
Extending OWL2 Manchester Syntax to Include
Missing Features from OWL2 Abstract Syntax
Björn Gehrke1, Till Mossakowski1

1Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

Abstract
There are multiple serialisations available to store OWL2 ontologies. While the language structure is
specified in Abstract Syntax, a more human-friendly serialisation is Manchester Syntax. As both are
serialisations of OWL2, they should be equipotent. However, some features are known to be inexpressible
in Manchester Syntax. Most commonly known is the lack of expressing general concept inclusions in
Manchester Syntax. This paper analyses the Manchester Syntax grammar and identifies a total of 19
inexpressible features and eight minor errors in the current Manchester Syntax grammar. Furthermore,
changes to the Manchester Syntax grammar are proposed to make it equipotent to Abstract Syntax. The
proposed changes are implemented in the OWL API1.

Keywords
OWL2, Manchester Syntax, GCI

1. Introduction

The “Web Ontology Language 2” (OWL2) [1] is commonly used for ontology development.
There are multiple syntax styles to serialise an OWL2 document. The language structure is
specified in Functional Syntax (or Abstract Syntax). The language’s capabilities, features, and
limits are defined with it. Hence, every serialisation should be as expressive as Abstract Syntax
and translations between all serialisations should be possible.

Another syntax is called Manchester Syntax. It is created specifically to be more human-
readable and user-friendly. This is achieved by grouping the content in so-called frames around
single entities instead of storing plain axioms, as other styles do. This leads to a more natural
way of reading and writing axioms. However, compared to Abstract Syntax, certain statements
cannot be expressed in Manchester Syntax. Those include, among others, general concept
inclusions (GCI). [2]

In the context of OWL2, many axioms refer to a named class set in relation to classes. Those
classes can be named themselves or anonymous. Anonymous classes express a set of individuals
using complex class expressions without explicitly naming them.

1https://github.com/owlcs/owlapi
DL 2023: 36th International Workshop on Description Logics, September 2–4, 2023, Rhodes, Greece

$ bjoern.gehrke@ovgu.de (B. Gehrke); till.mossakowski@ovgu.de (T. Mossakowski)
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://github.com/owlcs/owlapi
mailto:bjoern.gehrke@ovgu.de
mailto:till.mossakowski@ovgu.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

For example, consider the following:

SubClassOf (ObjectIntersectionOf(:a :b) :c)

This expression cannot be expressed in Manchester Syntax directly as the class frame only
allows a named class and no complex class expression.
Commonly used editors like Protégé1 allow adding such General Class Axioms in a Manchester-
like style. The previous example would be written as

:a and :b SubClassOf :c

This serialisation, however, is not valid Manchester Syntax and trying to save ontologies
containing such axioms in Manchester Syntax results in those axioms being dropped.

2. Translation between Manchester Syntax and Abstract Syntax

The W3C note for OWL2 Manchester Syntax contains an algorithm to translate Manchester
Syntax to Abstract Syntax. This translation is achieved by first converting every frame to
multiple simple frames with the same subject. Therefore, previously grouped axioms relating to
the same entity exist as single axioms. Now each frame expresses a single axiom which can be
transformed using a transformation function 𝑇𝑀𝑆 . 𝑇𝑀𝑆 is given by a table 𝐸𝑀𝑆 recursively
defining the transformation for each possible input. 𝑇−1

𝑀𝑆 is, therefore, the inverse of the function
working as a reverse lookup in 𝐸𝑀𝑆 . The translation is depicted in Figure 1. [3]

It is stated to run the algorithm in reverse to convert an ontology from Abstract Syntax to
Manchester Syntax. However, the steps provided in the algorithm - especially the transformation
function 𝑇𝑀𝑆 - are written from a Manchester Syntax point of view, making 𝑇𝑀𝑆 an injective
function from Manchester Syntax to Abstract Syntax. 𝑇𝑀𝑆 cannot be bijective as at least general
concept inclusions are known to be not supported in Manchester Syntax.

