
Towards Extending the Description Logic FL0 with
Threshold Concepts Using Weighted Tree Automata
Oliver Fernández Gil1,3, Pavlos Marantidis2

1Technische Universität Dresden (TU Dresden), Dresden, Germany
2Aristotle University of Thessaloniki, Thessaloniki, Greece
3Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Germany

Abstract
We introduce an extension of the Description Logic ℱℒ0 that allows us to define concepts in an ap-
proximate way. More precisely, we extend ℱℒ0 with a threshold concept constructor of the form 𝐶◁▷ 𝑡

for ◁▷ ∈ {≤, <,≥, >}, whose semantics is given by using a membership distance function (mdf). A
membership distance function 𝑚 assigns to each domain element and concept a distance value expressing
how “close” is such element to being an instance of the concept. Based on this, a threshold concept
𝐶◁▷ 𝑡 is interpreted as the set of all domain elements that have a distance 𝑠 from 𝐶 such that 𝑠 ◁▷ 𝑡. We
provide a framework to obtain membership distance functions based on functions that compare tuples
of languages, and we show how weighted looping tree automata over a semiring can be used to define
membership distance functions for ℱℒ0 concepts.

Keywords
FL0, threshold concepts, tree automata

1. Introduction

Traditional Description Logics (DLs) [1, 2] are based on the semantics of classical first-order
logic. This is very nice, since it allows us to formally represent conceptual knowledge of an
application domain in a well-understood way. However, it can also be seen as a limitation in
modeling certain application domains, whose relevant notions lack a precise definition or such
a definition is very difficult to determine. More precisely, the strict interpretation of concepts
(formulas) in traditional DLs only tells us whether an individual belongs to a concept or not. In
view of this, representing vague or imprecise knowledge within a particular DL may require
concepts of a very big size or may not be possible at all.

To alleviate this, a considerable amount of research has been directed towards extending
DLs with means that would allow us to model (and reason about) imprecise knowledge. Early
examples of this are fuzzy DLs [3, 4, 5], extensions of DLs with rough semantics [6, 7, 8], and
combinations of DLs with logics that can reason about metric spaces [9, 10]. More recently, three
different new approaches have been proposed that allow us to define concepts in an approximate
way, namely, the extensions of the DL 𝒜ℒ𝒞 with automata-based prototype distance functions

DL 2023: 36th International Workshop on Description Logics, September 2–4, 2023, Rhodes, Greece
$ oliver.fernandez@tu-dresden.de (O. Fernández Gil); pavlosfm@math.auth.gr (P. Marantidis)
� 0000-0002-9458-1701 (O. Fernández Gil); 0000-0002-1934-5741 (P. Marantidis)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:oliver.fernandez@tu-dresden.de
mailto:pavlosfm@math.auth.gr
https://orcid.org/0000-0002-9458-1701
https://orcid.org/0000-0002-1934-5741
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

[11] and with weighted combinations of concepts [12, 13], and the family of logics 𝜏ℰℒ(𝑚) which
extend the DL ℰℒ with threshold concepts [14]. The approach proposed in [14] consists of two
main components: a) a membership degree function 𝑚, which instead of giving a value in {0, 1}
to evaluate membership of an individual into a concept 𝐶 , gives a value in [0, 1]; and b) a new
family of concept constructors that can, for example, be used to build a threshold concept 𝐶≥𝑡

from an ℰℒ concept 𝐶 and a value 𝑡 ∈ [0, 1]. The semantics of 𝐶≥𝑡 is then defined as the set of
individuals 𝑑 that belong to 𝐶 with degree (obtained by applying 𝑚 to 𝑑 and 𝐶) at least 𝑡. The
two approaches introduced in [11, 12, 13] are conceptually similar, but use different ways of
defining and combining the two components described above.

In this paper, we extend the DL ℱℒ0 [15] with threshold concepts, by following the general
idea applied to ℰℒ in [14]. The resulting family of logics is called ℱℒ0at(𝑚), where the
parameter 𝑚 now corresponds to a membership distance function. The main difference to [14] is
that now we use the notion of distance instead of membership degrees, to measure “how close”
an element is to being an instance of a concept. Obviously, a key aspect of ℱℒ0at(𝑚) is which
distance function 𝑚 to choose. In this work, we provide a general framework to define such
distance functions for ℱℒ0, which reduces the definition of membership distance functions
to the definition of functions comparing tuples of formal languages. Moreover, we show that
such measures can be defined by using weighted tree automata, which not only offers a more
concrete (yet diverse) form of defining membership distance functions, but also provides a
machinery that allows in many cases to actually compute these functions. A distinctive feature
of this framework is that it allows us to define membership distance functions that can take
into account background knowledge stated by GCIs in an ℱℒ0 TBox. This is not the case for
the approaches proposed in [11, 12], whereas the extension of ℰℒ with threshold concepts has
only been extended to compute membership degrees w.r.t. an acyclic ℰℒ TBox [16].

The paper is structured as follows. In the next section, we formally introduce the DL ℱℒ0,
and recall some related technical notions that are needed in the rest of the paper. In Section 3,
we introduce the family of threshold logics ℱℒ0at(𝑚). We then continue in Section 4, by
describing our framework for defining membership distance functions for ℱℒ0. In Section 5, we
explain how weighted looping tree automata can be used to define and compute membership
distance functions. We finish the paper, by summarizing the contributions of the paper and
giving some ideas of how to move forward.

Due to space constraints, we provide all proofs and additional technical details in the accom-
panying technical report [17].

2. The Description Logic ℱℒ0

We start by formally introducing the DL ℱℒ0. Afterwards, we recall how subsumption (equiva-
lence) between ℱℒ0 concepts can be characterized using language inclusion, and show that
this idea can also be applied to characterize membership of an individual in an ℱℒ0 concept.

2.1. Syntax and semantics

Let NC and NR be finite disjoint sets of concept names and role names, respectively. The set
𝒞ℱℒ0(NC,NR) of ℱℒ0 concept descriptions over NC and NR is obtained by using the concept

constructors conjunction (⊓), universal restriction (∀𝑟.𝐶), and top (⊤) in the following way:

𝐶 ::= ⊤ | 𝐴 | 𝐶 ⊓ 𝐶 | ∀𝑟.𝐶

where 𝐴 ∈ NC, 𝑟 ∈ NR and 𝐶 is an ℱℒ0 concept description. We will often write 𝒞ℱℒ0 in place
of 𝒞ℱℒ0(NC,NR), if the sets NC and NR are clear from the context or irrelevant.

