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Abstract

We propose bounded fitting as a scheme for learning description logic concepts in the presence of

ontologies. Two main advantages are (1) theoretical guarantees regarding the generalization of the

learned concepts to unseen examples in the sense of PAC learning and (2) the fact that implementation

can leverage SAT solvers in a natural way. We also present our system SPELL which implements bounded

fitting based on a SAT solver and compare its performance to a state-of-the-art learner.
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The manual curation of knowledge bases (KBs) is time consuming and expensive, making

learning-based approaches to knowledge acquisition an attractive alternative. In description

logics (DLs), concepts are a fundamental class of expressions that are used as a central building

block for ontologies and also as queries to KBs. Consequently, the subject of learning DL concepts

from labeled data examples has received great interest, resulting in various implemented systems

such as DL-Learner, DL-Foil, and YINYANG [1, 2, 3]. These systems take as input a set of

positively and negatively labeled examples and an ontology 𝒪, and try to construct a concept

that fits the examples w.r.t. 𝒪. This is related to the fitting problem, asking to decide the existence

of a fitting concept, which has also been studied intensely [4, 5, 6].

In this extended abstract we report about the recent publication [7], see also [8] for technical

details and proofs. We propose a new approach to concept learning in DLs that we call bounded
fitting, inspired by both bounded model checking as known from systems verification [9] and

by Occam algorithms from computational learning theory [10]. The idea of bounded fitting

is to search for a fitting concept of bounded size, iteratively increasing the size bound until a

fitting is found. This approach has two main advantages, which we discuss next.

First, it comes with formal guarantees regarding the generalization of the returned concept

from the training data to previously unseen data. This is formalized by Valiant’s framework

of probably approximately correct (PAC) learning [11]. Given sufficiently many data examples

sampled from an unknown distribution, bounded fitting returns a concept that with high

probability 𝛿 has a classification error bounded by some small 𝜖 on examples drawn according
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to the same distribution. It is well-known that PAC learning is intimately linked to Occam

algorithms which guarantee to find a hypothesis of small size [10, 12]. By design, algorithms

following the bounded fitting paradigm are Occam, and as a consequence the number of examples

needed for generalization depends only linearly on 1/𝛿, and the size of the target concept to be

learned, and log-linearly on 1/𝜖. This generalization guarantee holds independently of the DL

used to formulate concepts and ontologies.

The second advantage is that, in important cases, bounded fitting enables learning based

on SAT solvers and thus leverages the practical efficiency of these systems. In particular, this

is the case for concepts formulated in ℰℒ and ontologies formulated in ℰℒℋ𝑟
. In this case,

the size-restricted fitting problem, which is defined like the fitting problem except that the

maximum size of fitting concepts to be considered is given as an additional input (in unary),

is NP-complete [13]. This situation indeed suggests to use a SAT solver. For comparison, we

mention that the unbounded fitting problem is ExpTime-complete in this case [5]. The use of a

SAT-solver is further justified by the fact that there is no polynomial time algorithm for learning

ℰℒ-concepts with PAC guarantees, unless RP = NP [14, 15].

As a further contribution, we analyze the generalization ability of other relevant approaches

to constructing fitting ℰℒ-concepts. We start with algorithms that return fittings that are

‘prominent’ from a logical perspective in that they are most specific or most general or of

minimum quantifier depth among all fittings. Algorithms with such characteristics and their

applications are discussed in [16]. Notably, constructing fittings via direct products of positive

examples yields most specific fittings [17, 18]. Our result is that, even without ontologies, these

types of algorithms are not sample-efficient, that is, no polynomial amount of positive and

negative examples is sufficient to achieve generalization in the PAC sense.

We next turn to algorithms based on so-called downward refinement operators which underlie

all implemented DL learning systems that we are aware of. We consider two natural such

operators that are rather similar to one another and combine them with a breadth-first search

strategy. The first operator can be described as exploring ‘most-general specializations’ of the

current hypotheses and the second one does the same, but is made ‘artificially Occam’ (with,

most likely, a negative impact on practicality). We prove that while the first operator does not

lead to a sample-efficient algorithm (even without ontologies), the second one does. This leaves

open whether or not implemented systems based on refinement operators admit generalization

guarantees, as they implement complex heuristics and optimizations.

As our final contribution we present SPELL (for SAT-based PAC ℰℒ concept Learner), a SAT-

based system that implements bounded fitting of ℰℒ-concepts under ℰℒℋ𝑟
-ontologies.

1
We

evaluate SPELL on several datasets and compare it to the only other available learning system

for ℰℒ that we are aware of, the ℰℒ tree learner (ELTL) component of the DL-Learner system [1].

We find that the running time of SPELL is almost always significantly lower than that of ELTL.