3. Missing features

The existing transformation table 𝐸𝑀𝑆 does not map axioms directly but uses a meta-language
describing how a given ontology in Manchester Syntax can be transformed to Abstract Syntax.
Keeping this style, for each rule 𝑟𝑖 in the Abstract Syntax grammar containing terminal elements,
there must be an entry 𝑒 in 𝐸𝐴𝑆 such that 𝑇𝐴𝑆(𝑒) = 𝑟. Therefore, each non-terminal element
𝑣𝑖 in 𝑒 is replaced by 𝑇𝐴𝑆(𝑣𝑖).

The existing translation specifications utilise 𝑇−1
𝑀𝑆 for translation from Abstract Syntax to

Manchester Syntax, although 𝑇𝑀𝑆 is not bijective. To find missing features in Manchester
Syntax, 𝑇−1

𝑀𝑆 is redefined as a new partial transformation function 𝑇𝐴𝑆 transforming Abstract
Syntax to Manchester Syntax. It is defined by a transformation table 𝐸𝐴𝑆 . Using the whole
grammar [4], every single rule 𝑟 (producing an axiom, expression, and other features) is mapped
to their Manchester Syntax representation 𝑇−1

𝑀𝑆(𝑟), if possible. Otherwise, it is added to a set

1https://protege.stanford.edu/

https://protege.stanford.edu/

Figure 1: Translation from Manchester Syntax to Abstract Syntax and vice versa use a transformation
function 𝑇𝑀𝑆 . 𝑇𝑀𝑆 is defined for each construct in Manchester Syntax. To translate Abstract Syntax to
Manchester Syntax the standard states to use the reverse function 𝑇−1

𝑀𝑆 .

Manchester Syntax

Prefix: : <http://example.com/>
Ontology: :onto

Class: :a
EquivalentTo: :b

Class: :b

Abstract Syntax

Prefix(: <http://example.com/>)
Ontology(:onto
Declaration(Class(:a))
Declaration(Class(:b))

EquivalentClasses(:a :b))

𝑇𝑀𝑆(𝑥)

𝑇−1
𝑀𝑆(𝑥) (partial)

𝑀 . At the end, 𝑀 = { 𝑥 | ∄𝑦 : 𝑇𝐴𝑆(𝑥) = 𝑇−1
𝑀𝑆(𝑥) = 𝑦 } contains all inexpressible features of

Manchester Syntax.
In total, there are 27 features found not expressible in Manchester Syntax when strictly

following the existing grammar and transformation function. Those include spelling mistakes
such as “FunctionalObjectProperty” instead of “ObjectFunctionalProperty” and other minor
errors in 𝐸𝑀𝑆 such as annotations being required in classFrame rule. Excluding such errors,
19 features are left that are truly inexpressible. Table 1 lists the 19 features not supported in
Manchester Syntax.

The lack of expressivity of Manchester Syntax can be remedied a bit using conservative
extensions. Namely, an ontology in Abstract Syntax can be extended conservatively, and then
this conservative extension (which is even purely definitional) can be mapped to a an equivalent
ontology in Manchester Syntax. This is possible if the Abstract Syntax ontology does not use
the identified missing “DataSomeValuesFrom”, “DataAllValuesFrom”, or “Declarations” features
and works as follows:

A general concept inclusion {𝐶 ⊑ 𝐴} can be written as {𝐵 ≡ 𝐶,𝐵 ⊑ 𝐴} with 𝐵 being a
new atomic concept, 𝐶 a complex concept and 𝐴 a complex or atomic concept.

In the same manner, a complex role inclusions {𝑡 ⊑ 𝑟} can be written as
{𝑠 ≡ 𝑡, 𝑠 ⊑ 𝑟} and any other missing feature involving complex object property expressions e.g.
{SymmetricObjectProperty(𝑡)} as {𝑠 ≡ 𝑡, SymmetricObjectProperty(𝑠)} with 𝑠 being
an atomic role, 𝑡 a complex role, and 𝑟 a complex or atomic role.

However, working with such conservative extensions often is inconvenient, because the
ontology will be cluttered with additional (often rather artificial) extra concepts and roles.
Therefore, we will extend Manchester Syntax in a way that directly supports all Abstract Syntax
features.

4. Grammar and translation table extensions

Having identified inexpressible features of OWL2 Manchester Syntax, the following proposes
changes and additions to the existing Manchester Syntax grammar and translation table 𝐸𝑀𝑆 .

Table 1
Inexpressible features in Manchester Syntax according to the translation table 𝐸𝑀𝑆 . The table shows
features in Abstract Syntax.