The semantics of ℱℒ0 is defined in the usual way, by using standard first-order interpretations.
An interpretation ℐ = (Δℐ , ·ℐ) consists of a non-empty domain Δℐ and an interpretation
function ·ℐ that assigns subsets 𝐴ℐ ⊆ Δℐ to concept names 𝐴 ∈ NC and binary relations
𝑟ℐ ⊆ Δℐ × Δℐ to role names 𝑟 ∈ NR. The function .ℐ is inductively extended to all ℱℒ0

concepts in 𝒞ℱℒ0(NC,NR) as follows: ⊤ℐ := Δℐ , (𝐶 ⊓𝐷)ℐ := 𝐶ℐ ∩𝐷ℐ , (∀𝑟.𝐶)ℐ := {𝑑 ∈
Δℐ | ∀𝑒 ∈ Δℐ : (𝑑, 𝑒) ∈ 𝑟ℐ ⇒ 𝑒 ∈ 𝐶ℐ}. Given two ℱℒ0 concepts 𝐶 and 𝐷, we say that 𝐶 is
subsumed by 𝐷 (written as 𝐶 ⊑ 𝐷) if 𝐶ℐ ⊆ 𝐷ℐ for all interpretations ℐ . These two concepts
are equivalent (written as 𝐶 ≡ 𝐷) if 𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶 . In addition, 𝐶 is satisfiable if 𝐶ℐ ̸= ∅
for some interpretation ℐ .

An ℱℒ0 TBox is a finite set of general concept inclusions (GCIs), which are expressions of
the form 𝐶 ⊑ 𝐷 where 𝐶,𝐷 ∈ 𝒞ℱℒ0 . We say that an interpretation ℐ is a model of 𝒯 (written
as ℐ |= 𝒯) if it satisfies all the GCIs in 𝒯 , meaning that 𝐶ℐ ⊆ 𝐷ℐ for all 𝐶 ⊑ 𝐷 in 𝒯 . The
subsumption and equivalence relations are now defined modulo the set of models of 𝒯 , and
denoted as ⊑𝒯 and ≡𝒯 , respectively. The notion of satisfiable concept is also defined modulo
the set of models of 𝒯 .

2.2. ℱℒ0 and formal languages

In ℱℒ0, subsumption and equivalence can be characterized via a transition to formal languages,
by utilizing a certain normal form. In particular, the semantics of ℱℒ0 implies that value
restrictions distribute over conjunction, i.e, for all ℱℒ0 concepts 𝐶,𝐷 and roles 𝑟 it holds
that ∀𝑟.(𝐶 ⊓𝐷) ≡ ∀𝑟.𝐶 ⊓ ∀𝑟.𝐷. Using this equivalence as a rewrite rule from left to right,
every ℱℒ0 concept description can be written as a finite conjunction of terms of the form
∀𝑟1.∀𝑟2. · · · ∀𝑟𝑚.𝐴, where 𝑚 ≥ 0, {𝑟1, . . . , 𝑟𝑚} ⊆ NR, and 𝐴 ∈ NC. We can further abbreviate
such a term as ∀𝑤.𝐴, where 𝑤 represents the word 𝑟1 . . . 𝑟𝑚 over the alphabet NR. In case
𝑚 = 0, 𝑤 is the empty word 𝜀, and thus ∀𝜀.𝐴 corresponds to 𝐴. Finally, we can group
together value restrictions with the same concept name, i.e., abbreviate ∀𝑤1.𝐴 ⊓ · · · ⊓ ∀𝑤ℓ.𝐴
by ∀{𝑤1, . . . , 𝑤ℓ}.𝐴, where {𝑤1, . . . , 𝑤ℓ} is a finite language over NR. In addition, we use the
convention that ∀∅.𝐴 corresponds to ⊤. As a result, any two ℱℒ0 concept descriptions 𝐶,𝐷
over NC = {𝐴1, . . . , 𝐴𝑛} and NR can be rewritten in the normal form:

𝐶 ≡ ∀𝐿1.𝐴1 ⊓ · · · ⊓ ∀𝐿𝑛.𝐴𝑛 𝐷 ≡ ∀𝑀1.𝐴1 ⊓ · · · ⊓ ∀𝑀𝑛.𝐴𝑛,

where 𝐿1, . . . , 𝐿𝑛,𝑀1, . . . ,𝑀𝑛 are finite subsets of NR
*. Using this language normal form

(LNF), it was shown in [18] that 𝐶 ⊑ 𝐷 iff 𝑀𝑖 ⊆ 𝐿𝑖 for all 𝑖 = 1, . . . , 𝑛. Since 𝐶 ≡ 𝐷 iff
𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶 , it follows that 𝐶 ≡ 𝐷 iff 𝐿𝑖 = 𝑀𝑖 for all 𝑖 = 1, . . . , 𝑛.

In [19], this characterization of subsumption was extended to non-empty TBoxes, by using
the notion of value restriction sets. Given a concept 𝐶 ∈ 𝒞ℱℒ0 , a concept name 𝐴 ∈ NC, and
an ℱℒ0 TBox 𝒯 , the value restriction set of 𝐶 w.r.t. 𝒯 and 𝐴 is defined as the language:

ℒ𝒯 (𝐶,𝐴) = {𝑤 ∈ NR
* | 𝐶 ⊑𝒯 ∀𝑤.𝐴}.

Using these sets, the above characterizations of subsumption and equivalence can be lifted to
take into account the GCIs in a TBox as follows (see [19]):

𝐶 ⊑𝒯 𝐷 ⇐⇒ ℒ𝒯 (𝐷,𝐴𝑖) ⊆ ℒ𝒯 (𝐶,𝐴𝑖) (𝑖 = 1, . . . , 𝑛),

𝐶 ≡𝒯 𝐷 ⇐⇒ ℒ𝒯 (𝐶,𝐴𝑖) = ℒ𝒯 (𝐷,𝐴𝑖) (𝑖 = 1, . . . , 𝑛).

Essentially, this means that every ℱℒ0 concept description 𝐶 can be uniquely represented by
the tuple of languages

ℒ𝒯 (𝐶) = (ℒ𝒯 (𝐶,𝐴1), . . . ,ℒ𝒯 (𝐶,𝐴𝑛))

and every concept description equivalent to 𝐶 has the same representation.
We will now demonstrate that a similar characterization can be used to describe when

an individual 𝑑 is an instance of a concept description 𝐶 in an interpretation ℐ . Given an
interpretation ℐ , 𝑑 ∈ Δℐ and 𝐴 ∈ NC, we define the following language:

ℒℐ(𝑑,𝐴) = {𝑤 ∈ NR
* | 𝑑 ∈ (∀𝑤.𝐴)ℐ}.

