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Abstract
All members of the FunDL family of description logics replace roles with partial functions (features)

and have a concept constructor, called path functional dependency (PFD), for expressing extensions of

functional dependencies, useful in object-relational data sources. In this paper, we consider generalizing

PFDs to path description dependencies (PDD), by allowing inverse features in them, which result in paths

being set-valued. We show that logical consequence for partial-𝒟ℒℱ𝒟ℐ , one of the most expressive

dialects of the FunDL family, remains EXPTIME complete for coherent terminologies, when extended

with PDDs. As a first application, we consider referring expression types, which are concept descriptions

used to identify individuals in query answers. In the new dialect, such a type denotes a set of concept

descriptions. As such, one must prove in advance that any interpretation of any member of the set will

never have more than one element. We show that this “singularity condition” can be diagnosed as a

collection of logical consequence questions wrt a TBox.

1. Introduction

The FunDL dialects of description logics (DLs) were designed primarily to support reasoning that

is required in structured data integration and view-based query rewriting over object-relational

data sources such as relational databases [1, 2] and more recently JSON stores [3]. Consequently,

all such dialects replace roles with partial functions called features for a better alignment with the

ubiquitous notion of an attribute or column in such data sources, and all have a path functional
dependency (PFD) concept constructor for capturing equality-generating dependencies such as

keys, uniqueness constraints and functional dependencies that are commonly part of schemata

for such data sources.

A PFD generalizes the notion of a functional dependency by allowing path functions in place

of attributes to express navigation over a sequence of features. For example, suppose for an

accountant’s personal database of clients, some are friends. An axiom expressing that the

combination of the first name and the dial number of the phone identifies at most one friend
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among all clients in the database can be expressed in a FunDL dialect as follows.

CLIENT-FRIEND ⊑ (CLIENT : fname, phone.dialnum → id) (1)

Here, the axiom with the PFD concept constructor is used to express a key or uniqueness

condition underlying a form of identification vetting. It can be paraphrased in English as: client
friends are clients that, among all clients, can be identified by a combination of their first name
and the dial number of their phone.

In this paper, we generalize the PFD concept constructor with a path description dependency
(PDD) constructor that allows traversing features in both directions. For example, consider

a generalization of the above example where the accountant’s clients have possibly multiple

phones and that those who are friends can still be identified by their first name and at least

one of their phones when such exists. So, instead of a phone feature there would be a PHONE
role relating clients with their possibly multiple phones. This can be done in description logics

by encoding the primitive role PHONE, or indeed any primitive role, as the composition of an

inverse feature with another feature, where the two features globally characterize the domain

and range of the role (e.g., phonedom and phoneran). In our example, the role PHONE would be

systematically represented as the composition (phonedom−.phoneran). The above example can

then be captured with a PDD by the following axiom.

(CLIENT-FRIEND ⊓ ∃phonedom−.phoneran.⊤)
⊑ (CLIENT : fname, phonedom−.phoneran.dialnum → id)

(2)

This axiom also expresses a key or uniqueness condition: any pair of distinct clients for which at
least one is also a friend with at least one phone will always disagree on either their first name or
on all the dial numbers of their respective sets of phones.

Furthermore, we may be interested in recording additional information for each pair of

instances in the PHONE role, for example, the starting date of the telecom contract for a client

and a phone. We can do that by reifying the PHONE role as the HAVING-PHONE concept, so

that pairs of instances in the PHONE role have a one-to-one association with instances of the

HAVING-PHONE concept.

HAVING-PHONE ⊑ (HAVING-PHONE : phonedom, phoneran → id)

This generalizes to arbitrary 𝑛-ary relations, which can be similarly treated in FunDL dialects [4].

Now consider where there is a need to view the set of phones for a person as a single instance

which aggregates the phones, that is, as a so-called plural entity [5] about which additional

information needs to be recorded, for example, a count of the number of such phones for

a given plural entity. A role PHONES would relate an instance of the plural entity to the

phones it aggregates. Exploiting the same encoding proposed above, the role PHONES would be

systematically represented as the composition (phonesdom−.phonesran). A feature phonesgroup
then relates a client with its own phones, now seen as a single plural entity. A refinement of (2)

accommodates this level of indirection.

(CLIENT-FRIEND ⊓ ∃phonesgroup.phonesdom−.phoneran.⊤)
⊑ (CLIENT : fname, phonesgroup.phonesdom−.phonesran.dialnum → id)

(3)



Note that the occurrences of inverse feature navigations, phonesdom−
, are now preceded by

feature navigations of phonesgroup, and that this is not the case with subsumption (2) where

inverse feature navigations happen at the start of path descriptions. Consequently, (2) can be

rewritten as an axiom involving a non-key PFD in which inverse feature navigations are avoided,

as in the following.

HAVING-PHONE ⊑ (HAVING-PHONE : phonedom.fname, phoneran.dialnum → phonedom) (4)

However, this is not possible with subsumption (3) which requires the greater expressiveness of

PDDs.