Feature in Abstract Syntax

DataSomeValuesFrom (𝑑𝑝1 ... 𝑑𝑝𝑛 𝑑𝑟) ∀𝑛 > 1
DataAllValuesFrom (𝑑𝑝1 ... 𝑑𝑝𝑛 𝑑𝑟) ∀𝑛 > 1
Declaration (𝑎𝑛𝑛𝑜𝑠 𝑒𝑛𝑡𝑖𝑡𝑦)
SubObjectPropertyOf (𝑎𝑛𝑛𝑜𝑠 ObjectInverseOf (𝑠𝑢𝑏𝑂𝑝) 𝑠𝑢𝑝𝑒𝑟𝑂𝑝𝐸𝑥𝑝𝑟)
SubObjectPropertyOf (𝑎𝑛𝑛𝑜𝑠 ObjectPropertyChain (𝑜𝑝𝐸𝑥1 ... 𝑜𝑝𝐸𝑥𝑛) ObjectInverseOf (𝑠𝑢𝑝𝑒𝑟𝑂𝑝))
ObjectPropertyDomain (𝑎𝑛𝑛𝑜𝑠 ObjectInverseOf (𝑜𝑝) 𝑑𝑒𝑠𝑐)
ObjectPropertyRange (𝑎𝑛𝑛𝑜𝑠 ObjectInverseOf (𝑜𝑝) 𝑑𝑒𝑠𝑐)
InverseObjectProperties (𝑎𝑛𝑛𝑜𝑠 ObjectInverseOf (𝑜𝑝) 𝑜𝑝𝐸𝑥𝑝𝑟)
FunctionalObjectProperty (𝑎𝑛𝑛𝑜𝑠 ObjectInverseOf (𝑜𝑝))
InverseFunctionalObjectProperty (𝑎𝑛𝑛𝑜𝑠 ObjectInverseOf (𝑜𝑝))
ReflexiveObjectProperty (𝑎𝑛𝑛𝑜𝑠 ObjectInverseOf (𝑜𝑝))
IrreflexiveObjectProperty (𝑎𝑛𝑛𝑜𝑠 ObjectInverseOf (𝑜𝑝))
SymmetricObjectProperty (𝑎𝑛𝑛𝑜𝑠 ObjectInverseOf (𝑜𝑝))
AsymmetricObjectProperty (𝑎𝑛𝑛𝑜𝑠 ObjectInverseOf (𝑜𝑝))
TransitiveObjectProperty (𝑎𝑛𝑛𝑜𝑠 ObjectInverseOf (𝑜𝑝))
ObjectPropertyAssertion (𝑎𝑛𝑛𝑜𝑠 ObjectInverseOf (𝑜𝑝) 𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑎𝑟𝑔𝑒𝑡)
NegativeObjectPropertyAssertion (𝑎𝑛𝑛𝑜𝑠 ObjectInverseOf (𝑜𝑝) 𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑎𝑟𝑔𝑒𝑡)
SubClassOf (𝑎𝑛𝑛𝑜𝑠 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑠𝑢𝑝𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)
HasKey (𝑎𝑛𝑛𝑜𝑠 𝑑𝑒𝑠𝑐 (𝑜𝑝𝐸𝑥𝑝𝑟1 ... 𝑜𝑝𝐸𝑥𝑝𝑟𝑛) (𝑑𝑝1 ... 𝑑𝑝𝑚)) ∀𝑛 >= 0,𝑚 >= 0, 𝑛+𝑚 > 0

It adds support for all missing features. All changes are analysed for backwards compatibility.
The proposed grammars utilise the meta-rules described in [3, Section 2]. Additionally, minor

errors (like spelling mistakes) are corrected implicitly.

DataSomeValuesFrom and DataAllValuesFrom Although practically not usable,
as data ranges with arity greater than one are currently not expressible in Abstract Syntax
either[4, Section 7], adding the capability to Manchester Syntax removes the need to remember
and adjust this once expressing data ranges with arity greater than one is possible. This feature
can be added by allowing tuples of class expressions and single class expressions in the rule for
restriction. The tuples must be surrounded by parenthesis to ensure the grammar stays
unambiguous. Consequently, the following entries and rules must be added to 𝐸𝑀𝑆 and the
grammar, respectively.