Using these languages, an individual 𝑑 can be represented as a tuple of languages ℒℐ(𝑑) :=
(ℒℐ(𝑑,𝐴1), . . . ,ℒℐ(𝑑,𝐴𝑛)). Moreover, membership in ℱℒ0 can be characterized as follows.

Theorem 1. Given an ℱℒ0 TBox 𝒯 , a model ℐ = (Δℐ , ·ℐ) of 𝒯 , an ℱℒ0 concept 𝐶 , and an
element 𝑑 ∈ Δℐ we have that 𝑑 ∈ 𝐶ℐ ⇐⇒ ℒ𝒯 (𝐶,𝐴) ⊆ ℒℐ(𝑑,𝐴) for every 𝐴 ∈ 𝑁𝐶 .

3. Extending ℱℒ0 with threshold concepts

In this section, we introduce the family of threshold logics ℱℒ0𝑎𝑡(𝑚).

3.1. The family of logics ℱℒ0𝑎𝑡(𝑚)

Threshold concepts for ℱℒ0 are expressions of the form 𝐶◁▷ 𝑠 where 𝐶 is an ℱℒ0 concept,
◁▷ ∈ {<,≤, >,≥}, and 𝑠 is an element of a linearly ordered set (𝑆,≤) with minimum m. The
purpose of these concept constructors is to define sets of individuals of an interpretation ℐ that
may not belong to 𝐶ℐ , but still satisfy some of the properties required by 𝐶 . To quantify the
notion of partial satisfaction, we use a value from 𝑆 that expresses “how far” an individual 𝑑 is
from belonging to 𝐶ℐ , where the m identifies crisp membership, i.e., that 𝑑 ∈ 𝐶ℐ . For instance, if
we consider (𝑆,≤) as the interval [0, 1] with the usual order, one can use the threshold concept
𝐶≤0.2 to capture all individuals that have distance at most 0.2 from belonging to 𝐶ℐ .

To provide the semantics for threshold concepts, we introduce the notion of membership
distance function. Such a function operates as follows: given an interpretation ℐ , it takes an
individual 𝑑 ∈ Δℐ and an ℱℒ0 concept 𝐶 as input, and outputs a value in 𝑆 expressing how far
is 𝑑 from belonging to 𝐶ℐ . Membership distance functions are required to satisfy two properties,
as stated in the following definition.

Definition 1. Given a linearly ordered set with minimum (𝑆,≤,m), a membership distance
function (mdf) 𝑚 is a family of functions containing for every interpretation ℐ a function 𝑚ℐ :
Δℐ × 𝒞ℱℒ0 → 𝑆, such that 𝑚 satisfies the following (for all ℱℒ0 concepts 𝐶 and 𝐷):

M1: for all interpretations ℐ and all 𝑑 ∈ Δℐ : 𝑑 ∈ 𝐶ℐ ⇔ 𝑚ℐ(𝑑,𝐶) = m,

M2: 𝐶 ≡ 𝐷 ⇔ 𝑚ℐ(𝑑,𝐶) = 𝑚ℐ(𝑑,𝐷) for all interpretations ℐ and all 𝑑 ∈ Δℐ .

The first property expresses the intuition that membership distance functions generalize
the notion of classical membership. Regarding M2, it requires equivalence invariance, which
means that 𝑚 should behave the same for concepts that are equivalent, regardless of their
syntactic definition. We are now ready to define the syntax and semantics of our family of
logics ℱℒ0𝑎𝑡(𝑚). Given the sets NC and NR of concept and role names, the set of ℱℒ0𝑎𝑡(𝑚)
concepts is defined as follows:

̂︀𝐶 ::= ⊤ | 𝐴 | ̂︀𝐶 ⊓ ̂︀𝐶 | ∀𝑟. ̂︀𝐶 | 𝐸◁▷ 𝑠,

where 𝐴 ∈ NC, 𝑟 ∈ NR, ◁▷ ∈ {<,≤, >,≥}, 𝑠 ∈ 𝑆, 𝐸 is an ℱℒ0 concept description, and ̂︀𝐶 is
a ℱℒ0𝑎𝑡(𝑚) concept description. Concepts of the form 𝐸◁▷ 𝑠 are called threshold concepts.

The semantics of ℱℒ0𝑎𝑡(𝑚) concept descriptions is defined completely analogously to the
semantics of classical ℱℒ0 concepts, but additionally using the parameter distance function 𝑚
to interpret threshold concepts in the following way:

[𝐸◁▷ 𝑠]
ℐ := {𝑑 ∈ Δℐ | 𝑚ℐ(𝑑,𝐸) ◁▷ 𝑠}.

The following is a direct consequence of requiring property M1.

Proposition 1. For every ℱℒ0 concept description 𝐶 it holds that 𝐶≤m ≡ 𝐶 and 𝐶>m ≡ ¬𝐶 ,
where the semantics of negation is (¬𝐶)ℐ = Δℐ ∖ 𝐶ℐ .

Essentially, this tells us that the addition of threshold concepts allows for expressing the
negation of ℱℒ0 concept descriptions. Therefore, differently from ℱℒ0, there are unsatisfiable
ℱℒ0𝑎𝑡(𝑚) concept descriptions, e.g., 𝐴 ⊓𝐴>m.

3.2. Membership distance functions and TBoxes

An important aspect when using DLs is to have the possibility to formulate (and take into
account) terminological knowledge, which in DLs is expressed by GCIs in a TBox. For the
family of logics ℱℒ0at(𝑚), the most simple and natural form of such TBox is a plain ℱℒ0 TBox.
For instance, we can define the ℱℒ0𝑎𝑡(𝑚) concept descriptions ∀𝑟.(∀𝑠.𝐴)<𝑠 and ∀𝑟.(∀𝑟.𝐵)<𝑠

w.r.t. the following TBox:

𝒯 := {∀𝑠.𝐴 ⊑ ∀𝑟.𝐵, ∀𝑟.𝐵 ⊑ ∀𝑠.𝐴}.

