
Towards Ontology-Mediated Planning with
OWL DL Ontologies
Tobias John1, Patrick Koopmann2

1University of Oslo, Gaustadalléen 23B, 0316 Oslo, Norway
2Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Abstract
While classical planning languages make the closed-domain and closed-world assumption, there have
been various approaches to extend those with DL reasoning, which is then interpreted under the usual
open-world semantics. Current approaches for planning with DL ontologies integrate the DL directly
into the planning language, and practical approaches have been developed based on first-order rewritings
or rewritings into datalog. We present here a new approach in which the planning specification and
ontology are kept separate, and are linked together using an interface. This allows planning experts to
work in a familiar formalism, while existing ontologies can be easily integrated and extended by ontology
experts. Our approach for planning with those ontology-mediated planning problems is optimized for
cases with comparatively small domains, and supports the whole OWL DL fragment. The idea is to
rewrite the ontology-mediated planning problem into a classical planning problem to be processed
by existing planning tools. Different to other approaches, our rewriting is data-dependent. A first
experimental evaluation of our approach shows the potential and limitations of this approach.

Keywords
Planning, OWL Ontologies, Description Logics

1. Introduction

We present a new formalism to integrate OWL ontologies into planning problems, together
with a first practical technique for automated planning for such ontology-mediated planning
problems. Different to existing approaches, our formalism keeps the ontology component and
the planning component separate from each other. Our practical implementation is optimized
for planning problems with small domains, and is a first technique for automated planning that
supports full OWL.

Both planning and ontologies are commonly used in approaches to develop autonomous
robots [1, 2]. The motivation for the present work comes from planning problems for au-
tonomous underwater vehicles (AUVs). Such robots are often used for inspection tasks, e.g.
of underwater infrastructure such as pipelines or oil platforms, as well as for mapping of the
sea floor [3], but eventually they should also be able to complete more complex missions that
include manipulation tasks [4]. The robots need to be able to work autonomously, because their
operation area is very remote and without a connection to a human operator. Even recovering
the vehicle in case of a problem is a difficult and time consuming task. Therefore, the mission

DL 2023: 36th International Workshop on Description Logics, September 2–4, 2023, Rhodes, Greece
� 0000-0001-5855-6632 (T. John); 0000-0001-5999-2583 (P. Koopmann)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://orcid.org/0000-0001-5855-6632
https://orcid.org/0000-0001-5999-2583
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

plans for such vehicles should be as robust as possible, which includes that the robots have some
understanding of the domain they operate in. This domain knowledge is not specific to planning,
and would thus be ideally formalized in an ontology that can also be used in other contexts of
AUVs, such as configuring them, or recognizing unexpected situations [5]. For example, such
an ontology might define a concept of ProtectedAnimal, based on the concept of Animal and
having a position that is located in a NatureProtectionArea. Using such an ontology, the robot
would then be able to understand when it needs to keep a larger distance to an animal in order
not to disturb it. Ontologies are an ideal framework to represent such domain knowledge, and
there are existing ontologies for the underwater domain, such as the SWARMS ontology [6, 7].
However, if we want to use such an ontology in connection with planning, we need a planning
framework that can make use of the ontology.

In this paper, we propose a general framework to connect planning problems with OWL
ontologies, and a technique to compute plans for such problems. Using this framework, we
can create a planning domain that interacts with the ontology to generate plans that take its
domain knowledge into account. Similar to [4], we use the ontology to model the environment.
But additionally, we model actions of the robot that manipulate the objects and the relations
between objects in the environment, e.g. that the robot opens or closes a valve.

Using ontologies to support planning is not a new idea, and has been investigated for decades.
An overview about early works in which ontologies are used to infer implicit information
about planning states can be found in [8]. Different approaches have since then been used to
model planning domains, actions, and even planning problems using ontologies, but also to use
ontologies to generate planning problems, in domains as diverse as kitting and assembly [9, 10],
semantic web service decomposition [11, 12], robotics [13], train depot management [14] and
manufacturing [15]. These approaches usually depend on a static ontology that is used to
generate specifications for the planner, while the actions of the planning specifications cannot
modify the ontology.

In [16, 17], actions can use DL concepts in the preconditions and postconditions of an action,
which then operate on the models of an OWL ontology. A downside of letting actions directly
operate on the models is that it is not trivial to determine the implicit consequences of an action,
that is, to ensure that after executing an action on a model, we obtain an interpretation that is
still a model of the ontology. This problem is also known as the ramification problem.

The ramification problem is avoided in approaches where actions do not operate on models,
but on the knowledge base itself. This is the case with the Knowledge Action Bases (KABs) and
extended Knowledge Action Bases (eKABs) introduced in [18, 19], which combine DL knowledge
bases with actions that can add facts to and remove them from the knowledge base. Here,
every state in the planning domain corresponds to a DL knowledge base, and pre-conditions
of actions can query implicit information entailed in the current state via DL reasoning. The
idea is that what is known about the world in each system state is represented using facts of a
knowledge base, interpreted as potentially incomplete under the open-world assumption, and
any implicit consequences of an action are accessed only through reasoning with the ontology.
Existing approaches to plan with eKABs practically rely on rewriting the eKABs into planning
problems in pure PDDL [20] or its extension with derived predicates, i.e. axioms [21], so that
a standard planning system such as Fast-Downward planner [22] can be used. The limits of
such an approach are investigated in [23], where the underlying ontology can be expressed in

the description logic Horn-𝒜ℒ𝒞ℋ𝒪ℐ𝒬, which roughly corresponds to the Horn-fragment of
OWL DL without complex object property axioms. While Horn-𝒜ℒ𝒞ℋ𝒪ℐ𝒬 is quite expressive,
there are many properties useful for planning that cannot be expressed (see Section 3 for a
simple example). To our knowledge, no research in this direction considers more expressive
ontology languages.