Manchester Syntax Abstract Syntax

(𝑑𝑒𝑠𝑐1, ..., 𝑑𝑒𝑠𝑐𝑛) some 𝑑𝑟 DataSomeValuesFrom(𝑇 (𝑑𝑒𝑠𝑐1) ... 𝑇 (𝑑𝑒𝑠𝑐𝑛) 𝑇 (𝑑𝑟))
(𝑑𝑒𝑠𝑐1, ..., 𝑑𝑒𝑠𝑐𝑛) only 𝑑𝑟 DataAllValuesFrom(𝑇 (𝑑𝑒𝑠𝑐1) ... 𝑇 (𝑑𝑒𝑠𝑐𝑛) 𝑇 (𝑑𝑟))

restriction ::= ...
| ’(’ dataPropertyExpressionList ’)’ ’some’ dataPrimary
| ’(’ dataPropertyExpressionList ’)’ ’only’ dataPrimary

Annotations in declarations Allowing declarations to be annotated can be achieved in
multiple ways. One way is to change the semantics of an Annotations: frame section inside
a frame. According to 𝑇𝑀𝑆 , this is currently mapped to an AnnotationAssertion axiom in
Abstract Syntax with the frames subject as annotation subject. Instead, this annotation could be
added to the Declaration axiom.
A second approach is to allow the Annotations: section - annotations non-terminal in the
Manchester Syntax grammar - in front of the IRI of a frame’s subject. In contrast to the first
proposal, this change keeps backward compatibility as annotations are optional. Consequently,
the following entries and rules must be changed in 𝐸𝑀𝑆 and the grammar, respectively.

Frame Declaration

AnnotationProperty: annotations IRI . . . Declaration (𝑇 (𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠)
AnnotationProperty (IRI))

Class: annotations IRI . . . Class (𝑇 (𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠) Class (IRI))
DataProperty: annotations IRI . . . Declaration (𝑇 (𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠)

DataProperty (IRI))
Datatype: annotations IRI . . . Declaration (𝑇 (𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠) Datatype (

IRI))
Individual: annotations IRI . . . Declaration (𝑇 (𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠)

NamedIndividual (IRI))
ObjectProperty: annotations IRI . . . Declaration (𝑇 (𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠)

ObjectProperty (IRI))

datatypeFrame ::= ’Datatype:’ [annotations] Datatype ...
dataPropertyFrame ::= ’DataProperty:’ [annotations] ←˒

dataPropertyIRI ...
annotationPropertyFrame ::= ’AnnotationProperty:’ ←˒

[annotations] annotationPropertyIRI ...
individualFrame ::= ’Individual:’ [annotations] individual ...

Features with object property expressions as subject Many features inexpressible in
Manchester Syntax have object property expressions as a subject. In Manchester Syntax,
however, the subject of a frame can only be an IRI, thus an object property. Changing the subject
from IRI to object property expression adds support for the following axioms to be used with
object property expressions:

• SubObjectPropertyOf

• ObjectInverseOf

• ObjectPropertyDomain

• ObjectPropertyRange

• InverseObjectProperties

• FunctionalObjectProperty

• InverseFunctionalObjectProperty

• ReflexiveObjectProperty

• IrreflexiveObjectProperty

• SymmetricObjectProperty

• AsymmetricObjectProperty

• TransitiveObjectProperty

• ObjectPropertyAssertion

• NegativeObjectPropertyAssertion

Nevertheless, simply changing the ObjectProperty: frames subject would also allow
statements describing AnnotationAssertion axioms. However, AnnotationAssertion
axioms can only have an IRI as the subject. Hence, the grammar must ensure such cases
are not possible. Apart from the AnnotationAssertion axiom, all derivations of the
objectPropertyFrame non-terminal produce valid axioms with the proposed changes.
However, complex object property expressions cannot be declared. Hence, no additional
entry in the declarations table is added. In addition to the changes in “Annotations in
declarations”, leading annotations are not allowed if a complex object property expression
is used. Consequently, the following entries and rules must be added to or changed in
𝐸𝑀𝑆 and the grammar, respectively. The following table only contains the translation for
ObjectPropertyDomain. All other axioms mentioned above are translated similarly. Note
that the non-terminal OPE is only introduced for better readability.