Note that, although ∀𝑠.𝐴 ̸≡ ∀𝑟.𝐵, they are actually equivalent modulo 𝒯 . Therefore, it should be
the case that (∀𝑠.𝐴)<𝑠 ≡𝒯 (∀𝑟.𝐵)<𝑠 and ∀𝑟.(∀𝑠.𝐴)<𝑠 ≡𝒯 ∀𝑟.(∀𝑟.𝐵)<𝑠 hold in any particular
logic ℱℒ0𝑎𝑡(𝑚). However, this will not always be the case, since the semantics of (∀𝑠.𝐴)<𝑠

and (∀𝑟.𝐵)<𝑠 depends on the distance function 𝑚, but 𝑚 need not take into account the GCIs
in 𝒯 . Hence, to properly define the semantics of ℱℒ0𝑎𝑡(𝑚) w.r.t. an ℱℒ0 TBox 𝒯 , we need to
make 𝑚 aware of the GCIs in 𝒯 . To this end, we slightly extend the definition of membership
distance functions given in Definition 1 to a larger family of functions.

Definition 2. Given a linearly ordered set with minimum (𝑆,≤,m), a membership distance
function (mdf) 𝑚 is a family of functions containing for every ℱℒ0 TBox 𝒯 and model ℐ of 𝒯 a
function 𝑚ℐ,𝒯 : Δℐ × 𝒞ℱℒ0 → 𝑆, such that 𝑚 satisfies the following (for all TBoxes 𝒯 and ℱℒ0

concepts 𝐶 and 𝐷):

M1′ : for all ℐ |= 𝒯 and all 𝑑 ∈ Δℐ : 𝑑 ∈ 𝐶ℐ ⇔ 𝑚ℐ,𝒯 (𝑑,𝐶) = m,

M2′ : 𝐶 ≡𝒯 𝐷 ⇔ 𝑚ℐ,𝒯 (𝑑,𝐶) = 𝑚ℐ,𝒯 (𝑑,𝐷) for all ℐ |= 𝒯 all 𝑑 ∈ Δℐ .

Hence, in the presence of an ℱℒ0 TBox 𝒯 , the semantics of ℱℒ0𝑎𝑡(𝑚) concepts is defined
by using 𝑚ℐ,𝒯 to interpret threshold concepts 𝐸◁▷ 𝑠 in any model ℐ of 𝒯 . In the next sections,
we will provide more concrete ways of defining distance functions w.r.t. ℱℒ0 TBoxes.

Finally, we would like to be able to state GCIs containing threshold concepts, e.g.,
∀𝑟.(∀𝑠.𝐴)≥ 𝑠 ⊑ ∀𝑟.𝐵. However, as pointed out in [16] for the family of threshold logics
𝜏ℰℒ(𝑚), obtaining an appropriate semantics for TBoxes containing threshold concepts is not
entirely trivial. We will consider this in future work.

4. Membership distance functions for ℱℒ0

In this section, we introduce a general framework to define membership distance functions
for ℱℒ0. To this end, we exploit the connection between ℱℒ0 and formal languages to obtain
a way of defining distance functions in terms of language containment distances, which are
functions that compare tuples of languages. Finally, we describe a particular form that such
containment distances can have, and provide concrete examples that can be derived from it.

4.1. Using tuples of languages to define membership distance functions

The idea of using tuples of languages to approximate the semantics of ℱℒ0 is not new. In
[20, 21, 22], the authors exploit the fact that ℱℒ0 concepts can be represented as tuples of
languages, to use these tuples to define concept comparison measures (CCMs) between ℱℒ0

concepts. Intuitively, a CCM generalizes classical equivalence (subsumption), by assigning to
a pair of concepts (𝐶,𝐷) a degree to which equivalence (subsumption) between 𝐶 and 𝐷 is
satisfied. Such measures are defined in [20, 21, 22] by using the following general approach:1

1. Translate the concepts 𝐶 and 𝐷 into the tuples of languages ℒ𝒯 (𝐶) and ℒ𝒯 (𝐷).
2. Compare the tuples ℒ𝒯 (𝐶) and ℒ𝒯 (𝐷) by using a function c that assigns values from a

numerical domain to tuples of languages.
3. The value c(ℒ𝒯 (𝐶),ℒ𝒯 (𝐷)) is then used to define the value of the CCM on 𝐶 and 𝐷.

Since crisp membership in ℱℒ0 can also be characterized by using tuples of languages (see
Theorem 1), we employ a similar approach to define membership distance functions for ℱℒ0.
More precisely, we define membership distance functions as functions that compare tuples of
languages, i.e., 𝑚ℐ,𝒯 (𝑑,𝐶) is defined by comparing the tuples ℒ𝒯 (𝐶) and ℒℐ(𝑑). Clearly, not
every function comparing tuples of languages yields a membership distance function, i.e., a

1In [20, 21], CCMs are only defined w.r.t. the empty TBox, i.e., by using ℒ∅(𝐶) and ℒ∅(𝐷).

family of functions satisfying the properties M1′ and M2′. For this reason, we introduce the
notion of language containment distance (lcd), which is formally defined as follows.

Definition 3. Let l = (𝑆,≤,m) be a linearly ordered set with minimum m. In addition, let Σ be
an alphabet and ℓ a positive integer. An ℓ-language containment distance over Σ and l (ℓ-lcd) is
a function c : (2Σ

*
)ℓ × (2Σ

*
)ℓ → 𝑆 that satisfies the property

c((𝐿1, . . . , 𝐿ℓ), (𝑀1, . . . ,𝑀ℓ)) = m ⇐⇒ 𝐿𝑖 ⊆ 𝑀𝑖 for all 𝑖, 1 ≤ 𝑖 ≤ ℓ. (1)

We can now define a mechanism that, given NC = {𝐴1, . . . , 𝐴𝑛} and an 𝑛-lcd c over Σ = NR

and l = (𝑆,≤,m), yields a distance function 𝑚c for ℱℒ0 concepts defined over NC and NR.

Definition 4. Let c be a 𝑛-lcd over NR and l = (𝑆,≤,m). Then, for each ℱℒ0 TBox 𝒯 and
interpretation ℐ that is a model of 𝒯 , the function 𝑚ℐ,𝒯

c : Δℐ × 𝒞ℱℒ0 ↦→ 𝑆 is defined as:

𝑚ℐ,𝒯
c (𝑑,𝐶) = c

(︀
ℒ𝒯 (𝐶),ℒℐ(𝑑)

)︀
.

The following lemma shows that the family of functions 𝑚c = {𝑚ℐ,𝒯
c |

𝒯 is an ℱℒ0 TBox, ℐ |= 𝒯 } induced by an lcd c satisfies the required properties, i.e., M1′

and M2′, and hence the above framework can be used to define membership distance functions.

Lemma 1. Let c be an 𝑛-lcd over NR and l = (𝑆,≤,m). Then, 𝑚c is a membership distance
function.

