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Abstract
When can we answer conjunctive queries with ideal time guarantees? We will start this talk by examining
different kinds of query-answering tasks and the connections between them. These tasks include
enumerating all answers, sampling answers without repetitions, and simulating a sorted array of the
answers. From a data complexity point of view, the ideal time guarantees for these tasks are constant
time per answer following a linear preprocessing (required to read the database input). Our goal is to
avoid the polynomial preprocessing required to produce all answers. We will then have an example-
based discussion of the complexity landscape for these tasks. In particular, we will see how self-joins,
constraints and unions can play a crucial role in determining the complexity and designing efficient
algorithms.
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1. Introduction: Dichotomy for Conjunctive Queries

We would like to know what is the best time complexity we can achieve for answering a given
query over an input database. If the query is not Boolean, it can have many answers. In fact, the
number of answers can be orders of magnitude larger than the size of the input database, and so
we cannot expect to have a linear-time algorithm (linear in the size of the input) that produces
all answers. It is therefore natural to use enumeration measures and bound the delay between
successive answers. Since we must read the entire input database before we can decide whether
the query has any answers, the best we can hope for is linear preprocessing and constant delay.
Which queries can be answered with these ideal time guarantees? This question was considered
for Conjunctive Queries (CQs).

Theorem 1 ([1],[2]). Let 𝑄 be a CQ without self-joins. There exists an algorithm enumerating the

answers of 𝑄 with linear preprocessing and constant delay if and only if 𝑄 is free-connex acyclic,

assuming the sparseBMM and Hyperclique hypotheses.

Every query has an associated hypergraph with a vertex for each variable and a hyperedge for
each atom. Acyclic queries are those that have an 𝛼-acyclic hypergraph. If all atoms are binary,
this simply means that the graph does not contain cycles. Free-connex acyclic queries also
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𝑄1(student, prof, class)← Registration(student, class), Teaching(class, prof),Conflicts(student, prof)

𝑄2(actor, year)← Cast(movie, actor),Release(movie, year)

𝑄3(p1, p2, room, grade)← Seating(p1, room), Seating(p2, room),Grade(p1, grade),Grade(p2, grade)

𝑄4(post, p1, p2)← Posts(post, p1), Follows(p1, p2)

𝑄5(post, p1, p2)← Posts(post, p0), Follows(p0, p1), Friends(p1, p2)

Figure 1: Query Examples.

require that the free variables are connected in a non-standard way. The hardness side of this
dichotomy assumes the hardness of Boolean matrix multiplication and hyperclique detection in
hypergraphs. For more details about this dichotomy, see [3]. Consider for example the first two
queries defined in Figure 1. These two queries are classified as hard according to Theorem 1 as
𝑄1 is cyclic and 𝑄2 is acyclic but not free-connex. If the variable year was removed from the
head of 𝑄2, this query would become acyclic free-connex and classified as easy.

2. Additional Tractable Cases

Can we find CQs that can be answered with ideal guarantees even though they are not free-
connex acyclic? As a first impression, we might think that the answer is ’no’ due to the negative
side of Theroem 1. However, we will see that such cases exist.

As a first example, consider 𝑄3. This query is cyclic, but it can be answered with linear
preprocessing and constant delay due to the self-joins it contains. Theroem 1 only applies to CQs
in which every atom refers to a different relation. If this is not the case, we say that the query
contains self-joins, and we can sometimes use these to design more efficient algorithms [4]. The
complete classification of CQs with self-joins is not yet known.

Next, let us consider 𝑄2 again. This query asks for a list of actors and the years in which they
were active. If we just consider the structure of the query and assume the input database can be
general, this query is classified as hard according to Theroem 1 as it is not free-connex. However,
considering the semantics of this query, we can assume that every movie has one release year.
This information can be modeled using the functional dependency Release : movie → year.
If we can assume that the input database conforms to this constraint, the problem becomes
easier, and it can now be solved with ideal guarantees [5]. The complete classification of CQs
with general functional dependencies is not yet known. We do have a classification for unary
functional dependencies, where one variable implies another, for CQs without self-joins. This
classification is done by extending the query according to the dependencies (in the case of this
example, adding the variable year in all places that contain the variable movie), and checking
whether the extended query is acyclic free-connex.

Finally, assume the CQ is used as part of a larger query, and consider the union of CQs
𝑄4 ∪ 𝑄5. Even though 𝑄5 is not free-connex, the entire union can be answered with ideal
guarantees since we can intertwine the computation of 𝑄5 with that of 𝑄4. In fact, even a union



Figure 2: Query answering tasks.

that contains only non-free-connex CQs can become tractable in a similar way. The complete
classification of unions of CQs is not yet known, but we have a classification that applies for
some subclasses [6, 7].

3. Doing Even Better in the Tractable Cases

Sometimes the final goal of the user is not just to produce all answers to a CQ, but they can be
interested in different query answering tasks such as computing the best answer or a median
answer according to some ranking function. In other cases, the user may want to compute some
statistics over the answers and be willing to compromise for the accuracy of these statistics
in favor of speed. In such a case, a random sample of the answers can be useful. Figure 2
shows a summary of some query-answering tasks and the relation of the implication of efficient
algorithms between tasks.

The previous section discusses enumeration without order requirements. Clearly, ranked
enumeration and random-ordered enumeration are stricter requirements. However, ranked
enumeration allows efficiently computing the best answer or in general the top k answers for
any k. Random-ordered enumeration is in other words sampling without repetitions, and so this
is stronger than the task of sampling with repetitions. Direct access is the task of simulating an
array containing the query answers in a way that allows random access to answers in arbitrary
indices. It also requires outputting an error message if the index requested is too large, and
this can be used together with binary search to determine the number of answers (a task called
counting) with only a logarithmic number of access calls. Direct access can also be used to
achieve random-ordered enumeration by generating a random permutation of the indices and
accessing the corresponding answers on the fly [8]. If the simulated array is required to be
ordered, we call this task ranked access, and it can be used to directly access the middle answer
for computing the median or to similarly compute any other quantile.

Assume we are interested in ordering the query answers in a lexicographic order. That is,
we order the answers by the assignment to one variable, then break ties according to another
variable, and so on. The free-connex acyclic CQs, which we know have extremely efficient
enumeration algorithms, also have efficient algorithms for quantile computation, direct access
and ranked enumeration [9, 10], with linear preprocessing and logarithmic time per outputted
answer. Regarding ranked enumeration, this depends on the specific lexicographic order [9].
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