
ASP-based Axiom Pinpointing for Description Logics
Ignacio Huitzil1, Giuseppe Mazzotta2, Rafael Peñaloza1 and Francesco Ricca2

1University of Milano-Bicocca, Italy
2University of Calabria, Italy

Abstract
Axiom pinpointing is the task of identifying the axiomatic causes for a consequence to follow from
an ontology. Different approaches have been proposed in the literature for finding one or all justifica-
tions: the subset-minimal subontologies that preserve a description logic consequence. We propose an
approach that leverages the capabilities of answer set programming—through minimal unsatisfiable
subset enumeration—for transparent axiom pinpointing. Our approach is general in that it allows one
to seamlessly specify the ontology and the reasoning rules, thus being applicable to different logics
without modification to the core method. We showcase this generality by introducing methods for ℰℒ
and for Horn-𝒜ℒ𝒞, and explaining how to apply it to other logics. A preliminary experiment shows the
practicality of the approach.
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1. Introduction

Axiom pinpointing [1] refers to the task of identifying the axioms in an ontology that are
responsible for a consequence to follow. It has been extensively studied in description logics
(DLs) [2] and, under many different names, in other areas [3, 4]. Its basic goal is to enumerate
one or all so-called justifications: the subset-minimal subontologies which still preserve the
consequence of interest.

To-date, the most successful approach to axiom pinpointing which does not rely on repeated
(black-box) calls to a standard reasoner is a reduction to the enumeration of the minimal
unsatisfiable subsets (MUS) of clauses of a propositional formula [5, 6, 7]. In this approach,
developed for the light-weight DL ℰℒ, propositional variables are used to represent GCIs in
normal form, and the propositional formula encodes the full execution of completion algorithm
over the normalised TBox. This idea was improved upon in [8], where a more efficient encoding
and a different enumeration process are used.

The main disadvantage of these approaches is that they require, as a pre-processing step,
the construction of a huge propositional formula, which makes the reasoning steps explicit. In
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other words, the encoding step requires an implementation of the ℰℒ completion algorithm
(or a consequence-based algorithm) with a modification to generate the propositional clauses.
This in particular means that the approach cannot be easily adapted to different logics, as new
implementations of the full decision procedure would be necessary. On the other hand, they
have the advantage that any MUS enumerator can be applied on the derived formula, thus
leveraging the fast developments from SAT [9].

Our goal is to keep the advantages of the reduction to MUS enumeration, while at the same
time allowing a higher flexibility to handle different kinds of languages, and in particular,
different DLs beyond ℰℒ. We thus propose a new approach to axiom pinpointing based on a
translation to Answer Set Programming (ASP) [10, 11]. The basic idea is to produce an ASP
program which encodes the reasoning rules of the consequence based algorithm—rather than
executing them directly. Within this setting, the MUSes of the generated ASP program [12] have
a one-to-one correspondence with the justifications of the ontology. Our approach is general in
the sense that it can be applied to any possible logical language which allows for a “modular”
ASP representation. In a nutshell, a logic has a modular ASP representation if every axiom is
translatable to a set of rules plus potentially a fixed finite program. The modular representation
has the advantage of serving as a simple reasoner for the logic and, at a second step, as a
tool for enumerating justifications. In addition, we can leverage the MUS enumerator to find
justifications with special properties; e.g., with minimal cardinality, or to find the intersection
of justifications.

As an example of its applicability, we instantiate our approach to deal with axiom pinpointing
in Horn-𝒜ℒ𝒞 and its sublogic ℰℒ. We also explain the changes to handle the very inexpressive
ℋℒ, which essentially corresponds to hypergraph reachability. We also implemented a tool
called OWL2ASP, which translates (for now) ℰℒ ontologies to our ASP format, and calls a
variant of the ASP solver WASP to enumerate the MUSes and thus the justifications. We present
a first preliminary analysis of its performance on realistic ontologies.

The seed ideas of this paper were originally presented in [13]. This work extends that
short paper by including the encoding for Horn-𝒜ℒ𝒞, by improving the call for the ASP MUS
enumerator, and by describing the implemented encoder and the first (preliminary) empirical
results.

2. Preliminaries

We start by briefly introducing the notions of answer set programming, DLs, and axiom pin-
pointing that are needed for understanding our approach.

2.1. Answer Set Programming

Answer set programming (ASP) [10, 14, 15] is a declarative programming paradigm based on
stable models. Syntactically, it is based on rules and constraints.