4.2. Examples of language containment distances

One way to define ℓ-language containment distances is, given tuples (𝐿1, . . . , 𝐿ℓ) and
(𝑀1, . . . ,𝑀ℓ), to use a 1-language containment distance to compare each pair of languages
(𝐿𝑖,𝑀𝑖), and then apply an appropriate function that combines the obtained ℓ values into
a single one [21]. A function 𝑓 : 𝑆ℓ → 𝑆 is called an ℓ-ary combining function if it is
commutative: 𝑓(𝑎1, . . . , 𝑎ℓ) = 𝑓(𝑎𝜋(1), . . . , 𝑎𝜋(ℓ)) for all permutations 𝜋 of indices 1, . . . , ℓ,
monotone: 𝑎1 ≤ 𝑏1, . . . , 𝑎ℓ ≤ 𝑏ℓ =⇒ 𝑓(𝑎1, . . . , 𝑎ℓ) ≤ 𝑓(𝑏1, . . . , 𝑏ℓ), and m-closed:
𝑓(𝑎1, . . . , 𝑎ℓ) = m ⇐⇒ 𝑎1 = · · · = 𝑎ℓ = m.

For instance, for the interval [0, 1] and the set of non-negative reals, with m = 0 and the
usual order, examples of combining functions are the maximum, average, and the sum function.2

The following is an easy consequence of the properties required for combining functions and
1-language containment distances.

Lemma 2. Let c1 be a 1-language containment distance over Σ and l, and 𝑓 an ℓ-ary combining
function over 𝑆. Further, let c : (2Σ

*
)ℓ × (2Σ

*
)ℓ → 𝑆 be defined as:

c((𝐿1, . . . , 𝐿ℓ), (𝑀1, . . . ,𝑀ℓ)) := 𝑓(c1(𝐿1,𝑀1), . . . , c
1(𝐿ℓ,𝑀ℓ)).

Then, c is an ℓ-language containment distance over Σ and l.

2For the [0, 1] interval, sum should be modified to bounded sum, i.e., 𝑏𝑠(𝑎1, . . . , 𝑎ℓ) := min(
∑︀ℓ

𝑖=1 𝑎𝑖, 1).

We now provide some examples of ℓ-lcds that are obtained by using 1-language containment
distances and ℓ-ary combining functions. These are defined over the set of non-negative reals.

• c0(𝐿,𝑀) = 0 if 𝐿 ⊆ 𝑀 and 1 otherwise. This is the simplest form of a 1-lcd, since it
simply checks whether the first language is contained in the second one or not. It can be
extended to an ℓ-lcd by using maximum, sum, or average:

– c0̄
(︀
(𝐿1, . . . , 𝐿ℓ), (𝑀1, . . . ,𝑀ℓ)

)︀
= max(c0(𝐿1,𝑀1), . . . , c0(𝐿ℓ,𝑀ℓ)),

– ̂︀c0(︀(𝐿1, . . . , 𝐿ℓ), (𝑀1, . . . ,𝑀ℓ)
)︀
=

∑︀𝑛
𝑖=1 c0(𝐿𝑖,𝑀𝑖),

– c0̃
(︀
(𝐿1, . . . , 𝐿ℓ), (𝑀1, . . . ,𝑀ℓ)

)︀
= 1

𝑛

∑︀ℓ
𝑖=1 c0(𝐿𝑖,𝑀𝑖).

Intuitively, the first function checks whether containment is violated in any of the language
pairs, the second one counts in how many of them a violation occurs, while the last one
gives the percentage of pairs in which a violation of containment occurs.

• c1(𝐿,𝑀) = 2−𝑚, where 𝑚 = min{|𝑤| | 𝑤 ∈ 𝐿 ∖ 𝑀}. Obviously, if 𝐿 ⊆ 𝑀 then
𝐿 ∖𝑀 = ∅, and hence 𝑚 = +∞, meaning that 𝑐1(𝐿,𝑀) = 0. This function searches for
the shortest word 𝑤 that occurs in 𝐿 but not in 𝑀 , and assigns a greater value to shorter
ones than longer ones. Once again, we can extend c1 to an ℓ-lcd by using any of the
functions described for c0. If we use maximum, we are essentially looking for the shortest
violation overall, with summing we are aggregating the penalties for the violations in the
different pairs, while taking the average does not hold much intuitive meaning.

• c2(𝐿,𝑀) = 𝜇(𝐿 ∖𝑀), where 𝜇(𝐾) =
∑︀

𝑤∈𝐾(2|Σ|)−|𝑤|. This function takes all viola-
tions into account, but longer words are penalized less than shorter ones. Extending c2
to an ℓ-lcd by applying maximum yields a containment distance that searches for the
“largest” difference in any pair of languages, whereas summing over the different pairs
of languages corresponds to taking into account all the differences that occur. Finally,
taking the average has the obvious meaning.

It is easy to verify that, by construction, c0, c1, c2 are indeed 1-lcds, since they only output the
value m = 0 iff the language in their first argument is contained in the one in the second.

Finally, since the main reason we employ lcds is to define membership distance functions, let
us examine the meaning of these functions when applied to ℒ𝒯 (𝐶) and ℒℐ(𝑑). It should be
clear that if 𝑤 is a violation of containment, this means that 𝐶 ⊑𝒯 ∀𝑤.𝐴 (for some 𝐴 ∈ NC),
while 𝑑 /∈ (∀𝑤.𝐴)ℐ . As a result, c0 (extended with the max function) simply checks whether
𝑑 ∈ 𝐶ℐ (see Theorem 1), outputting 0, or not, outputting 1. Furthermore, the idea behind c1
and c2 that longer violations should count less than shorter ones corresponds to the view that
differences “closer” to 𝑑 are more important than ones further away.

5. Computability

In the previous section, we described how to reduce the definition of membership distance
functions to defining measures that compare tuples of languages: 𝑚ℐ,𝒯 (𝑑,𝐶) corresponds
to a value that results from comparing the tuples ℒ𝒯 (𝐶) and ℒℐ(𝑑). In this section, we first
demonstrate how to compute and (finitely) represent these tuples of (potentially) infinite
languages, and how to assign such a value by making use of tree automata with weights.

To this end, after establishing a correspondence between tuples of languages and infinite
trees, we exhibit how these tuples can be computed and encoded using looping tree automata
(LTAs) accepting the corresponding trees. Subsequently, we discuss how weighted looping tree
automata perform the function of assigning values to trees and how they can be combined with
the aforementioned LTAs. Overall, we obtain a concrete way to define membership distance
functions that can be computed.