The remainder of the paper is organized as follows. The necessary background and definitions

are given in Section 2 where we introduce the new FunDL dialect called set-𝒟ℒℱ𝒟ℐ which

replaces PFDs in the partial-𝒟ℒℱ𝒟ℐ dialect of FunDL with PDDs. Our main result is presented

in Section 3 in which we show that logical consequence for set-𝒟ℒℱ𝒟ℐ is EXPTIME-complete

when interpretations are assumed to satisfy a coherence condition. We also show that an

alternative set equality semantics leads immediately to undecidability.

As a first application to illustrate the utility of the new dialect, we show in Section 4 how a

singularity condition for a so-called referring expression type (𝑅𝑒)
1

with respect to a TBox can

be diagnosed as a collection of logical implication problems. An 𝑅𝑒 denotes a set of concept

descriptions in set-𝒟ℒℱ𝒟ℐ that should qualify as referring concepts, that is, as a means of

referring to elements of the domain of an interpretation. The diagnosis of singularity for an 𝑅𝑒
ensures that any interpretation of any referring concept in the set will never denote more than

one element. Summary comments and an outline of open problems and future work are then

given in Section 5.

2. Background and Definitions

We now formally define the artifacts introduced in our introductory comments: a new member

of the FunDL family of DLs called set-𝒟ℒℱ𝒟ℐ and referring expression types. The latter is a

pattern language for specifying a set of referring concepts in set-𝒟ℒℱ𝒟ℐ which are intended

to describe the existence of individuals with complex properties. The new dialect derives

from an existing dialect called partial-𝒟ℒℱ𝒟ℐ by allowing the general use of set valued path

descriptions in place of path functions. Doing so in the case of the PFD concept constructor

(common to all existing FunDL dialects) obtains our new PDD concept constructor.
2

Definition 1 (Referring Concepts and TBoxes in set-𝒟ℒℱ𝒟ℐ). Let F and PC be sets of feature
names and primitive concept names, respectively. A path description is defined by the grammar

Pd ::= id | 𝑓.Pd | 𝑓−1.Pd,

for 𝑓 ∈ F. A concept description is defined by the grammar in the first column of Figure 1. A
referring concept is a concept description parsed by the last four productions, and a TBox concept

1

Pronounced “are-ee”.

2

The acronyms are respectively short for description logic with set-valued path descriptions, dependencies and
inverses and description logic with partial functions, dependencies and inverses.



Syntax Semantics: Defn of (·)ℐ

𝐶 ::= 𝐶1 ⊔ 𝐶2 𝐶ℐ
1 ∪ 𝐶ℐ

2 (disjunction)
| ¬𝐶 △ℐ ∖ 𝐶ℐ (negation)

| 𝐶 : Pd1, ...,Pd𝑘 → Pd {𝑥 | ∀ 𝑦 ∈ 𝐶ℐ : Pdℐ({𝑥}) ̸= ∅ ∧ Pdℐ({𝑦}) ̸= ∅ ∧ (PDD)
(
⋀︀𝑘

𝑖=1 Pd
ℐ
𝑖 ({𝑥}) ∩ Pdℐ𝑖 ({𝑦}) ̸= ∅) → Pdℐ({𝑥}) ∩ Pdℐ({𝑦})} ≠ ∅

| ∀Pd.𝐶 {𝑥 | Pdℐ({𝑥}) ⊆ 𝐶ℐ} (value restriction)

| ∃Pd.𝐶 {𝑥 | Pdℐ({𝑥}) ∩ 𝐶ℐ ̸= ∅} (existential quantification)
| A Aℐ ⊆ △ℐ (primitive concept; A ∈ PC)
| 𝐶1 ⊓ 𝐶2 𝐶ℐ

1 ∩ 𝐶ℐ
2 (conjunction)

| {𝑎} {𝑎ℐ} (nominal)

Figure 1: Syntax and semantics of concept descriptions.

is a concept description parsed by all but the final production, that is, are concepts free of nominals.
This includes the third production, a concept constructor called a path description dependency

(PDD). A subsumption is an expression of the form 𝐶1 ⊑ 𝐶2, where the 𝐶𝑖 are TBox concepts,
and where PDDs occur only in 𝐶2 but not within the scope of negation.3 A terminology (TBox) 𝒯
consists of a finite set of subsumptions, and a posed question 𝒬 is a single subsumption.

Semantics is defined with respect to a structure ℐ = (△ℐ , ·ℐ), where △ℐ is a domain of objects
or entities and ·ℐ an interpretation function that fixes the interpretations of primitive concept
names 𝐴 to be subsets of △ℐ and feature names 𝑓 to be partial functions 𝑓ℐ : △ℐ → △ℐ . The
interpretations of path descriptions Pd are functions Pdℐ : 2△

ℐ → 2△
ℐ

over the powerset of △ℐ

defined as follows, where 𝑆 ⊆ △ℐ :

Pdℐ(𝑆) =

⎧⎨⎩
𝑆 if Pd = “ id”,
Pdℐ1 ({𝑓ℐ(𝑥) | 𝑥 ∈ 𝑆}) if Pd = “𝑓.Pd1”,
Pdℐ1 ({𝑥 | 𝑓ℐ(𝑥) ∈ 𝑆}) if Pd = “𝑓−1.Pd1”.