In ASP, a variable is a string starting with uppercase letter; a constant is an integer or a
string starting with lowercase letter; and an atom is an expression of the form 𝑝(𝑡1, . . . , 𝑡𝑛)
where 𝑝 is a predicate of arity 𝑛 and 𝑡1, . . . , 𝑡𝑛 are terms. An atom is ground if it contains no
variables. A literal is a atom 𝑎 or its negation 𝑛𝑜𝑡 𝑎 where 𝑛𝑜𝑡 denotes negation as failure. A



literal ℓ is negative if it is of the form 𝑛𝑜𝑡 𝑎, otherwise it is positive. The complement of positive
(resp. negative) literal ℓ = 𝑎 (resp. ℓ = 𝑛𝑜𝑡 𝑎), denoted by ℓ, is the literal 𝑛𝑜𝑡 𝑎 (resp. 𝑎). A
(normal) rule is an expression of the form ℎ← 𝑏1, . . . , 𝑏𝑛 where 𝑏1, . . . , 𝑏𝑛 is a conjunction of
literals, called the body, 𝑛 ≥ 0, and ℎ is an atom called the head. All variables in a rule must
occur in some positive literal of the body (i.e., are safe cf. [16]). If 𝑟 is a rule, then ℎ𝑒𝑎𝑑(𝑟) is
the head atom, and 𝑏𝑜𝑑𝑦(𝑟) is the set of all literals in the body. A fact is a rule with an empty
body (i.e. 𝑛 = 0). A constraint is a rule with an empty head; it is a shorthand for the rule
𝑝← 𝑏1, · · · , 𝑏𝑛, 𝑛𝑜𝑡 𝑝, where 𝑝 is a ground atom not occurring anywhere else. We will also use
a special kind of choice rule which is of the form {𝑎} where 𝑎 is an atom. In this case, we call 𝑎
a choice atom. A program is a finite set of rules.

Given a program 𝑃 , the Herbrand Universe 𝑈𝑃 denotes the set of constants in 𝑃 ; the Herbrand
Base 𝐵𝑃 denotes the set of standard ground atoms that can be obtained from predicate in 𝑃 and
constants in 𝑈𝑃 . Given a rule 𝑟 ∈ 𝑃 , 𝑔𝑟𝑜𝑢𝑛𝑑(𝑟) denotes the set of possible rule instantiations
that can be obtained by replacing variables in 𝑟 with constants in 𝑈𝑃 . The ground instantiation
of the program 𝑃 , denoted by 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 ), is the union of ground instantiations of rules in
𝑃 . An interpretation 𝐼 is a subset of 𝐵𝑃 . Given an interpretation 𝐼 , a positive (resp. negative)
literal ℓ is true w.r.t. 𝐼 , if ℓ ∈ 𝐼 (resp. ℓ /∈ 𝐼); it is false if ℓ /∈ 𝐼 (resp. ℓ ∈ 𝐼). A conjunction of
literals is true w.r.t. 𝐼 if all the literals are true w.r.t. 𝐼 . An interpretation 𝐼 is a model of 𝑃 if for
each 𝑟 ∈ 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 ), the head of 𝑟 is true whenever the body of 𝑟 is true. The choice rule {𝑎}
simply guesses whether 𝑎 is made true or not. Given a program 𝑃 and an interpretation 𝐼 , the
(Gelfond-Lifschitz) reduct [14]—𝑃 𝐼—is the program obtained from 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 ) by (i) removing
all those rules having in the body a false negative literal w.r.t. 𝐼 , and (ii) removing negative
literals from the body of remaining rules. Given a program 𝑃 , the model 𝐼 of 𝑃 is a stable model
or answer set if there is no 𝐼 ′ ⊂ 𝐼 such that 𝐼 ′ is a model of 𝑃 𝐼 . A program 𝑃 is coherent if it
admits at least one answer set, otherwise it is incoherent. ASP solvers decide whether a program
is coherent and, in case, enumerate one or all its answer sets.

In the following sections, all ASP symbols are often denoted with a typewriter font, to
distinguish them from other mathematical symbols, and rules use :- instead of←.

2.2. Horn Description Logics

We assume familiarity with description logics (DLs) [2] but for clarity we introduce ℰℒ [17] and
Horn-𝒜ℒ𝒞 [18]. These are used as prototypical examples, based on the fact that most axiom
pinpointing tools focus on ℰℒ. However, our goal is to describe a general approach that can be
easily applied to other logics as well.