5.1. From tuples of languages to trees

The idea of representing tuples of languages using infinite trees has appeared in [18, 23, 19, 22].
Initially, we provide the formal definition of infinite trees, before we discuss how they can be
used to represent tuples of languages.

Definition 5. Let Σ = {𝜎1, . . . , 𝜎𝑘}be a non-empty, finite set of symbols. Given a finite set of
labels 𝐿, an 𝐿-labeled Σ-tree is a mapping 𝑡 : Σ* → 𝐿 that assigns a label 𝑡(𝑤) ∈ 𝐿 to every
node 𝑤 ∈ Σ*. The set of all 𝐿-labeled Σ-trees is denoted as 𝑇𝜔

Σ,𝐿.

Intuitively, the nodes of a Σ-tree 𝑡 correspond to finite words in Σ*, where the empty word 𝜀
is represented by the root of 𝑡 and every node 𝑤 has 𝑘 children corresponding to the words
𝑤𝜎1, . . . , 𝑤𝜎𝑘. Furthermore, if we label each node of the tree with either 0 or 1, we can define
a language over Σ by considering the words 𝑤 ∈ Σ for which 𝑡(𝑤) = 1. If the labels were pairs
of 0s and 1s, then two languages can be defined, one for each component, and so on.

More generally, the following mapping makes the connection between tuples of languages
and infinite trees explicit.

Definition 6. Let Σ be a finite set of symbols and ℓ ∈ N. We define the mapping 𝛾ℓ :
(︀
2Σ

*)︀ℓ →
𝑇𝜔
Σ,{0,1}ℓ as follows: given a tuple of languages L = (𝐿1, . . . , 𝐿ℓ) over Σ, we set 𝛾ℓ(L) := 𝑡L

where 𝑡L : Σ* → {0, 1}ℓ is the Σ-tree such that

𝑡L(𝑤) := (𝑥1, . . . , 𝑥ℓ), where 𝑥𝑖 = 1 iff 𝑤 ∈ 𝐿𝑖 (for all 𝑤 ∈ Σ*).

It is easy to see that 𝛾ℓ is a bijection between tuples of ℓ languages over the alphabet Σ and
{0, 1}ℓ-labeled Σ-trees. Given 𝑡 ∈ 𝑇𝜔

Σ,{0,1}ℓ , the inverse function yields the tuple 𝛾−1
ℓ (𝑡) =

(𝐿1, . . . , 𝐿ℓ) where 𝐿𝑖 consists of the words 𝑤 for which the 𝑖-th component of 𝑡(𝑤) is 1.
In particular, if we fix Σ = NR and a linear order between the concept names in NC =

(𝐴1, . . . , 𝐴𝑛), the tuple of languages ℒ𝒯 (𝐶) (likewise for ℒℐ(𝑑)) can be represented by the
NR-tree 𝑡ℒ𝒯 (𝐶) with labels from {0, 1}𝑛 defined as:

𝑡ℒ𝒯 (𝐶)(𝑤) := (𝑥1, . . . , 𝑥𝑛), where 𝑥𝑖 = 1 iff 𝑤 ∈ ℒ𝒯 (𝐶,𝐴𝑖) (for all 𝑤 ∈ Σ*).

Note that ℒ𝒯 (𝐶) and ℒℐ(𝑑) can be put together in a single tree, by using labels of length 2𝑛.
So far, we have seen how concept descriptions and individuals in an interpretation can be

represented as tuples of languages, which in turn correspond to (infinite) trees. Next, we need
to represent said trees in a finite way. Obviously, this is not always possible for infinite trees.
However, for the needs of our work, the relevant trees are regular (see [22, 19] for ℒ𝒯 (𝐶) and
the proof of Prop. 3 [17] for ℒℐ(𝑑) when ℐ is finite). There are different ways to represent
regular trees in a finite way [24]. Here, we use looping tree automata for this purpose.

Definition 7 (Looping tree automaton (LTA)). A looping tree automaton is a tuple 𝒜 =
(Σ, 𝑄, 𝐿,Δ, 𝐼) where Σ = {𝜎1, . . . , 𝜎𝑘} is a finite set of symbols, 𝑄 is a finite set of states, 𝐿
is a finite set of labels, Δ ⊆ 𝑄 × 𝐿 ×𝑄𝑘 is the transition relation and 𝐼 ⊆ 𝑄 is a set of initial
states. A run of this automaton on a tree 𝑡 ∈ 𝑇𝜔

Σ,𝐿 is a 𝑄-labeled Σ-tree 𝜌 : Σ* → 𝑄 such that:
𝜌(𝜀) ∈ 𝐼 and (𝜌(𝑤), 𝑡(𝑤), 𝜌(𝑤𝜎1), . . . , 𝜌(𝑤𝜎𝑘)) ∈ Δ for all 𝑤 ∈ Σ*. The tree language ℒ(𝒜)
recognized by 𝒜 is the set of all trees 𝑡 ∈ 𝑇𝜔

Σ,𝐿 such that 𝒜 accepts 𝑡, i.e., 𝒜 has a run on 𝑡. If
ℒ(𝒜) = {𝑡0}, then we say that 𝒜 is representing the tree 𝑡0.

Essentially, if an LTA is representing a single tree, it is a finite representation of this tree. In
[22] it was proved that regular trees can always be represented by an LTA. In particular, for the
case of ℒ𝒯 (𝐶), the following result was shown in [19].

Proposition 2 ([19]). Let 𝐶 be an ℱℒ0 concept description and 𝒯 an ℱℒ0 TBox. Then, one can
construct an LTA that represents 𝑡ℒ𝒯 (𝐶) in time exponential in the size of 𝐶 and 𝒯 .

For ℒℐ(𝑑), however, one has to be more careful. For infinite interpretations, the languages
ℒℐ(𝑑,𝐴) need not be regular (and hence also the tree 𝑡ℒℐ(𝑑)). Still, for finite interpretations
these languages are always regular (as Prop. 3 below shows), and hence can be represented
by deterministic finite automata. Intuitively, we can view a finite interpretation as a finite
automaton, where the individuals are states and role connections correspond to transitions. It
is then not difficult to verify that for an individual 𝑑 and a concept name 𝐴 one can recursively
follow the paths in the graph to check whether 𝑑 ∈ (∀𝑤.𝐴)ℐ or not. The language ℒℐ(𝑑,𝐴)
will be the solution of a set of language equations. Overall, we have the following result.