The semantics of derived concept descriptions 𝐶 is defined by the centre column of Figure 1.
An interpretation ℐ satisfies a subsumption 𝐶1 ⊑ 𝐶2 if 𝐶ℐ

1 ⊆ 𝐶ℐ
2 and is a model of 𝒯 , written

ℐ |= 𝒯 , if it satisfies all subsumptions in 𝒯 . Given a terminolgy 𝒯 and posed question 𝒬, the
logical consequence problem asks if 𝒬 is satisfied in all models of 𝒯 , written 𝒯 |= 𝒬. □

As suggested by subsumptions (2), (3) and (4) above, PDDs adopt a set intersection semantics.

Consequently, any subsumption that is symmetric and a simple key of the form “𝐶 ⊑ (𝐶 :
Pd1, ...,Pd𝑘 → id)” can be captured as an identification constraint (IdC) proposed in [7].

IdCs are a variant of equality-generating dependencies that, unlike in our case, correspond

to an additional kind of assertion in a TBox, separate from subsumptions, that have the form

“(id 𝐶 Pd1, ...,Pd𝑘)”. Note that path descriptions in IdCs also allow the occurrence of test
relations “𝐶?” denoting the identity role on the interpretation of 𝐶 . A more general asymmetric

version of test relations of the form “(𝐶1, 𝐶2)” could be added as an additional possibility for

3

Violating this latter condition leads immediately to undecidability [6].



path descriptions in PDDs as syntactic sugar. To suggest the simple mapping involved, consider

a PDD using such an asymmetric test relation:

𝐶3 ⊑ (𝐶4 : Pd1 .(𝐶1, 𝐶2).Pd2 → id).

This would be syntactic shorthand for the PDD

(𝐶3 ⊓ ∀Pd1.𝐶1) ⊑ ((𝐶4 ⊓ ∀Pd1.𝐶2) : Pd1 .Pd2 → id).

The formal definition of a referring expression type 𝑅𝑒 in the context of set-𝒟ℒℱ𝒟ℐ now

follows. Such types were first introduced in [8] by abstracting constants and by admitting a

production to express preference among WFFs free in one variable as a means of entity reference

in first order knowledge bases. They have been adapted for FunDL dialects in [3] as part of a

proposed semantics for JSON values as FunDL knowledge bases.

Definition 2 (Referring Expression Types). A referring expression type (𝑅𝑒) is defined by the
following grammar, where A is a primitive concept:

𝑅𝑒 ::= A | {?} | ∃Pd.𝑅𝑒 | 𝑅𝑒1 ⊓𝑅𝑒2 | 𝑅𝑒1 ;𝑅𝑒2

The language of referring concepts inhabiting 𝑅𝑒, ℒ(𝑅𝑒), is given as follows:

ℒ(A)= {A}
ℒ({?})= {{𝑎} | 𝑎 is a constant symbol}

ℒ(∃Pd.𝑅𝑒)= {∃Pd.𝐶 | 𝐶 ∈ ℒ(𝑅𝑒)}
ℒ(𝑅𝑒1 ⊓𝑅𝑒2)= {𝐶1 ⊓ 𝐶2 | 𝐶1 ∈ ℒ(𝑅𝑒1) and 𝐶2 ∈ ℒ(𝑅𝑒2)}
ℒ(𝑅𝑒1;𝑅𝑒2))=ℒ(𝑅𝑒1) ∪ ℒ(𝑅𝑒2)

Given a TBox 𝒯 and referring expression type 𝑅𝑒, the singularity problem for 𝑅𝑒 with respect to

𝒯 is to determine if |𝐶ℐ | ≤ 1 for any 𝐶 ∈ ℒ(𝑅𝑒) and any interpretation ℐ . □

For example, a referring expression type denoting possible referring concepts for CLIENT
entities might be given as the following:

(CLIENT-FRIEND ⊓ ∃phonesgroup.phonedom−.phoneran.⊤
⊓ ∃fname.{?} ⊓ ∃phonesgroup.phonedom−.phoneran.dialnum.{?}) ;

(CLIENT ⊓ ∃fname.{?} ⊓ ∃lname.{?})
(5)

Here, the use of “;” indicates a preference for using the first name and a phone number for

referring to a client who is also a friend with at least one phone number, and by using a

combination of the first name and last name otherwise (see [3] for further details). Here also,

ensuring that a TBox 𝒯 logically implies both the following subsumption as well as (3) above

will be needed in any diagnosis of singularity for (5).