Starting from two infinite, disjoint sets 𝑁𝐶 and 𝑁𝑅 or concept names and role names, respec-
tively, 𝒜ℒ𝒞-concepts are constructed through the grammar rule

𝐶 ::= 𝐴 | ⊤ | ⊥ | ¬𝐶 | 𝐶 ⊓ 𝐶 | 𝐶 ⊔ 𝐶 | ∃𝑟.𝐶 | ∀𝑟.𝐶,

where 𝐴 ∈ 𝑁𝐶 and 𝑟 ∈ 𝑁𝑅. A GCI is an expression of the form 𝐶 ⊑ 𝐷 where 𝐶 and 𝐷 are
concepts. A TBox is a finite set of GCIs.

To define Horn-𝒜ℒ𝒞 we need the notion of polarity for each occurrence of a concept in an
expression, which is defined recursively as follows. Each concept 𝐶 occurs positively in 𝐶 ; if
𝐶 occurs positively (resp. negatively) in 𝐶 ′, then (i) it also occurs positively (resp. negatively)



Table 1
Consequence-based rules for Horn-𝒜ℒ𝒞. The first four rules cover the cases for ℰℒ.

if 𝐴 ⊑ 𝐶,𝐶 ⊑ 𝐵 ∈ 𝒯 then add 𝐴 ⊑ 𝐵
if 𝐴 ⊑ 𝐶1, 𝐴 ⊑ 𝐶2, 𝐶1 ⊓ 𝐶2 ⊑ 𝐵 ∈ 𝒯 then add 𝐴 ⊑ 𝐵
if 𝐴 ⊑ ∃𝑟.𝐵,𝐵 ⊑ 𝐶 ∈ 𝒯 then add 𝐴 ⊑ ∃𝑟.𝐶
if 𝐴 ⊑ ∃𝑟.𝐶, ∃𝑟.𝐶 ⊑ 𝐵 ∈ 𝒯 then add 𝐴 ⊑ 𝐵

if 𝐴 ⊑ ∃𝑟.𝐶1, 𝐴 ⊑ ∀𝑟.𝐶2, 𝐶1 ⊓ 𝐶2 ⊑ 𝐵 ∈ 𝒯 then add 𝐴 ⊑ ∃𝑟.𝐵
if 𝐴 ⊑ ∃𝑟.𝐵,𝐵 ⊑ ⊥ ∈ 𝒯 then add 𝐴 ⊑ ⊥

in 𝐶 ′ ⊓𝐷, 𝐶 ′ ⊔𝐷, ∃𝑟.𝐶 ′, ∀𝑟.𝐶 ′ and 𝐷 ⊑ 𝐶 ′ (considering commutativity of ⊓,⊔) and (ii) it
occurs negatively (resp. positively) in ¬𝐶 ′ and 𝐶 ′ ⊑ 𝐷. Horn-𝒜ℒ𝒞 is the sublogic of 𝒜ℒ𝒞
in which axioms with positive occurrences of 𝐶 ⊔𝐷 or negative occurrences of ¬𝐶 or ∀𝑟.𝐶
are disallowed. ℰℒ is another sublogic of 𝒜ℒ𝒞, where the constructors ¬, ⊔, ∀, and ⊥ are
not allowed. In particular, ℰℒ is also a fragment of Horn-𝒜ℒ𝒞. As an additional example, we
consider also the fragment ℋℒ (also known as ℒ0) of ℰℒ in which only concept names and
conjunctions (⊓) are allowed.

The semantics of 𝒜ℒ𝒞 (and its fragments) is defined through interpretations, which are
pairs ℐ = (∆ℐ , ·ℐ) with ∆ℐ a non-empty set called domain and ·ℐ is the interpretation function
mapping every 𝐴 ∈ 𝑁𝐶 to a set 𝐴ℐ ⊆ ∆ℐ and every 𝑟 ∈ 𝑁𝑅 to a binary relation 𝑟ℐ ⊆ ∆ℐ×∆ℐ .
The interpretation function is extended to concepts setting ⊤ℐ := ∆ℐ , (¬𝐶)ℐ := ∆ℐ ∖ 𝐶ℐ ,
(𝐶 ⊓𝐷)ℐ := 𝐶ℐ ∩𝐷ℐ , and (∃𝑟.𝐶)ℐ := {𝛿 | ∃𝜂 ∈ 𝐶ℐ .(𝛿, 𝜂) ∈ 𝑟ℐ}. The other constructors are
treated analogously. The interpretation ℐ satisfies the GCI 𝐶 ⊑ 𝐷 iff 𝐶ℐ ⊆ 𝐷ℐ . It is a model of
𝒯 iff it satisfies all GCIs in 𝒯 . We often call GCIs axioms, which allows us to seamlessly connect
between DL and arbitrary representation languages. The TBox 𝒯 entails the GCI 𝐶 ⊑ 𝐷
(𝒯 |= 𝐶 ⊑ 𝐷) iff every model of 𝒯 satisfies 𝐶 ⊑ 𝐷. In this case we say that 𝐶 ⊑ 𝐷 is a
consequence of 𝒯 .