Since, as we also show, it is the size of the target concept that has most impact on the running

time, this means that SPELL can learn larger target queries than ELTL. We also analyze the

relative strengths and weaknesses of the two approaches, identifying classes of inputs on which

one of the systems performs significantly better than the other one. Finally, we make initial

experiments regarding generalization, where both systems generalize well to unseen data, even

1

Available at https://github.com/spell-system/SPELL.

https://github.com/spell-system/SPELL


exist. restric
tio

ns

4 5 6 7 8 9
number of examples

4080120160200240

l
o

g
1
0

r
u

n
n

i
n

g
t
i
m

e
[
s
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

SPELL

exist. restric
tio

ns

4 5 6 7 8 9
number of examples

4080120160200240

l
o

g
1
0

r
u

n
n

i
n

g
t
i
m

e
[
s
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ELTL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

l
o

g
1
0

r
u

n
n

i
n

g
t
i
m

e
[
s
]

Figure 1: Yago experiment, dark red area indicates timeout (60min)

on very small samples. While this is expected for SPELL, for ELTL it may be due to the fact that

some of the heuristics prefer fittings of small size, which might make ELTL an Occam algorithm.

Experimental Results

We refer to [7] for theoretical results and summarize here some of our experimental results. But

first we make precise the bounded fitting approach to concept learning.

Definition 1. Let ℒ be an ontology language, 𝒞 a concept language and let A be an algorithm for
the size-restricted fitting problem for 𝒞-concepts under ℒ-ontologies. Then Bounded-FittingA

is the algorithm that, given a collection of labeled data examples 𝐸 and an ℒ-ontology 𝒪, runs
A with input (𝐸,𝒪, 𝑠) to decide whether there is a 𝐶 ∈ 𝒞 with ||𝐶|| ≤ 𝑠 that fits 𝐸 w.r.t. 𝒪, for
𝑠 = 1, 2, 3 . . ., returning a fitting concept as soon as it finds one.

As mentioned in the introduction, the size-restricted fitting problem for ℰℒ-concepts under

ℰℒℋ𝑟
-ontologies is NP-complete. On top of that, it admits a natural translation to SAT. Along

with some optimizations, e.g., to break symmetries in the solution space for the resulting SAT

formulas, we have implemented this translation in the system SPELL. We have evaluated SPELL

on several newly crafted benchmarks and compared it to the ELTL component of the DL-Learner

system [1]. Existing benchmarks did not suit our purpose as they aim at learning concepts

that are formulated in more expressive DLs of the 𝒜ℒ𝒞 family; as a consequence, a fitting ℰℒ
concept almost never exists.

The first benchmark uses the Yago 4 knowledge base [19]. The smallest version of Yago 4

is still huge and contains over 40 million assertions. We extracted a fragment of 12 million

assertions that focusses on movies and famous persons. We then systematically vary the

number of labeled examples and the size of the target ℰℒ-concepts. The latter take the form

𝐶𝑛 = ∃actor.
d𝑛

𝑖=1 𝑟𝑖.⊤ where each 𝑟𝑖 is a role name that represents a property of actors in

Yago and 𝑛 is increased to obtain larger queries. The positive examples are selected by querying

Yago with 𝐶𝑛 and the negative examples by querying Yago with generalizations of 𝐶𝑛. The

results are presented in Figure 1. They show that the size of the target concept has a strong



Table 1
OWL2Bench running times [s], TO: >60min

o2b-1 o2b-2 o2b-3 o2b-4 o2b-5 o2b-6

ELTL TO TO 274 580 28 152
SPELL < 1 < 1 < 1 < 1 < 1 < 1

Table 2
Generalization experiment accuracies

Sample Size 5 10 15 20 25 30 35 40 45 50 55 60 65

ELTL 0.77 0.78 0.85 0.85 0.86 0.89 0.90 0.96 0.96 0.96 0.96 0.98 0.98
SPELL 0.80 0.81 0.84 0.85 0.86 0.86 0.89 0.97 0.98 0.98 0.98 0.98 0.98

impact on the running time whereas the impact of the number of positive and negative examples

is much more modest. We also find that SPELL performs ∼1.5 orders of magnitude better than

ELTL, meaning in particular that it can handle larger target queries.

Since Yago has only a very restricted ontology that essentially consists of inclusions 𝐴 ⊑ 𝐵
with 𝐴,𝐵 concept names, we complement the above experiment with a second one based on

OWL2Bench. OWL2Bench is a benchmark for ontology-mediated querying that combines

a database generator with a hand-crafted ontology which extends the University Ontology

Benchmark [20, 21]. The ontology is formulated in OWL 2 EL and we extracted its ℰℒℋ𝑟

fragment which uses all aspects of this DL and comprises 142 concept names, 83 role names,

and 173 concept inclusions. We use datasets that contain 2500-2600 individuals and 100-200

examples, generated as in the Yago case. We designed 6 ℰℒ-concepts with 3-5 occurrences of

concept and role names and varying topology. The results are shown in Table 1. The difference

in running time is even more pronounced in this experiment, with SPELL returning a fitting

ℰℒ-concept almost instantaneously in all cases.

We also performed initial experiments to evaluate how well the constructed fittings generalize

to unseen data. We again use the Yago benchmark, but now split the examples into training

data and testing data (assuming a uniform probability distribution). Table 2 lists the median

accuracies of returned fittings (over 20 experiments) where the number of examples in the

training data ranges from 5 to 65. As expected, fittings returned by SPELL generalize extremely

well, even when the number of training examples is remarkably small. To our surprise, ELTL

exhibits the same characteristics. This may be due to the fact that some heuristics of ELTL prefer

fittings of smaller size, which might make ELTL an Occam algorithm. It would be interesting to

carry out more extensive experiments on this aspect.