Our approach is close to that of eKABs, but goes beyond existing approaches: 1) Rather than
integrating actions and knowledge, we strive for a separation of the representation formalisms,
and 2) using a domain-dependent rewriting approach, we are able to support the full OWL DL 2
syntax as defined in [24] (including SWRL rules [25]).

The aim of 1) is to have a presentation format that is tailored towards the specific needs and
skills of knowledge engineers and planning experts. In particular, in our framework, we favor a
strong separation of concerns, with the planning specification encoded in standard PDDL, and
the domain knowledge encoded in a separate OWL ontology. The connection between the two
is established via an interface that links statements in the planning language to OWL axioms.
This way, existing OWL ontologies can be easily integrated, and PDDL experts do not need to
learn another knowledge representation formalism.

Our solution to 2) is inspired by a technique for ontology-mediated probabilistic model
checking presented in [26, 27], which uses a similar separation of concerns as our approach,
but with a simpler representation of states using propositional logic. This allows us to support
ontologies that go beyond Horn, and are thus able to use many naturally occurring constructs
such as disjunction (e.g. to express that a valve must be either open or closed), or at-most
constraints (e.g. to express how many objects an AUV can carry). Similar to the work in [28], we
use justifications [29] to determine which elements of a planning state are relevant to an action
to be executed. However, while the authors of [28] are interested in explaining pre-conditions
in an action for a singular state, we use justifications to determine conditions on all possible
states.

This paper extends our work on defining Ontology-Mediated planning as presented in [30]
by a first evaluation. We demonstrate with the implementation that our method is capable
of dealing with complex planning problems but that there are also planning domains where
existing methods are superior.

2. Preliminaries

We recall the relevant notions regarding planning with PDDL. We assume the reader is familiar
with the basics of OWL and description logics (DLs). For an introduction into OWL and
description logics, we refer to [31]. We further assume standard knowledge of first-order logic,
and use |= to express entailment between theories and satisfaction in models. We call a formula
𝑃 (�⃗�) atom, which is ground if �⃗� contains only constants.

2.1. PDDL Planning Specifications

We consider the common syntax and semantics as introduced in [20, 32] and described in detail
in [33]. A PDDL planning specification P is a tuple ⟨𝐷,𝑃 ⟩ that contains a domain 𝐷 = ⟨𝒫,𝒜,𝒟⟩
and a problem 𝑃 = ⟨𝑂, 𝐼,𝐺⟩. Here, 𝒫 is a finite set of predicate names,𝒜 a finite set of actions,

𝒟 a finite set of derivation rules, 𝑂 a finite set of objects, 𝐼 is an initial state and the goal 𝐺
is a first-order formula with predicates from 𝒫 . A state is a finite set of ground atoms over 𝒫
and 𝑂, interpreted as first-order interpretation; an action is a tuple 𝑎 = ⟨𝑉, pre, eff⟩ where 𝑉
is a vector of variables, pre is the precondition (a first-order formula with predicates from 𝒫
and free variables from 𝑉) and eff = ⟨add, del⟩ is the effect. Both add and del are finite sets of
atoms over predicates from 𝒫 using variables from 𝑉 and constants from 𝑂. If neither pre nor
eff contain variables from 𝑉 or 𝑉 = ∅, we call 𝑎 a ground action.

Derivation rules are of the form 𝑝(𝑉)← 𝜑(𝑉), where 𝑉 is a vector of variables, 𝑝 ∈ 𝒫 , and
𝜑 is a first-order formula over the predicates in 𝒫 with free variables 𝑉 and constants from 𝑂.
We often call derivation rules just rules and 𝜑(𝑉) the body of a rule. If a predicate 𝑝 occurs on
the left hand side of a rule, it is called a derived predicate. Derived predicates are neither allowed
to occur negatively in a derivation rule, nor are they allowed to occur in an effect of an action.
For a finite set of atoms 𝑠, we define 𝒟(𝑠) as the least fix point over the possible applications of
some rules from 𝒟 to the atoms in 𝑠, i.e., we apply the rules from 𝒟 exhaustively and add the
derived ground atoms until no more rules can be applied.

Let 𝑎 = ⟨𝑉, pre, eff⟩ with eff = ⟨add, del⟩ be an action and 𝜃 : 𝑉 ↦→ 𝑂 a variable assignment.
We denote by 𝜃(𝑎) the ground action obtained by replacing each 𝑥 ∈ 𝑉 in 𝑎 with 𝜃(𝑥). A
ground action is applicable in a state 𝑠 iff𝒟(𝑠) |= pre, that is, the precondition is evaluated over
the atoms in the state and the entailed derived atoms. The result of applying the action 𝑎 on 𝑠
is then denoted 𝑠(𝑎), defined as 𝑠(𝑎) := (𝑠 ∖ del) ∪ add, i.e., all atoms are deleted and added
according to the effect. A plan 𝜋 is now a sequence 𝑎1 . . . 𝑎𝑛 of ground actions that generates a
sequence of states 𝑠0 . . . 𝑠𝑛 such that 1) 𝑠0 = 𝐼 is the initial state of the planning problem, 2)
for each 𝑖 ∈ {1, . . . , 𝑛}, 𝑎𝑖 is applicable in 𝑠𝑖−1 and 𝑠𝑖 = 𝑠𝑖−1(𝑎𝑖), and 3) the goal is reached:
𝒟(𝑠𝑛) |= 𝐺.

There are many extensions to PDDL, for example conditional effects. The described compo-
nents are the ones necessary for our framework but it can also be used with such extensions.

3. The Framework

We capture our framework formally via ontology-mediated planning specifications. At the heart
of those is the notion of ontology-enhanced states, which combine a PDDL state with an OWL
ontology.