We focus on the problem of deciding atomic subsumption relations 𝐴 ⊑ 𝐵 where 𝐴,𝐵 ∈ 𝑁𝐶 .
The consequence-based algorithm for Horn-𝒜ℒ𝒞 [18] first transforms the TBox to normal form.
A GCI is in normal form if it has one of the following shapes:

𝐴 ⊑ 𝐶, 𝐴 ⊓𝐴′ ⊑ 𝐶, 𝐴 ⊑ ∃𝑟.𝐵, ∃𝑟.𝐴 ⊑ 𝐵, 𝐴 ⊑ ∀𝑟.𝐵

where 𝑟 ∈ 𝑁𝑅 and 𝐴,𝐴′, 𝐵 ∈ 𝑁𝐶 ∪ {⊤}, 𝐶 ∈ 𝑁𝐶 ∪ {⊥}. Once the TBox 𝒯 is in normal
form, the consequence-based algorithm applies the completion rules in Table 1 to add new
consequences until saturation. It is shown in [19] that the method is sound and complete for all
atomic subsumptions over the concept names appearing in the original TBox.

In the case of ℰℒ, the last kind of normal form axiom will never appear, and the concept 𝐶
appearing in the right-hand side of the first two kinds can never be⊥. Hence, the first four rules
in Table 1 suffice for atomic subsumption in this logic. For practical reasons, in this case we
will unify two rules into one with a larger set of preconditions, which will suffice for deciding
atomic subsumptions. It can be seen that ℋℒ is a syntactic variant of directed hypergraphs.
Specifically, a GCI 𝐴1⊓ · · · ⊓𝐴𝑚 ⊑ 𝐵1⊓ · · · ⊓𝐵𝑛 represents a directed hypergraph connecting
nodes 𝐴1, . . . , 𝐴𝑚 with nodes 𝐵1, . . . , 𝐵𝑛, and the entailment problem is nothing more than
reachability in this hypergraph.



Beyond standard reasoning, it is sometimes important to understand which axioms are
responsible for a consequence to follow from a TBox. This goal is often instantiated as the task
of identifying justifications.

Definition 1. A justification for a consequence 𝛼 w.r.t. the TBox 𝒯 is a setℳ⊆ 𝒯 such that (i)
ℳ |= 𝛼 and (ii) for every 𝒩 ⊂ℳ, 𝒩 ̸|= 𝛼.

Briefly, a justification is a subset-minimal sub-TBox that still entails the consequence. Impor-
tantly, justifications refer to the GCIs in the original TBox before normalisation, which means
an additional minimisation step if the pinpointing method works on normalised TBoxes [20].

Most work focuses on computing one or all justifications. While the former problem remains
polynomial in ℰℒ, the latter necessarily needs exponential time, as the number of justifications
may be exponential on the size of the TBox. Despite some potential uses, which have been
identified for non standard reasoning [21], only very recently have specific algorithms for
computing the unions and intersection of justifications been developed [22, 23]. To the best
of our knowledge, no previous work has considered computing the justifications of minimal
cardinality directly.

A similar problem is observed in ASP. When a program is incoherent, one may want to find
the minimal sub-programs that are still incoherent. This notion, analogous to justifications in
DLs, is called a minimal unsatisfiable subset (MUS) in the ASP community [12]. Rather than
giving the same weight to all facts and rules in the program, one variant is to limit the search
to a subclass of facts of interest and assume that the rest of the program is fixed and hence,
irrelevant for the explanation. We exploit this analogy and solve axiom pinpointing through
MUS enumeration.

3. Reasoning Through Rules

Before presenting our approach to axiom pinpointing using ASP, we briefly describe how to
reduce reasoning in Horn-𝒜ℒ𝒞 to ASP. The approach simulates the completion algorithm
sketched in Section 2.2 through a small set of rules, while the TBox axioms (in normal form) are
represented through facts.

