploration in order to ensure completeness. In this extended abstract we focus on
our updated implementation which achieved a black-box combination of the abduction component and
the JFact DL reasoner via the OWLKnowledgeExplorerReasoner interface of OWL API. We then present
the results of our empirical evaluation showing that, compared to MHS, MHS-MXP has a significant
advantage on favourable inputs, however, it does not perform as well as MHS on unfavourable inputs.
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1. Introduction

ABox abduction [2] starts from a background ontology and an observation in the form of an ABox
assertion, that is not entailed. The task is to find explanations – sets of ABox assertions, such
that the background ontology and the explanation together entail the observation. Optionally,
abducibles are a set of ABox assertions from which the explanations may be drawn.

MHS-MXP is a “hybrid” abduction algorithm, that leverages the divide-and-conquer strategy
of the effective but yet incomplete MergeXplain [3] and jointly uses the Minimal Hitting Set
algorithm (MHS) [4] to track the search-space exploration in order to ensure completeness. It
was developed as an ABox abduction approach and implemented into a solver [5].

We report on an updated implementation which fixes a serious flaw of the previous version,
namely in the integration of the external DL reasoner. The flaw greatly limited the inputs the
solver could correctly handle. MHS and MHS-MXP call an external DL reasoner for consistency
checking and obtaining certain information about the model (specifically, the set of all atomic
concept and role assertions that are true in the model); this task is referred to as “model
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extraction”. It is, however, highly non-standard for DL reasoners to output model information
(some of then may not even construct a model, e.g. consequence-based reasoners such as Elk [6]).

In our current implementation, model extraction from the JFact reasoner is achieved via
the experimental OWLKnowledgeExplorerReasoner interface of OWL API. We also report on
an empirical evaluation that we were able to run on this implementation. It is conjectured
that cases with a lower number of contradictory abducibles and those with smaller sizes of
explanations and a lower overall count of explanations are favourable for MHS-MXP. It was also
confirmed by our evaluation. On the other hand, on cases where the search space was clogged
by large numbers of contradictory abducibles, MHS-MXP did not perform as well as MHS.

2. Implementation

An implementation1 of the abduction solver was developed in Java. It implements the DL
Abducion API [7] for integration into applications. The solver allows to choose between the
MHS or MHS-MXP abduction algorithm. It supports any OWL 2 ontology as background
knowledge and observations as (possibly multiple) concept or role assertions, including complex
concepts and negated roles. The solver is capable to find all explanations in the class of sets of
atomic and negated atomic concept and role assertions involving the named individuals from
the observation or the knowledge base’s ABox.

The solver relies on OWL API. DL reasoning, in the form of consistency checking and model
extraction, is provided by an external DL reasoner. In the new version, we access the completion
graph through an OWL API OWLKnowledgeExplorerReasoner2 interface implemented by the
JFact reasoner3. In fact, it required some adjustments to make the interface work in JFact4.

Apart from the input ontology and the observation, the solver allows additional settings: the
choice of abduction algorithm; a timeout; a depth limit for HS-tree exploration; and abducibles,
either as a set of symbols or assertions. In the new version, it is also possible to toggle role
assertions and role looping (role assertions of form 𝑅(𝑎, 𝑎) s.t. 𝑅 ∈ 𝑁𝑅 and 𝑎 ∈ 𝑁𝐼) in explanations,
and different ways how relevant explanation is defined for a multiple observation.
An example input file follows, in which the ontology is loaded from familyX.owl and the

observation is set to Father(jack). In addition, the timeout is set to 14,400 seconds, and negations
and role assertions in explanations are suppressed:

-f: files/familyX.owl
-o: Prefix: fam: <http://www.semanticweb.org/julia/ontologies/2017/8/family\#>

Class: fam:Father Individual: fam:jack Types: fam:Father
-t: 14400
-n: false
-r: false

1Available at https://github.com/boborova3/MHS-MXP-algorithm.
2https://owlcs.github.io/owlapi/apidocs_4/org/semanticweb/owlapi/reasoner/knowledgeexploration/
OWLKnowledgeExplorerReasoner.html

3https://github.com/owlcs/jfact
4The version we actually used is avalable at https://github.com/boborova3/jfact/tree/test4.
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Table 1
Basic characteristics of groups: #: number of observations; Cm, Ca, CM: min, average, and max count
of explanations; Sm, Sa, SM: min, average, and max size of the largest explanation. All generated
observations have explanations consisting of only atomic concept assertions, so for any observation, the
set of explanations is equal in the unfavourable and the favourable case.