Definition 1 (Ontology-Enhanced State). An ontology-enhanced state is a tuple 𝑞 = ⟨𝑃𝑞,𝒪𝑞⟩,
where 𝑃𝑞 is a set of atoms called the planner perspective of 𝑞, and 𝒪𝑞 is a set of OWL axioms
called the OWL perspective of 𝑞.

The idea is that each state has a planner perspective, on which the planner directly operates,
and on which preconditions and effects of actions are evaluated and executed, respectively. The
planner perspective of an ontology-enhanced state is, as for classical planning problems, a set
of ground atoms, where predicates of arbitrary arity may occur. On the other side, there is
the OWL perspective of the ontology-enhanced state, which corresponds to an OWL ontology,
i.e. a set of OWL axioms, and from which implicit entailments can be derived using reasoning.
The two perspectives are linked via an interface: which axioms are in the OWL perspective

stackBot blockA blockB blockC

PR2 Block

blockA ̸≃ blockB blockA ̸≃ blockC

blockB ̸≃ blockC

PR2 ⊑ Robot ⊓ ≤2holds.Block

PR2 ⊓=2holds.Block ⊑ FullHands

|= FullHands(stackBot)fullHands(stackBot)

holds(stackBot, blockB)

holds(stackBot, blockA)

on(blockB, blockA)

onTable(blockC)

holds

holds

Type: Type: Type: Type:

static

part of

ontology

ontology

query

dynamic

part of

ontology

query-

atom

mapped

atoms

atoms

outside

mapping

planning perspective OWL perspectiveinterface

𝑆

𝐹

Figure 1: Example of ontology based planning. The interface maps ontology queries to planning

predicates and atoms in the planning perspective to ABox atoms. The static part of the ontology

contains information about instances (ABox) as well as general axioms (TBox). The connections between

the two perspectives via the fluent (F) and query (S) interface are shown in green.

depends on the atoms in the planner perspective. There is however also a static part, which we
call the static ontology, that describes time-independent information (such as class definitions
and general domain knowledge), which is obtained from an external OWL file and has no
direct correspondence in the planner perspective. The planner perspective can access implicit
information from the OWL perspective using query predicates. Specifically, whether a query-
atom is active in the planner perspective depends on what can be derived from the OWL
perspective of the state. Before we give the formal definition of how this works, we illustrate
this idea with an example.

Example 1. An example of an ontology-enhanced state is depicted in Figure 1. The scenario is
inspired from the classical blocksworld planning example. In contrast to the classical problem
where the robot has only one hand, we use an OWL ontology to specify the type of the robot and
infer its number of hands. In the example, the stacking robot is a PR2 robot [34] that can hold two
blocks at a time, and if it holds two blocks, it becomes an instance of FullHands. While relatively
simple, those cardinality constraints already go beyond the expressivity of Horn-𝒜ℒ𝒞ℋ𝒪ℐ𝒬, the
most expressive DL currently supported by existing implementations for eKABs (see Section 1). The
planner perspective of the state is shown on the left, and the OWL perspective is shown on the
right. The interface is in the middle. If the atom holds(stackBot, blockA) becomes true in
the planner perspective, this is reflected in the ontology perspective as an OWL axiom expressing a
corresponding relation between the two individuals stackBot and blockA. Using the static ontology,
we can infer that stackBot is an instance of the OWL class FullHands, because the holds relation
is true for two different blocks. This is reflected by the entailed OWL axiom FullHands(stackBot).
We also have a query predicate fullHands, which corresponds to a query over instances of the
OWL class FullHands. Since we can infer from the OWL perspective that stackBot is an instance

OBJECT stackBot -> stackBot
OBJECT blockA -> blockA
OBJECT blockB -> blockB
OBJECT blockC -> blockC

PREDICATE holds(_,_) -> holds

(a) Example of a fluent interface.

PREDICATE: fullHands
VARIABLES: ?r
TYPE_SPECIFICATION:

Robot(?r)
QUERY:

FullHands(?r)

(b) Example of a query specification.

Figure 2: Interface specification using the syntax of our implementation.

of FullHands, the atom fullHands(stackBot) becomes true in the planner perspective of the
state.

The central notion of this paper is that of an ontology-mediated planning specification, which
consists of the following three components:

1. the PDDL component P, which is a PDDL planning specification consisting of a domain
and a problem,

2. the static ontology 𝒪, which is an OWL ontology specifying the static knowledge, that is,
it contains axioms whose truth cannot be affected by actions, and

3. the interface that specifies how the two perspectives of an ontology-enhanced state should
be linked. The interface itself consists of two parts:

a) the fluent interface, and

b) the query interface.

The fluent interface maps objects, unary and binary predicates used in the planner perspective
to the named individuals, OWL classes and OWL properties that are used in the OWL perspective.
An example of how this looks like for our implementation is shown in Figure 2a. In the context
of this paper, it is convenient to see the fluent specification simply as a partial function 𝐹 that
assigns to some of the predicates and objects 𝑋 in the planning specification an IRI 𝐹 (𝑋). We
require 𝐹 to be inverse functional, that is, 𝐹− is also a function. We lift 𝐹 in a straight-forward
way to atoms by setting 𝐹 (𝑃 (𝑡1, . . . , 𝑡𝑛)) = 𝐹 (𝑃)

(︀
𝐹 (𝑡1), . . . , 𝐹 (𝑡𝑛)

)︀
if it is defined.

The query interface is a set of query specifications 𝑆 = ⟨𝑝𝑆 , 𝑉𝑆 , 𝑇𝑆 , 𝑄𝑆⟩, which each consist
of four components:

1. 𝑝𝑆 is the query predicate,

2. 𝑉𝑆 is a vector of query variables, whose number corresponds to the arity of 𝑝𝑆 ,

3. the type specification 𝑇𝑆 assigns to each variable 𝑥 ∈ 𝑉𝑆 an OWL class expression
specifying its static type, and

4. the query 𝑄𝑆 is a set of OWL axioms using variables from 𝑉𝑆 as place holders for
individual names.