CLIENT ⊑ (CLIENT : fname, lname → id) (6)



3. Decidability of Logical Consequence for set-𝒟ℒℱ𝒟ℐ
To simplify the following constructions, we assume that both the TBox 𝒯 and the posed question

𝒬 are in normal forms defined as follows:

Definition 3 (Normal Form TBoxes and Posed Questions). Let A, B, and C denote primitive
concepts, ⊥(= A ⊓ ¬A), or ⊤(= A ⊔ ¬A). A TBox in normal form consists of eight possible
subsumptions: A ⊑ C, A⊓B ⊑ C, A ⊑ B⊔C, A ⊑ ∀𝑓.B, A ⊑ ∃𝑓.B, A ⊑ ∀𝑓−.B, A ⊑ ∃𝑓−.B,
and A ⊑ B : Pd1, . . . ,Pd𝑘 → Pd. TBoxes that do not mention a PDD, that is, do not have a
subsumption of the form A ⊑ B : Pd1, . . . ,Pd𝑘 → Pd, are called simple.

A posed question in normal form has the form A ⊑ B : Pd1, . . . ,Pd𝑘 → Pd or is a simple
subsumption A ⊑ B. □

It is easy to see that for every TBox and posed question there is a conservative extension of

the TBox that preserves entailment.

Logical consequence for partial-𝒟ℒℱ𝒟ℐ was shown in [9] to be undecidable, which will

therefore also be the case with set-𝒟ℒℱ𝒟ℐ . One way to regain decidability suggested in [9] is

to adopt a coherency condition on a TBox 𝒯 . The condition requires that 𝒯 implicitly contains a

set of subsumptions of the following form, where 𝐶 ranges over TBox concepts in the language

of 𝒯 , and where 𝑓−
explicitly appears in a concept ∃𝑓−.D in the normalized TBox 𝒯 (we call

such features interesting):

∃𝑓−.𝐶 ⊑ ∀𝑓−.𝐶 (*)

Note that, while we assume these subsumptions are part of every TBox, they are not part of

the input to our decision procedure since the coherency condition is an integral part of the

procedure itself. For the remainder of the paper we assume the coherency condition for every

set-𝒟ℒℱ𝒟ℐ TBox.

Lemma 4. Let 𝒯 be a set-𝒟ℒℱ𝒟ℐ TBox and 𝒬 = A ⊑ B a posed question. For any counterex-
ample 𝒥 to 𝒯 |= 𝒬, there is also a tree-shaped counterexample ℐ for which: (a) ℐ |= 𝒯 , (b) ℐ is
rooted by a witness 𝑜 ∈ (A ⊓ ¬B)ℐ , and (c) for any 𝑓 ∈ F, there is no element of △ℐ that has two
or more incoming features 𝑓 .

Proof (sketch): The tree-shaped model is constructed by unravelling the original counterex-

ample model, starting from the witness 𝑜, as follows. For every 𝑓 ∈ F: (i) all 𝑓 successors of

an object are added to ℐ and subsequently unravelled, and (ii) exactly one of the interesting

𝑓 -predecessors is also added and unravelled (note that the single 𝑓 -predecessor can be the parent

of the current object). It follows from (*) that, in such an unravelling, all simple subsumptions

in 𝒯 must be satisfied (by inspection) and also that, since no object in △ℐ that has two or more
incoming features 𝑓 for any 𝑓 ∈ F, all PDDs in 𝒯 hold vacuously. □

Note that the Pd paths starting from the witness 𝑜 uniquely identify objects in △ℐ
.

Lemma 5. Let 𝒯 be a set-𝒟ℒℱ𝒟ℐ TBox and 𝒬 = A ⊑ B : Pd1, . . . ,Pd𝑘 → Pd0 a posed
question. For any counterexample 𝒥 to 𝒯 |= 𝒬, there is also a counterexample ℐ , called a two-tree

counterexample, constructed as follows:

1. let ℐ1 be an unravelling of 𝒥 from an object 𝑜1 ∈ A𝒥 ;



2. let ℐ2 be an unravelling of 𝒥 from an object 𝑜2 ∈ B𝒥 ; and
3. let ℐ be a disjoint union of ℐ1 and ℐ2 modified to agree on a path Pd starting in 𝑜1 and 𝑜2,

respectively, if and only if Pd𝒥 ({𝑜1}) ∩ Pd𝒥 ({𝑜2}) ̸= ∅.

Proof (sketch): The unravellings ℐ1 and ℐ2 are as in Lemma 4. The domain △ℐ
is then the

disjoint union of the domains of ℐ1 and ℐ2 factored by the equivalence relation generated by the

path agreements. Note that it is sufficient to only consider path agreements that are symmetric
with respect to 𝑜1 and 𝑜2; this is a consequence of (*) and of the syntactic structure of the PDD

concept constructor. □

The properties established by Lemmata 4 and 5 allow one to reduce the existence of an posed

question-appropriate counterexample as test of satisfiability of a formula in the Ackermann

class prefix ∃*∀∃* [10]. We use the Skolemized version of the problem that replaces the inner

existential variables by appropriate unary function symbols and the outer ones by constants.