Proposition 3. Let NC = {𝐴1, . . . , 𝐴𝑛}. Given a finite interpretation ℐ = (Δℐ , ·ℐ) and 𝑑 ∈ Δℐ

one can construct DFAs that recognize the languages ℒℐ(𝑑,𝐴1), . . . ,ℒℐ(𝑑,𝐴𝑛) and a looping tree
automaton that is representing the tree 𝑡ℒℐ(𝑑) in time exponential in the size of ℐ and NC.

5.2. Assigning values to trees

We now want to assign values from a proper (numerical) domain to trees (that correspond to
tuples of languages). This is exactly the operation of infinitary tree series, for which the assigned
values are usually elements of a semiring, i.e., a domain 𝑆 equipped with two operations, the one
traditionally called “addition” and the other “multiplication”, that satisfy certain mathematical
properties. Formally, an infinitary tree series ℎ over the alphabet 𝐿 and semiring 𝒮 is a mapping
ℎ : 𝑇𝜔

Σ,𝐿 → 𝑆. The class of all infinitary tree series over 𝐿 and 𝒮 is denoted by 𝒮⟨⟨𝑇𝜔
Σ,𝐿⟩⟩.

One way to (finitely) define such series, is using a weighted looping tree automaton (wLTA)
([22]). Intuitively, a wLTA ℳ attributes a weight, i.e., a value from a semiring to every transition,
and “multiplies” all the weights accumulated during a certain run on a tree. Finally, it “sums”
the weights of all the runs to determine the value that will be assigned to the input tree. For
this purpose, it is clear that the underlying semiring should admit suitable infinite sums and
products. In totally complete commutative semirings, addition and multiplication can be suitably
extended to infinite sums and countably infinite products (see [25] for formal definitions).

Furthermore, since we want the output values to be used for membership distance functions,
we require that the domain of 𝒮 is also equipped with a linear order and has a minimum
element m. This is not a heavy restriction, since most numeric semirings are already equipped

with such an order. Examples are the semiring of natural numbers (N ∪ {+∞},+, ·, 0, 1),
the tropical semiring 𝑇𝑟𝑜𝑝 = (N ∪ {+∞},min,+,+∞, 0), and its real counterpart R𝑖𝑛𝑓 =
(R≥0∪{+∞}, inf,+,+∞, 0), all equipped with the usual order and 0 as the minimum element.

The infinitary tree series ||ℳ|| ∈ 𝒮⟨⟨𝑇𝜔
Σ,𝐿⟩⟩ defined by the wLTA ℳ is called the behavior

of the wLTA ℳ. It assigns to every tree 𝑡 ∈ 𝑇𝜔
Σ,𝐿 a value (||ℳ||, 𝑡). As demonstrated in [22],

wLTAs can be used to define functions over tuples of languages, viewed as infinite trees. In
fact, the language containment distances described in Section 4 are variations of the functions
defined in [22], and they can also be defined by a wLTA by using similar constructions.

It is also shown in [22] that, for certain semirings, a wLTA ℳ can be combined with an LTA
𝒜 representing a tree 𝑡 in order to compute the value (||ℳ||, 𝑡) in time polynomial in the size of
ℳ and 𝒜. As a result, given a wLTA ℳ defining a language containment distance c, the LTAs
obtained from ℒ𝒯 (𝐶) and ℒℐ(𝑑) can be combined with ℳ in order to compute 𝑚ℐ,𝒯

c (𝑑,𝐶),
i.e., the value (||ℳ||, 𝑡𝐶,ℐ) where 𝑡𝐶,ℐ is the single tree representing ℒ𝒯 (𝐶) and ℒℐ(𝑑). This
“computable” family of wLTAs includes the wLTAs defining the language containment distances
described in Section 4. Overall we obtain the following result.

Theorem 2. Given a wLTA ℳ that computes a language containment distance c, an ℱℒ0 TBox 𝒯 ,
a finite model ℐ of 𝒯 , 𝑑 ∈ Δℐ , and 𝐶 ∈ 𝒞ℱℒ0 , the value 𝑚ℐ,𝒯

c (𝑑,𝐶) is computable. In particular,
this holds for all concrete language containment distances c defined in Section 4.

6. Conclusion and Future Work

We have introduced a family of DLsℱℒ0𝑎𝑡(𝑚) that extends the DLℱℒ0 with threshold concepts,
whose semantics is defined by using a membership distance function 𝑚. We have demonstrated
how membership of an indvidual in anℱℒ0 concept can be characterized using formal languages,
similarly to existing characterizations of subsumption and equivalence between ℱℒ0 concepts.
Utilizing this characterization, we derived a framework for obtaining membership distance
functions by employing functions that compare tuples of formal languages, namely language
containment distances. Finally, we exhibited how weighted looping tree automata can be
exploited to derive concrete and computable functions through our framework.

The natural continuation in this line of work is to study reasoning problems in ℱℒ0𝑎𝑡(𝑚)
for particular membership distance functions. A powerful tool when reasoning in ℱℒ0 is the
notion of a functional model of a concept description 𝐶 [19], i.e., an interpretation that has
the shape of an infinite tree, where every node has exactly one 𝑟 successor for every 𝑟 ∈ NR,
and the root of which belongs to (the interpretation of) 𝐶 . Among others, subsumption ([19])
and instance checking ([26]) can be decided using said models, since every ℱℒ0 concept has a
functional model. One could reasonably assume that a similar technique could be employed
for ℱℒ0𝑎𝑡(𝑚). For example, in order to investigate satisfiability of a concept description, the
search space could potentially be reduced to the set of functional models. However, this is not
possible in ℱℒ0𝑎𝑡(𝑚), as a result of Proposition 1. More precisely, the concept description̂︀𝐶 := ∀𝑟.(𝐴 ⊓ 𝐴>m) is satisfiable but it requires that any individual 𝑑 in the extension of ̂︀𝐶
has no 𝑟 successors. As a result, this concept description has no functional model for any
membership distance function. It would be interesting to investigate if a such an approach can
be used in order to reason in this threshold setting.

References

[1] F. Baader, I. Horrocks, C. Lutz, U. Sattler, An Introduction to Description Logic, Cambridge
University Press, 2017.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications, Cambridge University
Press, 2003.

[3] J. Yen, Generalizing term subsumption languages to fuzzy logic, in: J. Mylopoulos, R. Reiter
(Eds.), Proceedings of the 12th International Joint Conference on Artificial Intelligence,
1991, Morgan Kaufmann, 1991, pp. 472–477.

[4] U. Straccia, Reasoning within fuzzy description logics, J. of Artificial Intelligence Research
14 (2001) 137–166.

[5] P. Hájek, Making fuzzy description logic more general, Fuzzy Sets and Systems 154 (2005)
1–15.