An example of how this looks like for our implementation is shown in Figure 2b. Note that in
the type specification, we can only assign one class expression to each variable, while variables
may occur in arbitrary ways in the query. The static types are used to restrict the set of named
individuals that can be assigned to a variable: candidates for a variable 𝑥 ∈ 𝑉𝑆 are individual
names 𝑎 for which the static ontology entails 𝑎 : 𝑇𝑆(𝑥), that is, which are an instance of the
class expression assigned to 𝑥 via 𝑇𝑆 . For the specification in Figure 2b, 𝑉𝑠 = (?r) and ?r
can be associated with instances of the class Robot. For a given static ontology 𝒪 and query
specification 𝑆, we thus have a set Θ(𝑆,𝒪) of legal assignments 𝜃 : 𝑉𝑆 → Ind(𝒪) of variables
to individual names in 𝒪. Finally, 𝑄𝑆 specifies the OWL query that the query predicate 𝑝𝑆
stands for. For a given assignment 𝜃 ∈ Θ(𝑆,𝒪), 𝜃(𝑄𝑆) denotes the set of OWL axioms obtained
by replacing each variable 𝑥 ∈ 𝑉𝑆 in 𝑄𝑆 by 𝜃(𝑥). In the present example, for the assignment
𝜃(?r) = stackBot, we would have 𝜃(𝑄𝑆) = { fullHands(stackBot) }.

We have now all ingredients to define ontology-mediated planning specifications.

Definition 2. An ontology-mediated planning specification is a tuple ⟨P,𝒪, 𝐹,S⟩, where P
is a PDDL planning specification consisting of a planning domain and a planning problem, 𝒪
is an OWL ontology called the static ontology, 𝐹 is a fluent interface, and S is a set of query
specifications called the query interface.

An ontology-mediated planning specification determines when an ontology-enhanced state
is compatible for that specification. In particular, a state 𝑞 = ⟨𝑃𝑞,𝒪𝑞⟩ is compatible to an
ontology-mediated planning specification OP = ⟨P,𝒪, 𝐹,S⟩, where 𝒟 are the derivation rules
in P, iff:

C1 𝑃𝑞 is a set of atoms over predicates and constants occurring in P,

C2 𝒪 ⊆ 𝒪𝑞 (the static ontology is always part of the OWL perspective),

C3 for every atom 𝛼 ∈ 𝒟(𝑃𝑞) for which 𝐹 (𝛼) is defined, 𝐹 (𝛼) ∈ 𝒪𝑞

C4 𝒪𝑞 contains no axioms that are not required due to Conditions C2 and C3

C5 for every query specification 𝑆 = ⟨𝑝𝑆 , ⟨𝑥1, . . . , 𝑥𝑛⟩, 𝑇𝑆 , 𝑄𝑆⟩ ∈ S and 𝜃 ∈ Θ(𝑆,𝒪), if
𝐹−(𝜃(𝑥𝑖)) is defined for each variable 𝑥𝑖 and 𝒪𝑞 |= 𝜃(𝑄𝑆), then

𝑝𝑆(𝐹
−(𝜃(𝑥1)), . . . , 𝐹

−(𝜃(𝑥𝑛))) ∈ 𝑃𝑞.

Given an ontology-mediated planning specification OP = ⟨P,𝒪, 𝐹,S⟩ and a state 𝑃 in the
corresponding planning domain, we define the extension ext(𝑃,OP) of 𝑃 according to OP as
follows. Let 1) 𝑃 ′ be the set of atoms in 𝑃 that are not over query predicates, 2) 𝒪𝑞 the set
of axioms required to satisfy Conditions C2 and C3 based on the atoms in 𝑃 ′, and 3) 𝑃𝑞 the
extension of 𝑃 ′ by all atoms over query predicates that are required to satisfy Condition C5 for
the ontology 𝒪𝑞 . Then, ext(𝑃,OP) = ⟨𝑃𝑞,𝒪𝑞⟩.

Example 2. Consider the example in Figure 1 where 𝛼 = holds(stackBot, blockA) and
𝛽 = holds(stackBot, blockB) with 𝛼, 𝛽 ∈ 𝑃𝑞 and 𝐹 is defined as in Figure 2a and S as in
Figure 2b. Then, according to C3, the axioms from the mappings 𝐹 (𝛼) = holds(stackBot, blockA)

and 𝐹 (𝛽) = holds(stackBot, blockB) are part of 𝒪𝑞 . Using the static part of 𝒪𝑞 , which states
that stackBot is a PR2 robot and blockA is different from blockB, we can infer that 𝒪𝑞 |=
{FullHands(stackBot)}. Using 𝜃 = {(?r ↦→ stackBot)}, 𝐹 and 𝑆 from Figure 2b, we can apply
C5 to determine that fullHands(stackBot) ∈ 𝑃𝑞 .

It remains to define the semantics of actions and plans on ontology-mediated planning
specifications. Fix an ontology-mediated planning specification OP = ⟨P,𝒪, 𝐹,S⟩. Let 𝑎 be a
ground action with precondition pre and effect eff = ⟨add, del⟩. Let 𝑞 be an ontology-enhanced
state. We say that 𝑎 is applicable on 𝑞 iff 𝒟(𝑃𝑞) |= pre. The result of applying 𝑎 on 𝑞 is
then denoted by 𝑞(𝑎) and defined as 𝑞(𝑎) = ext(𝑃𝑞(𝑎),OP). We can now define plans for OP
similarly as we did for planning specifications: Namely, a plan is a sequence 𝑎1 . . . 𝑎𝑛 of actions
that generates a sequence 𝑞0𝑞1 . . . 𝑞𝑛 of ontology-enhanced states s.t.