The main intuition is that we use a single term to denote the (possibly two) corresponding
objects in the unravellings ℐ1 from 𝑜1 and ℐ2 from 𝑜2, if they exist. We introduce the following

function symbols and unary predicates to facilitate this construction:

• function symbols f(𝑥) and f̄(𝑥) for every feature 𝑓 appearing in 𝒯 , standing for 𝑓 and

(inverse of) 𝑓−
, respectively;

• unary predicates P𝐿
A(𝑥) and P𝑅

A(𝑥) whose interpretation will consist of individuals corre-

sponding to individuals in Aℐ
for every primitive concept in 𝒯 ;

• unary predicates N𝐿(𝑥) and N𝑅(𝑥) whose interpretation will consist of individuals that

exist in ℐ (note that set-𝒟ℒℱ𝒟ℐ uses partial features while the Skolem functions are

total);

• unary predicates EqPd(𝑥) that assert equality between the two paths originating in the

corresponding objects in the two unravellings.

The encoding itself relies on the following auxiliary axioms (and auxiliary predicate definitions),

where 𝑋 ranges over {𝐿,𝑅}:

Features and inverse features: There cannot be objects with the following f–f̄ patterns:

∀𝑥.¬N𝑋(f.f̄(𝑥)) and ∀𝑥.¬N𝑋(f̄.f(𝑥)).

We have such an axiom for every 𝑓 ∈ F. This restriction corresponds to functionality of

features and to disallowing two or more incoming 𝑓 ’s in Lemma 4;

Equalities and paths: The following axioms describe how equalities (based on intersection)

propagate along PDs:

∀𝑥.(N𝐿(𝑥) ∧ N𝐿(f(𝑥)) ∧ N𝑅(𝑥) ∧ N𝑅(f(𝑥))) → (EqPd(f(𝑥)) ↔ Eq𝑓.Pd(𝑥))

∀𝑥.(N𝐿(𝑥) ∧ N𝐿(f̄(𝑥)) ∧ N𝑅(𝑥) ∧ N𝑅(f̄(𝑥))) → (EqPd(𝑥) ↔ Eq𝑓.Pd(f̄(𝑥))

∀𝑥.(N𝐿(𝑥) ∧ N𝐿(f(𝑥)) ∧ N𝑅(𝑥) ∧ N𝑅(f(𝑥))) → (EqPd(𝑥) ↔ Eq𝑓
−.Pd(f(𝑥)))

∀𝑥.(N𝐿(𝑥) ∧ N𝐿(f̄(𝑥)) ∧ N𝑅(𝑥) ∧ N𝑅(f̄(𝑥))) → (EqPd(f̄(𝑥)) ↔ Eq𝑓
−.Pd(𝑥))



Equalities and functionality: The following axioms simulate the functionality of features:

∀𝑥.N𝐿(𝑥) ∧ N𝐿(f(𝑥)) ∧ N𝑅(𝑥) ∧ N𝑅(f(𝑥)) ∧ Eqid (𝑥) → Eqid (f(𝑥))

∀𝑥.N𝐿(𝑥) ∧ N𝐿(f̄(𝑥)) ∧ N𝑅(𝑥) ∧ N𝑅(f̄(𝑥)) ∧ Eqid (f̄(𝑥)) → Eqid (𝑥)

Equalities and concept membership: The following axioms simulate the effects of equality

on concept membership:

∀𝑥.N𝐿(𝑥) ∧ N𝑅(𝑥) ∧ Eqid (𝑥) → (P𝐿
C(𝑥) ↔ P𝑅

C(𝑥))

where 𝐶 ranges over all primitive concepts in 𝒯 ∪ 𝒬.

Path existence: The N𝑋
Pd(𝑥) predicate asserts that all objects on the path Pd starting in 𝑥 exist

(on side 𝑋):

N𝑋
id (𝑥) → N𝑋(𝑥)

N𝑋
𝑓.Pd(𝑥) → (N𝑋(𝑥) ∧ N𝑋

Pd(f(𝑥)))

N𝑋
𝑓−.Pd(𝑥) → (N𝑋(𝑥) ∧ N𝑋

Pd(f̄(𝑥)))

We call the above collection of axioms Π. With the above preparation, we are ready to map

subsumptions in normalized TBoxes to the following axioms:

Simple TBox subsumptions:

A ⊑ C ↦→ ∀𝑥.(N𝑋(𝑥) ∧ P𝑋
A (𝑥)) → P𝑋

C (𝑥)
A ⊓ B ⊑ C ↦→ ∀𝑥.(N𝑋(𝑥) ∧ P𝑋

A (𝑥) ∧ P𝑋
B (𝑥))) → P𝑋

C (𝑥)
A ⊑ B ⊔ C ↦→ ∀𝑥.(N𝑋(𝑥) ∧ P𝑋

A (𝑥)) → (P𝑋
B (𝑥) ∨ P𝑋

C (𝑥))
A ⊑ ∀𝑓.B ↦→ ∀𝑥.(N𝑋(𝑥) ∧ N𝑋(f(𝑥)) ∧ P𝑋

A (𝑥)) → P𝑋
B (f(𝑥)),

∀𝑥.(N𝑋(f̄(𝑥)) ∧ N𝑋(𝑥) ∧ P𝑋
A (f̄(𝑥)) → P𝑋

B (𝑥)
A ⊑ ∃𝑓.B ↦→ ∀𝑥.(N𝑋(𝑥) ∧ P𝑋

A (𝑥)) → (N𝑋(f(𝑥)) ∧ P𝑋
B (f(𝑥))), 𝑥 ̸= f̄(𝑦)