[6] S. Schlobach, M. C. A. Klein, L. Peelen, Description logics with approximate definitions -
precise modeling of vague concepts, in: IJCAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, 2007, pp.
557–562.

[7] C. d’Amato, N. Fanizzi, F. Esposito, T. Lukasiewicz, Representing uncertain concepts
in rough description logics via contextual indiscernibility relations, in: Uncertainty
Reasoning for the Semantic Web II, International Workshops URSW 2008-2010 Held at
ISWC and UniDL 2010 Held at FLoC, Revised Selected Papers, volume 7123 of Lecture
Notes in Computer Science, Springer, 2013, pp. 300–314.

[8] R. Peñaloza, T. Zou, Roughening the envelope, in: Frontiers of Combining Systems - 9th
International Symposium, FroCoS 2013, Nancy, France, September 18-20, 2013. Proceedings,
volume 8152 of Lecture Notes in Computer Science, Springer, 2013, pp. 71–86.

[9] C. Lutz, F. Wolter, M. Zakharyaschev, A tableau algorithm for reasoning about concepts
and similarity, in: Automated Reasoning with Analytic Tableaux and Related Methods, In-
ternational Conference, TABLEAUX 2003, Rome, Italy, September 9-12, 2003. Proceedings,
volume 2796 of Lecture Notes in Computer Science, Springer, 2003, pp. 134–149.

[10] M. Sheremet, D. Tishkovsky, F. Wolter, M. Zakharyaschev, A logic for concepts and
similarity, J. of Logic and Computation 17 (2007) 415–452.

[11] F. Baader, A. Ecke, Reasoning with prototypes in the description logic 𝒜ℒ𝒞 using weighted
tree automata, in: Language and Automata Theory and Applications - 10th International
Conference, LATA 2016, Prague, Czech Republic, March 14-18, 2016, Proceedings, volume
9618 of Lecture Notes in Computer Science, Springer, 2016, pp. 63–75.

[12] P. Galliani, O. Kutz, D. Porello, G. Righetti, N. Troquard, On knowledge dependence in
weighted description logic, in: GCAI 2019. Proceedings of the 5th Global Conference
on Artificial Intelligence, Bozen/Bolzano, Italy, 17-19 September 2019, volume 65 of EPiC
Series in Computing, EasyChair, 2019, pp. 68–80.

[13] D. Porello, O. Kutz, G. Righetti, N. Troquard, P. Galliani, C. Masolo, A toothful of concepts:
Towards a theory of weighted concept combination, in: Proceedings of the 32nd Interna-
tional Workshop on Description Logics, Oslo, Norway, June 18-21, 2019, volume 2373 of
CEUR Workshop Proceedings, CEUR-WS.org, 2019.

[14] F. Baader, G. Brewka, O. Fernández Gil, Adding threshold concepts to the description logic
ℰℒ, in: Proc. of the 10th Int. Symp. on Frontiers of Combining Systems (FroCoS 2015),
volume 9322 of Lecture Notes in Computer Science, Springer, 2015, pp. 33–48.

[15] F. Baader, Using automata theory for characterizing the semantics of terminological cycles,
Ann. Math. Artif. Intell. 18 (1996) 175–219.

[16] F. Baader, O. Fernández Gil, Extending the description logic 𝜏ℰℒ(deg) with acyclic
TBoxes, in: Proc. of the 22nd Eur. Conf. on Artificial Intelligence (ECAI 2016), volume 285
of Frontiers in Artificial Intelligence and Applications, IOS Press, 2016, pp. 1096–1104.

[17] O. Fernández Gil, P. Marantidis, Towards Extending the Description Logic ℱℒ0 with
Threshold Concepts Using Weighted Tree Automata, LTCS-Report 23-04, Chair for Au-
tomata Theory, Institute for Theoretical Computer Science, Technische Universität Dres-
den, Dresden, Germany, 2023. See http://lat.inf.tu-dresden.de/research/reports.html.

[18] F. Baader, P. Narendran, Unification of concept terms in description logics, J. of Symbolic
Computation 31 (2001) 277–305.

[19] M. Pensel, An automata based approach for subsumption w.r.t. general concept inclusions
in the description logic ℱℒ0, Master’s thesis, Chair for Automata Theory, TU Dresden,
Germany. See http://lat.inf.tu-dresden.de/research/mas., 2015.

[20] T. Racharak, B. Suntisrivaraporn, Similarity measures for ℱℒ0 concept descriptions from
an automata-theoretic point of view, in: 6th International Conference of Information and
Communication Technology for Embedded Systems (IC-ICTES), 2015, pp. 1–6.

[21] F. Baader, P. Marantidis, A. Okhotin, Approximate unification in the description logic
ℱℒ0, in: Proc. of the 15th Eur. Conf. on Logics in Artificial Intelligence (JELIA’2016),
volume 10021 of Lecture Notes in Computer Science, Springer, 2016, pp. 49–63.

[22] F. Baader, O. Fernández Gil, P. Marantidis, Approximation in description logics: How
weighted tree automata can help to define the required concept comparison measures in
ℱℒ0, in: Proceedings of the 11th International Conference on Language and Automata
Theory and Applications (LATA 2017), volume 10168 of Lecture Notes in Computer Science,
Springer, 2017, pp. 3–26.

[23] F. Baader, A. Okhotin, On language equations with one-sided concatenation, Fundamenta
Informaticae 126 (2013) 1–35.

[24] W. Thomas, Automata on infinite objects, in: Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B), The MIT Press, 1990, pp. 133–192.

[25] G. Rahonis, Weighted muller tree automata and weighted logics, J. Autom. Lang. Comb.
12 (2007) 455–483.

[26] F. Baader, P. Marantidis, M. Pensel, The data complexity of answering instance queries in
ℱℒ0, in: P. Champin, F. Gandon, M. Lalmas, P. G. Ipeirotis (Eds.), Companion of the The
Web Conference 2018 on The Web Conference 2018, WWW 2018, Lyon , France, April
23-27, 2018, ACM, 2018, pp. 1603–1607.

	1 Introduction
	2 The Description Logic FL0
	2.1 Syntax and semantics
	2.2 FL0 and formal languages

	3 Extending FL0 with threshold concepts
	3.1 The family of logics FL0at(m)
	3.2 Membership distance functions and TBoxes

	4 Membership distance functions for FL0
	4.1 Using tuples of languages to define membership distance functions
	4.2 Examples of language containment distances

	5 Computability
	5.1 From tuples of languages to trees
	5.2 Assigning values to trees

	6 Conclusion and Future Work