1. 𝑞0 = ext(𝐼,OP), where 𝐼 is the initial state of the PDDL planning problem in OP,

2. for each 𝑖 ∈ {1, . . . , 𝑛}, 𝑞𝑖 = 𝑞𝑖−1(𝑎𝑖),

3. for each 𝑖 ∈ {1, . . . , 𝑛}, 𝑎𝑖 is applicable on 𝑞𝑖−1, and

4. 𝒟(𝑃𝑞𝑛) |= 𝐺, where 𝒟 are the derivation rules of the planning domain, and 𝐺 is the
formula describing the goal of the planning problem.1

4. Solving Ontology-Mediated Planning Problems in Practice

Semantically, our approach is very related to that of eKABs introduced in [19]. eKABs do not offer
a differentiation between OWL perspective and planner perspective. Instead, actions operate
directly on OWL axioms, which can be directly referenced to both pre-conditions and post-
conditions of the actions. We conjecture that it is always possible using simple transformations
to translate an eKAB with a finite domain into an ontology-mediated planning problem. In the
other direction, we can translate ontology-mediated planning problems into eKABs by replacing
atom predicates by the corresponding OWL class and OWL properties, and replacing query
atoms by the corresponding queries. It is thus in theory possible to use an eKAB planner to
compute plans for ontology-mediated planning problems. However, existing implementations
for eKAB planning have limitations regarding the supported OWL fragment. The general idea
of these approaches is to take the eKAB planning specification, and translate it into a PDDL
specification that can then be used by a standard PDDL planner. Those techniques focus on
the planning domain, that is, the obtained rewritings are independent of the planning problem.
The approach presented in [19, 35] only supports rewritable DLs, which would correspond to
the OWL fragment OWL-QL. The approach presented in [23] goes further by using derivation
rules, which allows to encode Horn-𝒜ℒ𝒞ℋ𝒪ℐ𝒬 via a known translations of such ontologies
into datalog programs. Horn-𝒜ℒ𝒞ℋ𝒪ℐ𝒬 roughly corresponds to the Horn fragment of OWL

1Note that we allow the plan to go through states whose OWL perspective is inconsistent. If this is not wanted,
an easy way to avoid this would for example be to use a query predicate to detect such states, and to adapt the
preconditions of all actions so that they are not applicable in inconsistent states. As a consequence, a goal state can
never be reached from such a state.

inconsistent←

⎛⎝ holds(stackBot, blockA)
∧ holds(stackBot, blockB)
∧ holds(stackBot, blockC)

⎞⎠
fullHands(stackBot)←inconsistent∨⎛⎝ (holds(stackBot, blockA) ∧ holds(stackBot, blockB))

∨ (holds(stackBot, blockA) ∧ holds(stackBot, blockC))
∨ (holds(stackBot, blockB) ∧ holds(stackBot, blockC))

⎞⎠

Figure 3: Computed Derivation rules resulting for the example from Figure 1.

DL. For DLs that are not Horn, a translation into datalog is generally not possible, since datalog
is itself a Horn logic. The same applies to rewriting into derivation rules, if those are supposed
to be defined independently of the objects of the planning problem. Therefore, in order to
support full OWL DL, we need to take into account also the planning problem. Specifically, our
approach directly iterates over the possible assignments for each query predicate. This allows
us to develop a more generic approach that does not restrict the ontology language, as long as a
reasoner for it is available.

The basic idea is to construct a derivation rule for each query predicate, which determines for
each valid variable assignment a set of conditions that can be evaluated directly on the planner
perspective of a state. The details on how we construct these derivation rules in practice can be
found in the extended version of this paper [36].

Example 3. Figure 3 depicts the generated derived predicates for our running example. We
introduce the atom inconsistent, which captures the states in the ontology perspective that are
inconsistent. The atom is used in the derivation rule for every query atom. In our example, the static
ontology states that every individual from the class PR2 is only allowed to hold at most two blocks.
Using the fluent interface, we can determine the combination of atoms in the planning perspective
that would lead to an ontology that would violate this constraint. There is only one derivation
rule for the query-predicate fullHands as the only possible variable mapping is ?r = stackBot
because stackBot is the only individual with the static type Robot. The query atom is true if the
OWL perspective is inconsistent or if the stackBot holds exactly two different blocks.

5. Evaluation

Implementation. We implemented our method of compiling ontology-mediated planning
specifications into PDDL specification with derivation rules.2 We use the standard formats
PDDL and TTL for the planning specification and the ontology respectively, and we use our
own text-based formats for the fluent and query interface. Our compilation algorithm relies on
an extensive computation of justifications, for which we used a modified version of the blackbox
justification algorithm implemented in the OWL-API [38], together with the OWL reasoning

2The source files and scripts to reproduce the evaluation can be obtained online [37].

Table 1
Results grouped by domain. Computation times are in seconds and the median over the commonly

solved instances (except times marked with “*”, those refer to the median for the instances solved by

this method). Best results are marked in bold (where applicable).

axioms # solved # compiled planning time compilation time

Domain # in T-Box Horn OM Horn OM Horn OM Horn OM

Drones 24 17 24 4 24 4 8.2 4.1 0.6 917.5

Queens 30 17 24 19 30 20 3.0 0.8 0.7 146.5

Pipes 21 43 14 19 21 21 5.4 0.2 0.7 10.0

Blocksworld 21 5 — 13 — 21 — 4.8* — 1.1*

system HermiT [39]. The computed derivation rules are added to the PDDL domain. We used
the fast-downward planning system [22] with the heuristic A* for planning. We chose this
heuristic because many of the more advanced heuristics have problems working with derivation
rules.

For our evaluation, we compare our method to the eKAB method presented in [23]. We
choose this competitor as it is the implementation that can deal with the most expressive DL
fragment and performs best on existing benchmark domains [23]. We used a time limit of 1200s
and a memory limit of 8GB. Both limits applied to compiling and planning individually.