∀𝑥.(N𝑋(f̄(𝑥)) ∧ P𝑋
A (f̄(𝑥)) → (N𝑋(𝑥) ∧ P𝑋

B (𝑥))
A ⊑ ∀𝑓−.B ↦→ ∀𝑥.(N𝑋(𝑥) ∧ N𝑋(f(𝑥)) ∧ P𝑋

A (f(𝑥))) → P𝑋
B (𝑥),

∀𝑥.(N𝑋(f̄(𝑥)) ∧ N𝑋(𝑥) ∧ P𝑋
A (𝑥)) → P𝑋

B (f̄(𝑥))
A ⊑ ∃𝑓−.B ↦→ ∀𝑥.(N𝑋(f(𝑥)) ∧ P𝑋

A (f(𝑥))) → (N𝑋(𝑥) ∧ P𝑋
B (𝑥)),

∀𝑥.(N𝑋(𝑥) ∧ P𝑋
A (𝑥)) → (N𝑋(f̄(𝑥)) ∧ P𝑋

B (f̄(𝑥))), 𝑥 ̸= f(𝑦)

Note that since a single feature 𝑓 can be coded using both f and (inverse of) f̄ , we need two

axioms for both the value and existential restrictions. Also, for the existential restrictions

of the form ∃𝑓.𝐵 and ∃𝑓−.𝐵 we need to ensure that f̄ is not used when 𝑥 is of the form

f(𝑦) (and vice versa as that would create a superfluous inverse). Since the Ackermann

prefix class disallows explicit equalities, we need to simulate this inequality by explicitly

listing all the possible terms for 𝑥 that do not start with f . This is always possible since

there are only finitely many features in 𝒯 .

Equalities and PFDs: To simulate the effects of PDDs, it is sufficient to record their effects

between the left and the right sides of the counterexample as follows:

A ⊑ B : Pd1, . . . ,Pd𝑘 → Pd ↦→
∀𝑥.(N𝐿(𝑥) ∧ N𝑅(𝑥) ∧ P𝐿

A ∧ P𝑅
B ∧

⋀︀𝑘
𝑖=1 Eq

Pd𝑖(𝑥)) → EqPd(𝑥)

∀𝑥.(N𝐿(𝑥) ∧ N𝑅(𝑥) ∧ P𝑅
A ∧ P𝐿

B ∧
⋀︀𝑘

𝑖=1 Eq
Pd𝑖(𝑥)) → EqPd(𝑥)



We call the set of these axioms Π𝒯 . The posed questions then map to the following assertions

about witnesses of non-entailment:

Posed questions: The (ground) axioms represent a counterexample to the posed question; the

constant 0 stands for the 𝑜1 (and 𝑜2) objects in Lemmata 4 and 5.

A ⊑ B ↦→ N𝐿(0),P𝐿
A(0),¬P𝐿

B(0)
A ⊑ B : Pd1, . . . ,Pd𝑘 → Pd ↦→ P𝐿

A(0),P
𝑅
B(0),

N𝐿
Pd1

(0), . . . ,N𝐿
Pd𝑘

(0),N𝐿
Pd(0),

N𝑅
Pd1

(0), . . . ,N𝑅
Pd𝑘

(0),N𝑅
Pd(0),

EqPd1(0), . . . ,EqPd𝑘(0),¬EqPd(0)

We call the set of these axioms Π¬𝒬.

To show correctness of the above construction, we use the following auxiliary definition

that maps feature paths in models of set-𝒟ℒℱ𝒟ℐ to paths in models of the corresponding

Ackermann formula (and back).

pm(id) = 0, pm(𝑓.Pd) = f(pm(Pd)), and pm(𝑓−.Pd) = f̄(pm(Pd))

Theorem 6. Let 𝒯 and 𝒬 be a set-𝒟ℒℱ𝒟ℐ TBox and a posed question, respectively, both in
normal form. Then 𝒯 |= 𝒬 if and only if Π ∪Π𝒯 ∪Π¬𝒬 is unsatisfiable.

Proof (sketch): For posed question 𝒬 of the form A ⊑ B and a tree-shaped counter-example ℐ
starting from 𝑜 (see Lemma 4) we create a model of Π ∪Π𝒯 ∪Π¬𝒬 as follows: we assert

• N𝐿(pm(Pd)) for every path 𝑜.Pdℐ that exists in ℐ , and

• P𝐿
A(pm(Pd)) whenever 𝑜.Pdℐ ∈ Aℐ

in ℐ and verify that all formulæ in Π ∪Π𝒯 ∪Π¬𝒬 are true.