In [7], we carry out additional experiments in which we aim to highlight the respective

strengths and weaknesses of SPELL and ELTL or, more generally, of bounded fitting versus

refinement-operator based approaches. They show that the performance of bounded fitting

is most affected by the number of existential restrictions in the target concept whereas the

performance of refinement is most affected by the distance that the target concept has from ⊤
in the subsumption lattice.



References

[1] L. Bühmann, J. Lehmann, P. Westphal, DL-Learner - A framework for inductive learning

on the semantic web, J. Web Sem. 39 (2016) 15–24.

[2] N. Fanizzi, G. Rizzo, C. d’Amato, F. Esposito, DLFoil: Class expression learning revisited,

in: Proc. of EKAW, 2018, pp. 98–113.

[3] L. Iannone, I. Palmisano, N. Fanizzi, An algorithm based on counterfactuals for concept

learning in the semantic web, Appl. Intell. 26 (2007) 139–159.

[4] J. Lehmann, P. Hitzler, Concept learning in description logics using refinement operators,

Mach. Learn. 78 (2010) 203–250.

[5] M. Funk, J. C. Jung, C. Lutz, H. Pulcini, F. Wolter, Learning description logic concepts:

When can positive and negative examples be separated?, in: Proc. of IJCAI, 2019, pp.

1682–1688.

[6] J. C. Jung, C. Lutz, H. Pulcini, F. Wolter, Separating data examples by description logic

concepts with restricted signatures, in: Proc. of KR, 2021, pp. 390–399.

[7] B. ten Cate, M. Funk, J. C. Jung, C. Lutz, SAT-based PAC learning of description logic

concepts, in: Proc. of IJCAI, 2023.

[8] B. ten Cate, M. Funk, J. C. Jung, C. Lutz, SAT-based PAC learning of description logic

concepts, CoRR abs/2305.08511 (2023). URL: https://arxiv.org/abs/2305.08511.

[9] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu, Symbolic model checking without BDDs, in:

Proc. of TACAS, Springer, 1999, pp. 193–207.

[10] A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth, Learnability and the Vapnik-

Chervonenkis dimension, J. ACM 36 (1989) 929–965.

[11] L. G. Valiant, A theory of the learnable, Commun. ACM 27 (1984) 1134–1142.

[12] R. A. Board, L. Pitt, On the necessity of Occam algorithms, Theor. Comput. Sci. 100 (1992)

157–184. doi:10.1016/0304-3975(92)90367-O.

[13] M. Funk, Concept-by-Example in ℰℒ Knowledge Bases, Master’s thesis, University of

Bremen, 2019.

[14] B. ten Cate, M. Funk, J. C. Jung, C. Lutz, On the non-efficient PAC learnability of acyclic

conjunctive queries, CoRR abs/2208.10255 (2022). doi:10.48550/arXiv.2208.10255.

arXiv:2208.10255.

[15] J. Kietz, Some lower bounds for the computational complexity of inductive logic program-

ming, in: Proc. of ECML, 1993, pp. 115–123.

[16] B. ten Cate, V. Dalmau, M. Funk, C. Lutz, Extremal fitting problems for conjunctive queries,

in: Proc. of PODS, 2023.

[17] B. Zarrieß, A. Turhan, Most specific generalizations w.r.t. general ℰℒ-TBoxes, in: Proc. of

IJCAI, 2013, pp. 1191–1197.

[18] J. C. Jung, C. Lutz, F. Wolter, Least general generalizations in description logic: Verification

and existence, in: Proc. of AAAI, AAAI Press, 2020, pp. 2854–2861.

[19] T. P. Tanon, G. Weikum, F. M. Suchanek, YAGO 4: A reason-able knowledge base, in: Proc.

of ESWC, Springer, 2020, pp. 583–596. doi:10.1007/978-3-030-49461-2\_34.

[20] G. Singh, S. Bhatia, R. Mutharaju, OWL2Bench: A benchmark for OWL 2 reasoners, in:

Proc. of ISWC, Springer, 2020, pp. 81–96. doi:10.1007/978-3-030-62466-8\_6.

[21] Y. Zhou, B. C. Grau, I. Horrocks, Z. Wu, J. Banerjee, Making the most of your triple store:

https://arxiv.org/abs/2305.08511
http://dx.doi.org/10.1016/0304-3975(92)90367-O
http://dx.doi.org/10.48550/arXiv.2208.10255
http://arxiv.org/abs/2208.10255
http://dx.doi.org/10.1007/978-3-030-49461-2_34
http://dx.doi.org/10.1007/978-3-030-62466-8_6


query answering in OWL 2 using an RL reasoner, in: WWW, ACM, 2013, pp. 1569–1580.

doi:10.1145/2488388.2488525.

http://dx.doi.org/10.1145/2488388.2488525