Consider a TBox 𝒯 in normal form, and let 𝒞(𝒯 ) and ℛ(𝒯 ) be the sets of concept names
and role names appearing in 𝒯 , respectively. For each 𝐴 ∈ 𝒞(𝒯 ) we use a constant a, and for
each 𝑟 ∈ ℛ(𝒯 ) we use a constant r. We also use the numerical constants 0 and 1 for ⊥ and
⊤, respectively. We identify the four shapes of normal form axioms via a different predicate
s0, . . . , s4 as shown in Figure 1 (left). Hence, s0(a,b) stands for the GCI 𝐴 ⊑ 𝐵 and so on.
For each axiom in normal form appearing in 𝒯 , we write the associated fact. As previously
mentioned, the reasoning process is simulated through rules. In the specific case of Horn-𝒜ℒ𝒞,
these rules are shown in the right-hand side of Figure 1. As before, if the TBox belongs to
ℰℒ, then the first four rules suffice (and the last two can be removed from the program). For
efficiency reasons, in the ℰℒ encoding we merge the third and fourth rules into one. To decide
whether the atomic subsumption 𝐴 ⊑ 𝐵 is a consequence of the TBox, we need only ask the
query s0(a,b); i.e., check whether this fact is derivable from the initial facts, applying the rules.
Since the original TBox may not be in normal form, the facts obtained this way are the result of



GCI ASP fact

𝐴 ⊑ 𝐶 s0(a,c).
𝐴1 ⊓𝐴2 ⊑ 𝐶 s1(a1,a2,c).
𝐴 ⊑ ∃𝑟.𝐵 s2(a,r,b).
∃𝑟.𝐴 ⊑ 𝐵 s3(r,a,b).
𝐴 ⊑ ∀𝑟.𝐵 s4(a,r,b).

s0(X,Y) :-s0(X,Z), s0(Z,Y).
s0(X,Y) :-s0(X,Z1), s0(X,Z2), s1(Z1,Z2,Y).
s2(X,R,Y):-s2(X,R,Z), s0(Z,Y).
s0(X,Y) :-s2(X,R,Z), s3(R,Z,Y).

s2(X,R,Y):-s2(X,R,Z1), s4(X,R,Z2), s1(Z1,Z2,Y).
s0(X,0) :-s2(X,R,Y), s0(Y,0).

Figure 1: Expressing Horn-𝒜ℒ𝒞 GCIs in normal form as ASP facts (left) and the reasoning rules (right).

the normalisation step over the original GCIs. As we will see later, we can use additional rules
to preserve the origin information for each normalised GCI, which will be useful for axiom
pinpointing.

In the case of ℋℒ, one can produce a more direct reduction, which takes into account
the hyperedges without the need for normalisation or general derivation rules. We again
represent each concept name 𝐴 through a constant a, and associate a new constant gi for
each GCI in 𝒯 . Then the GCI 𝐴1 ⊓ · · · ⊓ 𝐴𝑚 ⊑ 𝐵1 ⊓ · · · ⊓ 𝐵𝑛 is translated to the set of
rules {gi :- a1, . . . , am., b1 :- gi., . . . , bn :- gi.}. To decide whether 𝐴 ⊑ 𝐵 is a
consequence, we add the fact a. and verify the query b. The correctness of these approaches
follows from the results in [19, 24, 25].

4. Axiom Pinpointing Through ASP

We present a general approach for solving axiom pinpointing tasks through an ASP solver.
The approach is applicable to any logic (including other DLs) which allows for a modular ASP
encoding. Roughly, an encoding is a function that maps TBoxes (or more generally, knowledge
bases) to ASP programs, and it is modular if each axiom in 𝒯 translates to a set of rules, such
that an ASP encoding Π𝒯 of 𝒯 is obtained by the union of the encodings of its axioms, possibly
together with some additional rules (independent of the specific axioms in 𝒯 ) needed to simulate
reasoning in ASP.

Definition 2. An encoding in ASP Π𝒯 is modular iff for every TBox 𝒯 it holds that (i) for each
𝛼 ∈ 𝒯 there is an ASP program Π𝛼, and (ii) there is a (possibly empty) set of rules 𝑅 such that
Π𝒯 =

⋃︀
𝛼∈𝒯 Π𝛼 ∪𝑅

The encodings from Section 3 for Horn-𝒜ℒ𝒞, ℰℒ and ℋℒ are all modular. In the first two
cases, 𝑅 is the set of rules in Figure 1 (right), while in the latter 𝑅 = ∅. For any (arbitrary)
Horn-𝒜ℒ𝒞 GCI 𝛼, Π𝛼 is the ASP representation of its translation to normal form. We now
formulate the problem of computing all justifications in ASP. First, we apply an adornment step,
which allows to identify and keep track of the rules of a module corresponding to a given axiom,
necessary for pinpointing.

Definition 3. Let 𝑃 be an ASP program, and 𝛿 be an atom not occurring in 𝑃 . The 𝛿-adornment
for 𝑃 is the program ∆𝛿(𝑃 ) = {𝑟𝛿 | 𝑟 ∈ 𝑃}, where 𝑟𝛿 is such that ℎ𝑒𝑎𝑑(𝑟𝛿) = ℎ𝑒𝑎𝑑(𝑟), and
𝑏𝑜𝑑𝑦(𝑟𝛿) = 𝑏𝑜𝑑𝑦(𝑟) ∪ 𝛿.