Similarly, given a model of Π ∪Π𝒯 ∪Π¬𝒬 we construct ℐ as follows:

• △ℐ = {𝑜Pd | N𝐿(pm(Pd)) holds};

• Aℐ = {𝑜Pd | N𝐿(pm(Pd)) ∧ P𝐿
A(pm(Pd)) holds}; and

• 𝑓ℐ = {(𝑜Pd, 𝑜𝑓.Pd) | N𝐿(f. pm(Pd))} ∪ {(𝑜Pd, 𝑜𝑓−.Pd) | N𝐿(f̄. pm(Pd))},

and verify that ℐ is a model of 𝒯 and 𝑜id falsifies 𝒬.

For a posed question A ⊑ B : Pd1, . . . ,Pd𝑘 → Pd0 and a two-tree counterexample ℐ starting

in 𝑜1 and 𝑜2 (see Lemma 5) we create a model of Π ∪Π𝒯 ∪Π¬𝒬 as follows: we assert

• N𝐿(pm(Pd)) for every path 𝑜1.Pd
ℐ

that exists in ℐ ;

• P𝐿
A(pm(Pd)) whenever 𝑜1.Pd

ℐ ∈ Aℐ
;

• N𝑅(pm(Pd)) for every path 𝑜2.Pd
ℐ

that exists in ℐ ;

• P𝑅
A(pm(Pd)) whenever 𝑜2.Pd

ℐ ∈ Aℐ
; and

• Eqid (pm(Pd)) whenever Pdℐ(𝑜1) ∩ Pdℐ(𝑜2) ̸= ∅.

We extend this to the remaining auxiliary predicates EqPd and N𝑋
Pd in a natural way and verify

that this yields the required model of Π∪Π𝒯 ∪Π¬𝒬. The other direction constructs a two-tree

model of 𝒯 that falsifies 𝒬 using the construction for A ⊑ B twice (once for 𝐿 starting in 𝑜𝐿id
and once for 𝑅 starting in 𝑜𝑅id ) and equating paths 𝑜𝐿id .Pd and 𝑜𝑅id .Pd for which EqPd(0) holds

in the model of Π∪Π𝒯 ∪Π¬𝒬. That yields a two-tree model of 𝒯 in which 𝑜𝐿id and 𝑜𝑅id witness

the violation of 𝒬. □



Corollary 7. Let 𝒯 and 𝒬 be a set-𝒟ℒℱ𝒟ℐ TBox and a posed question, respectively. Then
𝒯 |= 𝒬 is decidable and complete for EXPTIME.

Proof (sketch): It is easy to see from our construction that the size |Π∪Π𝒯 ∪Π¬𝒬| is polynomial

in |𝒯 | + |𝒬|. The result then follows from EXPTIME bound for satisfiability of Ackermann

prefix formulæ [11] and closure of EXPTIME under complement. □

3.1. Set Equality Semantics and Undecidability

Here, we consider where a set semantics for PDDs is assumed, and briefly outline how this leads

to undecidability for the logical consequence problem. In particular, now assume the semantics

for a PDD concept 𝐶 : Pd1, ...,Pd𝑘 → Pd is given as follows:

{𝑥 | ∀ 𝑦 ∈ 𝐶ℐ : (
⋀︀𝑘

𝑖=1 Pd
ℐ
𝑖 ({𝑥}) = Pdℐ𝑖 ({𝑦})) → Pdℐ({𝑥}) = Pdℐ({𝑦})}

Theorem 8. Let 𝒯 be a set-𝒟ℒℱ𝒟ℐ TBox in normal form and 𝒬 a posed question. Then, under
the set equality semantics for PDDs, 𝒯 |= 𝒬 is undecidable.

Proof (sketch): The subsumptions A ⊑ A : 𝑓− → id together with ⊤ ⊑ ∀𝑓.⊥ and ⊤ ⊑ ∃𝑔.A
make the primitive concept A to behave as a nominal (i.e., contains exactly one object in every

model of the above subsumptions). Subsequently asserting, for three such “nominals”, A, B, and

C, that A ⊑ ∀ℎ.B ⊓ ∀𝑘.C and B ⊑ ∀𝑘.C postulates the existence of a triangle in every model

which allows us to apply the construction in [12, Section 5], yielding undecidability using a

tiling argument. □

4. Referring Expression Types and Singularity Diagnosis

We now show how the test for singularity of an 𝑅𝑒 for a given TBox 𝒯 presented in [3] is

easily adapted for set-𝒟ℒℱ𝒟ℐ . This is achieved by appeal to a sequence of logical consequence

problems for subsumptions expressing dependencies with PDDs that are induced by a given 𝑅𝑒.

The subsumptions derive from the following normalization.