Benchmarks. Our benchmark consists of instances from the domains used in [23], as well
as some new domains. As to be expected, our method is at this stage not yet competetive on
all domains, and in fact, on some of the domains used in [23] to evaluate the performance
of eKABs based on rewritable and Horn DLs, our method almost always timed out. To have
a more interesting picture, we focus here on the more complex domains from that paper
(“Drones” and “Queens”), which surprisingly turned out also to be the more interesting ones
for our approach, and present the other results in the extended version of this paper [36]. In
particular, our benchmark set contained 54 instances from two of the most complex domains
that were introduced in [23], to which we added two new domains with 39 instances. The
existing instances are eKABs, which are based on the DL fragment Horn-𝒜ℒ𝒞ℋ𝒪ℐ𝒬. We
translated them manually to ontology-mediated planning specifications, which mainly involved
specifying the interface. The domains “Pipes” and “Blocksworld” were created by us. “Pipes”
is a complex domain describing a mission for an underwater robot in a 2D world. The world
contains pipes, valves and tanks that can be connected to each other and that are located at
different waypoints. The goal is to document damages of the pipe and to turn the valves such
that no tank is connected to a damaged pipe segment. “Blocksworld” reflects the domain from
our running example (see e.g. Example 1). It is inspired by the Blocksworld domain from the
international planning competition 2000 [40]. This domain uses axioms that can not be captured
by Horn-𝒜ℒ𝒞ℋ𝒪ℐ𝒬.

Results. Table 1 provides a summary of our experiments. We call the method presented in
this paper OM and the method presented in [23] Horn. OM was capable of handling some of
the domains very well, while the performance on others is worse than Horn.

In general, OM had longer compilation times and shorter planning times compared to Horn.
This simpler structure of the derivation rules generated by OM resulted in a faster search in the
planning phase as each state could be evaluated faster, e.g. in the domain “Pipes” the planner
could, on average, evaluate 11,000 states per second for Horn and 117,000 states per second
for OM. Therefore, we expected OM to outperform Horn in cases where the planner needs to
search in a huge state spaceand the number of fluents and queries is low. This is e.g. the case for
the larger instances from the domain “Pipes”, which could be solved by OM but not by Horn.

The size of the ontology is in general not a problem for OM as the domain “Pipes”, which
contains a larger T-Box than the other domains, could be compiled in rather short time. Similarly,
increasing the expressiveness of the underlying DL does not seem have a negative effect, as all
instances from the domain “Blocksworld” could be compiled within the provided bounds.

On the other hand, as the domain “Drones” shows, the performance on instances from the
existing domains is often poor. As mentioned before, this picture was even worse with the
other benchmarks from [23], on which our method almost always caused a timeout. One reason
is that we need to map every atom from the planning perspective to the OWL perspective
to describe equivalent instances to the eKAB instances. This results in many, often several
hundred, fluents which again results in many explanations for an inconsistent ontology. As
OM enumerates all the possibilities in the derivation rules, this is a problem and leads to a huge
increase in compilation time. The detailed evaluation in the extended version of this paper
shows that this can happen even in relatively small instances [36].

6. Conclusion

We proposed ontology-mediated planning specifications as a way to integrate OWL reasoning
into planning. One objective was to find a formalism that allows for a separation of concerns,
allowing to separate the specification of ontologies from the specification of planning problems
and domains. This has the advantage that the ontology can be maintained by ontology experts,
while the planning specification can be developed by planning experts, with the interface
serving as the only connecting component. We developed a first practical method for computing
plans for such planning problems, which relies on justifications. This technique allows us to be
flexible with respect to the ontology language, with the result that our method supports the
entirety of OWL DL, going beyond what is currently supported by implementations for the
related frameworks of KABs and eKABs. Our evaluation shows that our method can outperform
existing methods on some instances but is not competitive for most existing benchmark domains
yet. In the future, we want to investigate optimizations of our approach, maybe combining it
ideas of the other rewriting-based approaches, in order to obtain shorter compilation times.

Acknowledgments

Tobias John is part of the project REMARO that has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 956200. Patrick Koopmann is supported by the German Research Foundation
(DFG), grant 389792660 as part of TRR 248 – CPEC.

References

[1] A. Olivares-Alarcos, D. Beßler, A. Khamis, P. Goncalves, M. K. Habib, J. Bermejo-Alonso,
M. Barreto, M. Diab, J. Rosell, J. Quintas, J. Olszewska, H. Nakawala, E. Pignaton, A. Gy-
rard, S. Borgo, G. Alenyà, M. Beetz, H. Li, A review and comparison of ontology-
based approaches to robot autonomy, The Knowledge Engineering Review 34 (2019/ed).
doi:10.1017/S0269888919000237.

[2] E. Karpas, D. Magazzeni, Automated planning for robotics, Annual Review
of Control, Robotics, and Autonomous Systems 3 (2020) 417–439. doi:10.1146/
annurev-control-082619-100135.

[3] A. Sahoo, S. K. Dwivedy, P. S. Robi, Advancements in the field of autonomous underwater
vehicle, Ocean Engineering 181 (2019) 145–160. doi:10.1016/j.oceaneng.2019.04.
011.

[4] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, A. Carrera, N. Palomeras, N. Hurtos,
M. Carreras, ROSPlan: Planning in the robot operating system, Proceedings of the
International Conference on Automated Planning and Scheduling 25 (2015) 333–341.
doi:10.1609/icaps.v25i1.13699.

[5] W. Dargie, Eldora, J. Mendez, C. Möbius, K. Rybina, V. Thost, A. Turhan, Situation
recognition for service management systems using OWL 2 reasoners, in: IEEE International
Conference on Pervasive Computing and Communications Workshops, PERCOM, IEEE
Computer Society, 2013, pp. 31–36. doi:10.1109/PerComW.2013.6529452.