In words, the 𝛿-adornment adds a new identifying atom 𝛿 to the body of each rule of the
program. This guarantees that the rules trigger only when 𝛿 is true. In the case of Horn-𝒜ℒ𝒞,
which means that axioms in normal form will be considered only if the original axiom that
produces them is considered.

Definition 4. The adorned ASP encoding of the TBox 𝒯 is the program

𝛿(Π𝒯 ) =
⋃︁
𝛼∈𝒯

∆𝛿𝛼(Π𝛼) ∪𝑅 ∪ 𝐶

where for each 𝛼 ∈ 𝒯 , 𝛿𝛼 is a fresh atom not occurring in Π(𝒯 ), and 𝐶 is the ASP program
containing a choice rule {𝛿𝛼} for each 𝛼 ∈ 𝒯 .

In the case of Horn-𝒜ℒ𝒞 and ℰℒ, the adornment will change each fact (corresponding to a
GCI in normal form) si(_). into the rule si(_) :- xj, where xj is the chosen constant for
the original (DL) axiom 𝛼𝑗 . Importantly, this approach handles the original axioms in the TBox,
and not those already normalised as done e.g. in [20].

We now describe an ASP program that can be used for axiom pinpointing. Note that 𝐴 ⊑ 𝐵
is a consequence of 𝒯 if and only if the program 𝛿(Π𝒯 ) entails the atom s0(a,b). Thus,
if we add the constraint :-s0(a,b). the resulting program will be incoherent. To find out
the justifications for 𝐴 ⊑ 𝐵 (the minimal subset of axioms that entail it), it suffices to find
the minimal subsets of adornments—which refer to the original axioms in 𝒯 —that preserve
incoherence. In other words, the MUSes.

Proposition 1. Let 𝒯 be a TBox, 𝑐 an atom modelling a consequence of 𝒯 , and 𝑃 the program
𝑃 = 𝛿(Π𝒯 )∪{← 𝑐}.ℳ⊆ 𝒯 is a justification for 𝑐 iff there is a MUS 𝑀 of 𝑃 w.r.t. {𝛿𝛼 | 𝛼 ∈ 𝒯 }
such that {𝛿𝛼 | 𝛼 ∈ℳ} = 𝑀 ∩ {𝛿𝛼 | 𝛼 ∈ 𝒯 }.

Justifications that are cardinality minimal (and thus also subset minimal) can be directly
computed using an ASP program with weak constraints. In a nutshell, a weak constraint :∼a
tries to exclude the atom a from any model, but can be introduced if necessary. In this case,
the MUS enumerator tries to minimise the number of weak constraints that are violated which
corresponds to minimising the cardinality of the associated justification.

Proposition 2. Let 𝒯 be a TBox, 𝑐 an atom modelling a consequence of 𝒯 , and 𝑃 the program
𝑃 = 𝛿(Π𝒯 ) ∪ {← 𝑐} ∪ {:∼ 𝛿𝛼 | 𝛼 ∈ 𝒯 }.ℳ⊆ 𝒯 is a cardinality-minimal justification for 𝑐 iff
there exists an optimal MUS 𝑀 of 𝑃 such that {𝛿𝛼 | 𝛼 ∈ℳ} = 𝑀 ∩ {𝛿𝛼 | 𝛼 ∈ 𝒯 }.

Before describing our implementation and empirical evaluation, we note that the translation
permits computing the intersection of all justifications, and consequences derived from it,
through the application of cautious reasoning [15]. In ASP, a cautious consequence is one that
holds in every answer set. Since the program 𝑃 from Proposition 1 provides a one-to-one
correspondence between answer sets and sub-ontologies deriving a consequence, cautious
reasoning refers to reasoning over the intersection of all those sub-ontologies, and in particular
over the subset-minimal ones; that is, over the justifications. Unfortunately, an analogous result
does not exist for the union of all justifications. Indeed, every axiom would be available for brave
reasoning (consequences which hold in at least one answer set) [15] over the same program 𝑃 ,
but not all axioms belong to some justification.



5. OWL2ASP

To verify the practicality of our approach, we implemented a tool called OWL2ASP, which
translates an ℰℒ ontology into the ASP syntax described in Section 3 and then calls an ASP
solver (after an adequate adorning) to obtain all the justifications for a given query. For the first
part of the translation, the tool reuses the normalisation module of jcel [26] and improves upon
the functionality of OwlToProlog1 by correcting some issues on the use of ⊤ and standardising
the output syntax. The parsing and manipulation of axioms and concepts uses the elements
available through the OWL API. We implemented OWL2ASP in Java. The system and other
relevant information is publicly available at https://board.unimib.it/datasets/r6xcggwvjp/1.