Definition 9 (Normalized Referring Expression Types). We write Norm(𝑅𝑒) to refer to an
exhaustive application of the following rewrite rules:

𝑅𝑒 ⊓ (𝑅𝑒1;𝑅𝑒2) ↦→ 𝑅𝑒 ⊓𝑅𝑒1;𝑅𝑒 ⊓𝑅𝑒2
(𝑅𝑒1;𝑅𝑒2) ⊓𝑅𝑒 ↦→ 𝑅𝑒1 ⊓𝑅𝑒;𝑅𝑒2 ⊓𝑅𝑒
∃Pd.(𝑅𝑒1;𝑅𝑒2) ↦→ ∃Pd.𝑅𝑒1; ∃Pd.𝑅𝑒2 □

The definition of Norm is an adaptation of referring expression type normalization in [8] with

the following consequences: (1) ℒ(𝑅𝑒) = ℒ(Norm(𝑅𝑒)), and (2) all preference operators (“;”) are

at the top level of Norm(𝑅𝑒). We call the maximal “;”-free parts of Norm(𝑅𝑒) preference-free
components. The following auxiliary functions will then be used in formulating subsumptions

with PDDs to statically test for singularity of each preference free component.

Pfs({?})= {id}
Pfs(A)= { }

Pfs(∃Pd.𝑅𝑒)= {Pd .Pd | Pd ∈ Pfs(𝑅𝑒)}
Pfs(𝑅𝑒1 ⊓𝑅𝑒2)=Pfs(𝑅𝑒1) ∪ Pfs(𝑅𝑒2)

Con({?})=⊤
Con(A)=A

Con(∃Pd.𝑅𝑒)=∃Pd.Con(𝑅𝑒)
Con(𝑅𝑒1 ⊓𝑅𝑒2)=Con(𝑅𝑒1) ⊓ Con(𝑅𝑒2)



The functions extract a set of paths leading to nominals and a FunDL concept from the preference-

free referring expression type. Altogether, the singularity test in [8, Theorem 20] will now

apply:

Theorem 10. Let 𝒯 be a TBox and 𝑅𝑒 a referring expression type. Then all referring concepts
in ℒ(𝑅𝑒) are singular with respect to 𝒯 if 𝒯 |= Con(𝑅𝑒′) ⊑ (Con(𝑅𝑒′) : Pfs(𝑅𝑒′) → id) for
every preference-free component 𝑅𝑒′ of Norm(𝑅𝑒).

For example, a test for singularity of (5) with respect to TBox 𝒯 would require the following

two subsumptions to be logical consequences of 𝒯 (and note that subsumptions (3) and (6)

above also being logical consequences would be important factors in establishing this):

𝒯 |= 𝐶1 ⊑ (𝐶1 : fname, lname → id)
𝒯 |= 𝐶2 ⊑ (𝐶2 : fname, phonesgroup.phonedom−.phoneran.dialnum → id)

where 𝐶1 = CLIENT ⊓ ∃fname.⊤ ⊓ ∃lname.⊤ and 𝐶2 = CLIENT-FRIEND ⊓ ∃fname.⊤ ⊓
∃phonesgroup.phonedom−.phoneran.⊤ ⊓ ∃phonesgroup.phonedom−.phoneran.dialnum.⊤.

5. Summary and Future Work

The primary incentive for set-𝒟ℒℱ𝒟ℐ stems from an outline of future work in [3] which recog-

nized the need for plural entities in formally capturing JSON array values and for the extension

to referring expression types to accommodate references to such entities. Subsumption (4) and

𝑅𝑒 (5) in our introduction and definitions sections are derived from a case considered in this

earlier work.

The diagnosis of singularity for referring expression types is only one of a number of possi-

bilities. Other criteria are also important and remain avenues for further work on set-𝒟ℒℱ𝒟ℐ ,

in particular that concern the more general issues of identification resolution in query answering

for backend data sources such as SQL engines, as explored in [13]. One example considered

in [8] concerns strong identification (in contrast to singularity, an issue in weak identification):

to determine if any pair of distinct referring concepts in ℒ(𝑅𝑒) must refer to distinct domain

elements, that is, where reasoning about inequality is also important. This becomes a more

complicated issue in set-𝒟ℒℱ𝒟ℐ .

There are also a number of open problems and research issues that remain for set-𝒟ℒℱ𝒟ℐ .

We end with a couple that are more pressing:

• On alternative semantics for PDDs: we have outlined how a set equality semantics leads to

undecidability in Subsection 3.1. However, an alternative non-empty set equality semantics

seems to be straightforward, with an analogous proof of decidability to our non-empty

intersection semantics. The case is far less clear, however, for a “mixed mode” in which a

PDD could involve both.

• On undecidability of knowledge base (KB) consistency (deriving from [12, Section 5]): as

with PFDs, it is necessary to impose restrictions on the use of PDDs for set-𝒟ℒℱ𝒟ℐ KBs

that have ABoxes as well as TBoxes to ensure decidability of KB consistency. This has

been explored extensively for Horn fragments of FunDL dialects and even to fragments

with KB consistency in PTIME [14]. Obtaining analogous results for set-𝒟ℒℱ𝒟ℐ is

desirable.
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