[6] X. Li, S. Bilbao, T. Martín-Wanton, J. Bastos, J. Rodriguez, SWARMs ontology: A common
information model for the cooperation of underwater robots, Sensors 17 (2017) 569.
doi:10.3390/s17030569.

[7] Z. Zhai, J.-F. Martínez Ortega, N. Lucas Martínez, P. Castillejo, A rule-based reasoner
for underwater robots using OWL and SWRL, Sensors 18 (2018) 3481. doi:10.3390/
s18103481.

[8] Y. Gil, Description logics and planning, AI Magazine 26 (2005) 73–73. doi:10.1609/
aimag.v26i2.1814.

[9] S. Balakirsky, Z. Kootbally, T. Kramer, A. Pietromartire, C. Schlenoff, S. Gupta, Knowledge
driven robotics for kitting applications, Robotics and Autonomous Systems 61 (2013)
1205–1214. doi:10.1016/j.robot.2013.04.006.

[10] Z. Kootbally, C. Schlenoff, C. Lawler, T. Kramer, S. K. Gupta, Towards robust assembly with
knowledge representation for the planning domain definition language (PDDL), Robotics
and Computer-Integrated Manufacturing 33 (2015) 42–55. doi:10.1016/j.rcim.2014.
08.006.

[11] M. Klusch, A. Gerber, M. Schmidt, Semantic web service composition planning with
OWLS-Xplan., in: T. R. Payne, V. A. M. Tamma (Eds.), Agents and the Semantic Web,
Papers from the 2005 AAAI Fall Symposium, AAAI Press, 2005, pp. 55–62. URL: https:
//www.aaai.org/Library/Symposia/Fall/2005/fs05-01-008.php.

[12] Z. Ďurčík, J. Paralič, Transformation of ontological represented web service composition
problem into a planning one, Acta Electrotechnica et Informatica 11 (2011). doi:10.2478/
v10198-011-0014-y.

[13] Y. Al-Safi, V. Vyatkin, An ontology-based reconfiguration agent for intelligent mechatronic

http://dx.doi.org/10.1017/S0269888919000237
http://dx.doi.org/10.1146/annurev-control-082619-100135
http://dx.doi.org/10.1146/annurev-control-082619-100135
http://dx.doi.org/10.1016/j.oceaneng.2019.04.011
http://dx.doi.org/10.1016/j.oceaneng.2019.04.011
http://dx.doi.org/10.1609/icaps.v25i1.13699
http://dx.doi.org/10.1109/PerComW.2013.6529452
http://dx.doi.org/10.3390/s17030569
http://dx.doi.org/10.3390/s18103481
http://dx.doi.org/10.3390/s18103481
http://dx.doi.org/10.1609/aimag.v26i2.1814
http://dx.doi.org/10.1609/aimag.v26i2.1814
http://dx.doi.org/10.1016/j.robot.2013.04.006
http://dx.doi.org/10.1016/j.rcim.2014.08.006
http://dx.doi.org/10.1016/j.rcim.2014.08.006
https://www.aaai.org/Library/Symposia/Fall/2005/fs05-01-008.php
https://www.aaai.org/Library/Symposia/Fall/2005/fs05-01-008.php
http://dx.doi.org/10.2478/v10198-011-0014-y
http://dx.doi.org/10.2478/v10198-011-0014-y

systems, in: V. Mařík, V. Vyatkin, A. W. Colombo (Eds.), Holonic and Multi-Agent Systems
for Manufacturing, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2007,
pp. 114–126. doi:10.1007/978-3-540-74481-8_12.

[14] H. Louadah, E. Papadakis, T. L. McCluskey, G. Tucker, P. Hughes, A. Bevan, Translating
ontological knowledge to PDDL to do planning in train depot management operations,
36th Workshop of the UK Planning and Scheduling Special Interest Group (2021).

[15] S. Borgo, A. Cesta, A. Orlandini, A. Umbrico, Knowledge-based adaptive agents for
manufacturing domains, Engineering with Computers 35 (2019) 755–779. doi:10.1007/
s00366-018-0630-6.

[16] M. Milicic, Complexity of planning in action formalisms based on description logics, in:
Proc. of LPAR 2007, volume 4790 of Lecture Notes in Computer Science, Springer, 2007, pp.
408–422. doi:10.1007/978-3-540-75560-9_30.

[17] B. Zarrieß, J. Claßen, Verification of knowledge-based programs over description logic
actions, in: Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI, AAAI Press, 2015, pp. 3278–3284. URL: http://ijcai.org/Abstract/15/462.

[18] B. B. Hariri, D. Calvanese, M. Montali, G. D. Giacomo, R. D. Masellis, P. Felli, Description
logic knowledge and action bases, Journal of Artificial Intelligence Research 46 (2013)
651–686. doi:10.1613/jair.3826.

[19] D. Calvanese, M. Montali, F. Patrizi, M. Stawowy, Plan synthesis for knowledge and
action bases, Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI, AAAI Press, Palo Alto, California, 2016, p. 8. URL: http://www.ijcai.
org/Abstract/16/149.

[20] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, D. Wilkins,
PDDL the planning domain definition language, Technical Report (1998).

[21] J. Hoffmann, S. Edelkamp, The deterministic part of IPC-4: An overview, Journal of
Artificial Intelligence Research 24 (2005) 519–579. doi:10.1613/jair.1677.

[22] M. Helmert, The fast downward planning system, Journal of Artificial Intelligence Research
26 (2006) 191–246. doi:10.1613/jair.1705.

[23] S. Borgwardt, J. Hoffmann, A. Kovtunova, M. Krötzsch, B. Nebel, M. Steinmetz, Expressivity
of planning with horn description logic ontologies, Proceedings of the AAAI Conference
on Artificial Intelligence 36 (2022) 5503–5511. doi:10.1609/aaai.v36i5.20489.