Manchester Syntax Abstract Syntax

ObjectProperty: 𝑜𝑝𝐸𝑥𝑝𝑟
Domain: 𝑎𝑛𝑛𝑜𝑠 description

ObjectPropertyDomain(
T(annotations) 𝑇 (𝑜𝑝𝐸𝑥𝑝𝑟)
T(description))

OPE ::= objectPropertyExpression

simpleObjectPropertySection ::= complexObjectPropertySection
| ’Annotations:’ annotationAnnotatedList

complexObjectPropertySection ::=
’Domain:’ descriptionAnnotatedList

| ’Range:’ descriptionAnnotatedList
| ’Characteristics:’ ←˒

objectPropertyCharacteristicAnnotatedList
| ’SubPropertyOf:’ ←˒

objectPropertyExpressionAnnotatedList
| ’EquivalentTo:’ ←˒

objectPropertyExpressionAnnotatedList
| ’DisjointWith:’ ←˒

objectPropertyExpressionAnnotatedList

| ’InverseOf:’ ←˒
objectPropertyExpressionAnnotatedList

| ’SubPropertyChain:’ ←˒
annotations OPE ’o’ OPE { ’o’ OPE }

objectPropertyFrame ::=
’ObjectProperty:’ [annotations] IRI ←˒

{ simpleObjectPropertySection }
| ’ObjectProperty:’ OPE { complexObjectPropertySection }

General concept inclusions and HasKey A naive approach extends the misc frame to
include GCIs and HasKey axioms. It already contains all axioms not fitting to any other frame.
General concept inclusions containing complex class expressions instead of a simple class IRI
could be considered as such. Similarly, the HasKey axiom can be added there too. However,
this approach introduces two new keywords breaking backwards-compatibility.

A much more natural way is to extend the class frame. Currently, it is possible to express a
SubClassOf axiom only with a simple IRI as a subclass. Changing this IRI to description -
a complex class expression - allows expressing general concept inclusions. Furthermore, this
change also allows expressing HasKey axioms with complex class expressions. Additionally, an
IRI being a valid class expression ensures the backwards compatibility of this change.

Similar to changing the object property frames subject, changing the class frames
subject might lead to invalid axioms. In addition, the DisjointWith section must also be
excluded. It is mapped to the DisjointUnionOf axiom in Abstract Syntax. Similar to the
AnnotationAssertion axiom, the DisjointUnionOf axiom allows only a class and not a
complex class expression [4]. Consequently, the following entries and rules must be changed in
or added to 𝐸𝑀𝑆 and the grammar, respectively.

Manchester Syntax Abstract Syntax

Class: 𝑠𝑢𝑏𝐷𝑒𝑠𝑐
SubClassOf: 𝑎𝑛𝑛𝑜𝑠 𝑠𝑢𝑝𝑒𝑟𝐷𝑒𝑠𝑐

SubClassOf(
𝑇 (𝑎𝑛𝑛𝑜𝑠) 𝑇 (𝑠𝑢𝑏𝐷𝑒𝑠𝑐) 𝑇 (𝑠𝑢𝑝𝑒𝑟𝐷𝑒𝑠𝑐))

Class: 𝑑𝑒𝑠𝑐1
EquivalentTo: 𝑎𝑛𝑛𝑜𝑠 𝑑𝑒𝑠𝑐2

EquivalentClasses(
𝑇 (𝑎𝑛𝑛𝑜𝑠) 𝑇 (𝑑𝑒𝑠𝑐1) 𝑇 (𝑑𝑒𝑠𝑐2))

Class: 𝑑𝑒𝑠𝑐1
DisjointWith: 𝑎𝑛𝑛𝑜𝑠 𝑑𝑒𝑠𝑐2 . . .𝑑𝑒𝑠𝑐𝑛

DisjointClasses(
𝑇 (𝑎𝑛𝑛𝑜𝑠) 𝑇 (𝑑𝑒𝑠𝑐1) . . .𝑇 (𝑑𝑒𝑠𝑐𝑛))