The translator takes an ℰℒ TBox and produces five files which include all the information
about the original axioms, the normalised GCIs they produce, and a mapping from concept and
role names (in DL) and constants (in ASP). As it is standard, we use integers as ASP constants
to reduce the consumption of memory and other resources. Specifically, for a given TBox 𝒯 ,
OWL2ASP generates (i) a file asp.txt which contains the ASP translation of the normalisation of
𝒯 together with the information of which original axioms produced them using a new predicate
symbol o(_) to better capture the origin; (ii) originalAxioms.txt containing an (integer) ID
for each OWL-represented axiom in the original ontology; (iii) owlElements.txt relating the
concept and role names with unique integer IDs; (iv) axiom_facts.asp enumerating the IDs of
original axioms for aiding the ASP MUS enumerator; and (v) encoding.asp enumerating the
reasoning rules and the query of interest.

Note that in the current implementation, the file encoding.asp is the same for any possible
input TBox modulo the requested query: it always contains the first four rules shown in Figure 1
(right).2 Yet, here lies the flexibility in our approach: to handle other formalisms, one needs only
to change this file with the corresponding rules, and—perhaps the largest effort—implement the
normalisation procedure for the new language. The rest of the approach remains unchanged,
which means that ASP features can be used without issues.

The resulting files can be fed to an ASP solver to verify that the consequence expressed in
the query follows from the TBox. But our goal is rather to enumerate the justifications for
this consequence. Thus, the tool adds a choice rule for each atom representing an original
GCI from 𝒯 , and calls the MUS enumerator of WASP3 [27] to obtain one or all MUSes. These
MUSes are encoded using the constants from the ASP program. The information in the file
originalAxioms.txt can be used to map this information back to a justification in the original OWL
syntax of the TBox. The output of the MUS enumerator is available for a direct visualization
by the user, or in a file which can be fed to other tools in e.g., a repair pipeline if necessary.
A full execution example is available at the public repository for OWL2ASP. As mentioned
already, through modifications in the call to WASP, it is possible to obtain also the justifications
of minimal cardinality and their intersection. We can also take advantage of optimisations
developed for ASP applications, as we see in the next section.

1https://github.com/Gallax619/OwlToProlog
2Recall that we merge the third and fourth rules for efficiency reasons.
3http://alviano.github.io/wasp/

https://board.unimib.it/datasets/r6xcggwvjp/1
https://github.com/Gallax619/OwlToProlog
http://alviano.github.io/wasp/


6. Preliminary Experiment

We executed a preliminary experiment to empirically assess the potential of our method. For
this experiment we consider the well-known biomedical ontology NOT-GALEN, which is among
the de facto benchmarks for axiom pinpointing in ℰℒ. More precisely, we consider the version
provided in jcel,4 which features 4379 axioms, 2748 concepts, and 413 roles, and chose a random
sample of 25 queries on this ontology already considered in the literature. The task we consider
is the enumeration of all justifications for each query.

Our tool, called OWL2ASP, employs the encoding from Figure 1 targeted for ℰℒ, with the
third and fourth rules combined into one. The resulting program was first processed through
the magic sets technique [28] using a direct call to the DLV2 system [29, 30]. The adornment
process (see Section 4) was applied to the resulting program, and WASP [31] was called for
MUS enumeration [12].

We compare with other glass-box axiom pinpointing tools for ℰℒ. In particular, we run three
methods based on a translation to SAT originally proposed by Sebastiani and Vescovi—namely
EL2SAT [5, 32], BEACON [6], and SATPIN [7]—and the resolution-based PULi [8] (configured
with option SAT and strategy THRESHOLD). The experiment was executed on an Intel(R)
Xeon(R) CPU E7-8880 v4 @ 2.20GHz running Debian Linux (4.9.0-19-amd64), with memory and
time limits of 16GB and 800 seconds, respectively.

The results of the execution are reported in Table 2, which shows the solving time in seconds
for each query and tool. For the cells denoted by < 0.01, the execution time was below the
sampling range of the observation wrapper we used. For our tool (OWL2ASP) we report the
time needed by WASP to perform MUS enumeration without considering the pre-processing
time to obtain propositional programs. This is to create a fair comparison with the SAT-based
tools whose input is already a SAT formula encoding the full standard reasoning process. On
the one hand, we report that OWL2ASP requires 0.8s on average (with a standard deviation
of 0.15) to pre-process the input over all the 25 queries compared, which is a positive result.
On the other hand, we observe that the experiment highlights the viability of the proposed
approach; indeed, OWL2ASP results to be the fastest in terms of solving time for this sample,
providing answers almost instantaneously.