Set # Cm Ca CM Sm Sa SM

S1 10 1 7 20 1 1 1
S2 10 8 69.5 159 2 2 2
S3 10 47 212.4 479 3 3 3
S4 10 251 417.8 839 4 4 4
S5 10 503 2627 6719 5 5 5

Set # Cm Ca CM Sm Sa SM

C1 9 1 4.8 9 1 1.11 2
C2 11 14 51 99 1 2 3
C3 13 111 212.92 299 2 3.15 4
C4 8 359 524.75 839 3 4 5
C5 9 1175 2863 6719 5 5 5

The default algorithm is MHS-MXP, MHS is toggled by adding -mhs: true into the in-
put file. On the given input, the solver returns 3 explanations: {Grandfather(jack)}, {Great-
Grandfather(jack)} and {Male(jack),Parent(jack)}.

3. Evaluation

We evaluated5 the implementation of MHS-MXP against MHS. We conjecture that MHS-MXP
will perform better when the maximum size or the total count of explanations is lower. We used
the LUBM ontology [8] to generate 50 observations with the explanations of various sizes (from
1 to 5). The observations were divided into groups S1–5 according to the size of the largest
explanation and C1–5 according to the explanation count (Table 1).

The theoretical properties of MHS-MXP [5] show that the allowed abducible space may have
a significant impact on its performance. We, therefore, distinguish between (a) the unfavourable
case: MHS-MXP has a disadvantage if the abducibles (i.e. the search space) are clogged by a
large number of mutually conflicting facts – the case was constructed by allowing for each
atomic assertion also its complement as abducibles); and (b) the favourable case: when mutually
conflicting abducibles are not present (the case allowed only atomic assertions as abducibles).
The size of abducibles in the unfavourable and the favourable case was 86 and 43, respectively.

We observe that in the unfavourable case (Figure 1 (a,b)), both algorithms computed explana-
tions up to size 3, but MHS-MXP achieved slightly worse results than MHS. This verifies our
hypothesis that MHS-MXP is not able to handle large numbers of conflicting abducibles well.
On the other hand, in the favourable case (Figure 1 (c,d)), MHS-MXP achieved significantly

better results than MHS, which performs similarly in both cases. All MHS-MXP groups except
for S5 and C5 terminated successfully within the timeout. MHS-MXP managed to find all
explanations. We also observe a correlation in the increase of computation time and the size of
the largest explanation (groups S) and likewise for the explanation count (groups C).

5The evaluation was executed on a virtual machine with 8 cores (16 threads) of Intel Xeon CPU E5-2695 v4, 2.10GHz,
with 32GB RAM, running Ubuntu 20.04 and Oracle Java SE Runtime Environment v1.8.0_201. Execution times were
measured using ThreadMXBean from the java.lang.management package. We measured user time –- the actual
time without system overhead. The maximum Java heap size to 4GB. Each input was run 5 times and the results
were averaged for each group. The timeout was set to 4 hours (=14,440 seconds).



1 2 3 4 5 6100
101
102
103
104

MHS

all

S5

S4

S3

S2

S1

1 2 3 4 5 6

MHS-MXP

1 2 3 4 5 6100
101
102
103
104

MHS

all

C5

C4

C3

C2

C1

1 2 3 4 5 6

MHS-MXP

(a) (b)

1 2 3 4 5 6100
101
102
103
104

MHS

all

S5

S4

S3

S2

S1

1 2 3 4 5 6

MHS-MXP

1 2 3 4 5 6100
101
102
103
104

MHS

all

C5

C4

C3

C2

C1

1 2 3 4 5 6

MHS-MXP

(c) (d)

Figure 1: Evaluation results: Unfavourable case, groups (a) S1–5 and (b) C1–5; favourable case, groups
(c) S1–5 and (d) C1–5. Average time in seconds (𝑦-axis) for fully exploring the search space up to the
particular explanation size (𝑥-axis) in the input group. If more than one-third of the inputs in the group
reached the timeout before reaching the 𝑥-value, the 𝑦-value was omitted from the plot.

4. Conclusions

We have reported on the current implementation of the MHS-MXP ABox abduction solver and
its evaluation which demonstrated an advantage of MHS-MXP over MHS on a significant class
of inputs, particularly those where abducibles can be carefully configured by a knowledgeable
user (as not uncommon in real-world applications [9]). We hope that further optimization will
help to bring the algorithm on par with MHS also in the unfavourable cases of inputs.
While there are currently approaches in ABox abduction [10, 11, 12, 13] which are more

tractable, they are also limited in the supported DL expressivity. Notably, in our solver, we were
able to achieve black-box integration with JFact which supports the full 𝒮ℛ𝒪ℐ𝒬 DL [14], i.e.
OWL 2 [15]. The implementation of the OWLKnowledgeExplorerReasoner interface in other
DL reasoners will make them accessible for such integration with MHS and derived algorithms.
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