Class: 𝑑𝑒𝑠𝑐
HasKey: 𝑎𝑛𝑛𝑜𝑠 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠

HasKey(
𝑇 (𝑎𝑛𝑛𝑜𝑠) 𝑇 (𝑑𝑒𝑠𝑐) 𝑇 (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠))

simpleClassSection ::= complexClassSection
| ’Annotations:’ annotationAnnotatedList
| ’DisjointUnionOf:’ [annotations] description2List

complexClassSection ::= ’SubClassOf:’ descriptionAnnotatedList
| ’EquivalentTo:’ descriptionAnnotatedList
| ’DisjointWith:’ descriptionAnnotatedList
| ’HasKey:’ [annotations]

(objectPropertyExpression | dataPropertyExpression)
{ objectPropertyExpression | dataPropertyExpression }

classFrame ::=
’Class:’ [annotations] IRI { simpleClassSection }

| ’Class:’ description { complexClassSection }

Figure 2: Set of axioms that can be expressed with the proposed changes. Highlighted in red are
constructs that previously were not expressible and, therefore, not allowed in Manchester Syntax. Note
that it is generally impossible to declare a datatype with an arity of more than one in OWL2 DL.

ObjectProperty: Annotations: rdfs:comment "comment" op1
ObjectProperty: inverse op1

Characteristics: Functional, Symmetric

DataProperty: dp1 DataProperty: dp2
Datatype: dt1 # fictional datatype with arity of 2

Class: a Class: b Class: c
Class: a and b

SubClassOf: (dp1, dp2) some dt1

5. Implementation

We implemented the presented extensions in the reference implementation OWL API in the
pull requests 10502 for version 5 and 11043 for version 4. They are available in the OWL API
version 5.5.0 and waiting to be merged for version 4.

During the implementation, it turned out, that the OWL API already supports object property
expressions as frame subjects: Their implementation follows the proposed changes of section
4. Furthermore, and as mentioned, the OWL API does not support DataSomeValueFrom and
DataAllValuesFrom for data ranges with an arity greater than one. Therefore, changes in
the underlying data types are required. This is a major change with no current practical use.
Hence, these two features are not implemented in the OWL API.

2https://github.com/owlcs/owlapi/pull/1050
3https://github.com/owlcs/owlapi/pull/1104

https://github.com/owlcs/owlapi/pull/1050
https://github.com/owlcs/owlapi/pull/1104

6. Conclusion

A translation from OWL2 Abstract Syntax to OWL2 Manchester Syntax was constructed yielding
19 inexpressible features (27 including minor errors in 𝐸𝑀𝑆) in Manchester Syntax. A change of
the existing grammar and translation table is proposed for each such inexpressible feature. With
these changes, all constructs expressible in OWL2 DL are expressible in Manchester Syntax,
marking both syntaxes equipotent. A collection of axioms in Figure 2 highlight the features and
show what constructs can now be expressed in Manchester Syntax.

The proposed changes have been implemented in the OWL API and are available from version
5.5.0 and once merged will be available in the next version 4 release. With these changes, the
more human-readable Manchester Syntax can be used for serious ontology development without
drawbacks. While many developers use tools such as Protégé independent of the serialisation,
these features are still essential: For example, manually resolving conflicts or tracking changes
when developing with a version control system such as git is much simpler in Manchester
Syntax than in Abstract Syntax or XML.

References

[1] W3C-Owl-Working-Group, OWL 2 Web Ontology Language Document Overview
(Second Edition), Recommendation, W3C, 2012. https://www.w3.org/TR/2012/
REC-owl2-overview-20121211/. Latest version available at https://www.w3.org/TR/
owl2-overview/.

[2] R. S. Uli Sattler, Being complex on the left-hand-side: General concept inclusions, Ontogen-
esis (2012).

[3] M. Horridge, P. F. Patel-Schneider, Owl 2 web ontology language manchester syntax, W3C
Working Group Note (2012).

[4] B. Motik, P. Patel-Schneider, B. Parsia, OWL 2 Web Ontology Language Structural Spec-
ification and Functional-Style Syntax (Second Edition), Recommendation, W3C, 2012.
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/. Latest version available at https:
//www.w3.org/TR/owl2-syntax/.

https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-syntax/

	1 Introduction
	2 Translation between Manchester Syntax and Abstract Syntax
	3 Missing features
	4 Grammar and translation table extensions
	5 Implementation
	6 Conclusion