7. Conclusions

We presented a general approach for axiom pinpointing based on a reduction to ASP. Similar
to existing SAT-based approaches, we construct an ASP program which, if extended with a
constraint encoding a consequence of interest, becomes incoherent; that is, has no models. Then,
an ASP MUS enumerator is used to find justifications efficiently. Importantly, even though the
reasoning step requires normalisation, our approach enumerates directly on the original axioms
in the TBox, thus avoiding an additional (potentially expensive) recovery step [20].

As a proof of concept, we have shown how the reduction works for the DL Horn-𝒜ℒ𝒞, and
its sublogics ℰℒ andℋℒ. The same idea is applicable for any logic with a modular translation
to ASP, for instance any DL with a consequence-based reasoning algorithm [18, 33] should

4http://julianmendez.github.io/jcel/

http://julianmendez.github.io/jcel/


Table 2
Tool evaluation: Execution times in seconds for 25 queries on NOT-GALEN.

QUERY BEACON EL2SAT OWL2ASP PULI SATPIN

1.not.galen 0.21 timeout < 0.01 1.16 < 0.01
2.not.galen 0.27 timeout < 0.01 1.21 0.12
3.not.galen 0.52 timeout < 0.01 1.37 0.15
4.not.galen 0.56 timeout < 0.01 1.12 0.16
5.not.galen 0.57 timeout < 0.01 1.36 < 0.01
6.not.galen 0.27 timeout < 0.01 1.34 < 0.01
7.not.galen 0.27 timeout < 0.01 1.09 < 0.01
8.not.galen 0.26 timeout < 0.01 1.06 < 0.01
9.not.galen 0.24 timeout < 0.01 0.78 < 0.01

10.not.galen 0.50 timeout < 0.01 1.54 < 0.01
11.not.galen 0.51 timeout < 0.01 1.60 0.01
12.not.galen 0.49 timeout < 0.01 1.60 < 0.01
13.not.galen 0.53 timeout < 0.01 1.65 < 0.01
14.not.galen 0.52 timeout < 0.01 1.61 0.02
15.not.galen 0.50 timeout < 0.01 1.38 0.05
16.not.galen 0.53 timeout < 0.01 1.34 0.08
17.not.galen 0.53 timeout < 0.01 1.36 0.04
18.not.galen 0.57 timeout < 0.01 1.32 0.04
19.not.galen 0.53 timeout < 0.01 1.50 0.08
20.not.galen 0.50 timeout < 0.01 1.38 0.15
21.not.galen 0.52 timeout < 0.01 1.39 0.13
22.not.galen 0.53 timeout < 0.01 1.41 0.13
23.not.galen 0.52 timeout < 0.01 1.45 0.17
24.not.galen 0.24 timeout < 0.01 1.40 0.14
25.not.galen 0.24 timeout < 0.01 1.43 0.15

enjoy such a translation. The challenge in these cases is to find an adequate expression of the
consequence-based rules which can be handled by the ASP solver. For instance, the consequence-
based method for (full)𝒜ℒ𝒞 manipulates sets, which are not native to ASP. Dealing with further
constructors imposes additional challenges. On the other hand, once such an encoding has been
devised, our approach can be seamlessly applied, without further implementation issues. In
contrast, existing methods based on SAT [5, 6, 7], need to explicitly execute all the reasoning
steps to produce their encoding.

To test the applicability of our method, we implemented OWL2ASP, a tool that produces
the corresponding encoding for ℰℒ TBoxes, and compare it with other glass-box methods for
pinpointing in this logic. Our results are very promising, they show that our tool is competitive
with state-of-the-art alternatives in a preliminary experiment considering 25 queries executed
on NOT-GALEN. For future work, we plan to extend the evaluation to a larger sample of queries
and ontologies, following existing benchmarks. We will also extend the implementation to
handle Horn-𝒜ℒ𝒞.



An advantage of using an off-the-shelf ASP solver is that we can directly take advantage of
all the services that these solvers provide without any additional cost. In particular, through
a simple modification to the MUS enumerator call, one can obtain justifications of minimal
cardinality. In the future, we plan to study the implementation of other axiom pinpointing
services based on ASP constructs and evaluate their practical applicability. Moreover, we plan
to further reduce the (already acceptable) pre-processing times by exploiting the modularity
properties of the ontology in input, in order to specialise the reasoning task only to those
modules that are involved in the input query.
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