[24] B. Parsia, B. Motik, P. Patel-Schneider, OWL 2 Web Ontology Language Structural Specifi-
cation and Functional-Style Syntax (Second Edition), W3C Recommendation, W3C, 2012.
URL: http://www.w3.org/TR/owl2-syntax/.

[25] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, SWRL: A semantic
web rule language combining OWL and RuleML, W3C Member submission 21 (2004) 1–31.
URL: http://www.w3.org/Submission/SWRL/.

[26] C. Dubslaff, P. Koopmann, A.-Y. Turhan, Enhancing probabilistic model checking with
ontologies, Formal Aspects of Computing (2021). doi:10.1007/s00165-021-00549-0.

[27] C. Dubslaff, P. Koopmann, A. Turhan, Ontology-mediated probabilistic model checking,
in: W. Ahrendt, S. L. T. Tarifa (Eds.), Integrated Formal Methods - 15th International
Conference, IFM, volume 11918 of Lecture Notes in Computer Science, Springer, 2019, pp.
194–211. doi:10.1007/978-3-030-34968-4_11.

[28] I. Gocev, S. Grimm, T. A. Runkler, Explanation of action plans through ontologies,

http://dx.doi.org/10.1007/978-3-540-74481-8_12
http://dx.doi.org/10.1007/s00366-018-0630-6
http://dx.doi.org/10.1007/s00366-018-0630-6
http://dx.doi.org/10.1007/978-3-540-75560-9_30
http://ijcai.org/Abstract/15/462
http://dx.doi.org/10.1613/jair.3826
http://www.ijcai.org/Abstract/16/149
http://www.ijcai.org/Abstract/16/149
http://dx.doi.org/10.1613/jair.1677
http://dx.doi.org/10.1613/jair.1705
http://dx.doi.org/10.1609/aaai.v36i5.20489
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/Submission/SWRL/
http://dx.doi.org/10.1007/s00165-021-00549-0
http://dx.doi.org/10.1007/978-3-030-34968-4_11

in: H. Panetto, C. Debruyne, H. A. Proper, C. A. Ardagna, D. Roman, R. Meersman
(Eds.), On the Move to Meaningful Internet Systems. OTM Conferences, Lecture Notes
in Computer Science, Springer International Publishing, Cham, 2018, pp. 386–403.
doi:10.1007/978-3-030-02671-4_24.

[29] M. Horridge, Justification based explanation in ontologies, Ph.D. thesis, University
of Manchester, UK, 2011. URL: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:
131699.

[30] T. John, P. Koopmann, Planning with ontology-enhanced states using problem-dependent
rewritings, in: Planning and Ontology Workshop (PLATO), ICAPS, CEUR Workshop
Proceedings, CEUR-WS.org, 2023. To appear.

[31] F. Baader, I. Horrocks, C. Lutz, U. Sattler, An Introduction to Description Logic, Cambridge
University Press, 2017.

[32] V. Lifschitz, On the semantics of STRIPS, in: M. Georgeff, Lansky, Amy (Eds.), Reasoning
about Actions and Plans, Morgan Kaufmann, San Mateo, CA, 1987, pp. 1–9.

[33] M. Fox, D. Long, PDDL2.1: An extension to PDDL for expressing temporal planning
domains, Journal of Artificial Intelligence Research 20 (2003) 61–124. doi:10.1613/jair.
1129.

[34] J. Bohren, R. B. Rusu, E. Gil Jones, E. Marder-Eppstein, C. Pantofaru, M. Wise, L. Mösen-
lechner, W. Meeussen, S. Holzer, Towards autonomous robotic butlers: Lessons learned
with the PR2, in: IEEE International Conference on Robotics and Automation, 2011, pp.
5568–5575. doi:10.1109/ICRA.2011.5980058.

[35] S. Borgwardt, J. Hoffmann, A. Kovtunova, M. Steinmetz, Making DL-Lite planning practical,
in: M. Bienvenu, G. Lakemeyer, E. Erdem (Eds.), Proceedings of the Eighteenth International
Conference on Principles of Knowledge Representation and Reasoning, Hanoii, Vietnam,
2021, pp. 641–645. doi:10.24963/kr.2021/61.

[36] T. John, P. Koopmann, Towards ontology-mediated planning with owl dl ontologies (ex-
tended version), 2023. doi:10.48550/arXiv.2308.08200.

[37] T. John, P. Koopmann, Supplementary Material for the paper "Towards Ontology-Mediated
Planning with OWL DL Ontologies", 2023. doi:10.5281/zenodo.8225315.

[38] M. Horridge, S. Bechhofer, The OWL API: A Java API for OWL ontologies, Semantic Web
2 (2011) 11–21. doi:10.3233/SW-2011-0025.

[39] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, Z. Wang, HermiT: An OWL 2 reasoner, Journal
of Automated Reasoning 53 (2014) 245–269. doi:10.1007/s10817-014-9305-1.

[40] F. Bacchus, AIPS 2000 planning competition: The fifth international conference on artificial
intelligence planning and scheduling systems, Ai magazine 22 (2001) 47–47.

http://dx.doi.org/10.1007/978-3-030-02671-4_24
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:131699
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:131699
http://dx.doi.org/10.1613/jair.1129
http://dx.doi.org/10.1613/jair.1129
http://dx.doi.org/10.1109/ICRA.2011.5980058
http://dx.doi.org/10.24963/kr.2021/61
http://dx.doi.org/10.48550/arXiv.2308.08200
http://dx.doi.org/10.5281/zenodo.8225315
http://dx.doi.org/10.3233/SW-2011-0025
http://dx.doi.org/10.1007/s10817-014-9305-1

	1 Introduction
	2 Preliminaries
	2.1 PDDL Planning Specifications

	3 The Framework
	4 Solving Ontology-Mediated Planning Problems in Practice
	5 Evaluation
	6 Conclusion

