
On the Expressive Power of
Ontology-Mediated Queries: Capturing coNP
Sanja Lukumbuzya

1
, Magdalena Ortiz

2
and Mantas Šimkus

2

1

TU Wien, Austria

2

Umeå University, Sweden

Abstract

The complexity and relative expressiveness of Ontology-mediated Queries (OMQs) is quite well understood

by now. In this paper, we study the expressive power of OMQs from a descriptive complexity perspective,

where the central question is to understand whether a given OMQ language is powerful enough to

express all queries that can be computed within some bound on time or space. We show that the OMQ

language that pairs instance queries with ontologies in the very expressive DL 𝒜ℒ𝒞ℋ𝒪ℐ with closed

predicates cannot express all coNP-computable Boolean queries, despite being coNP-complete in data

complexity. We, then, propose an extension of this OMQ language that is expressive enough to precisely

capture the class of all Boolean queries computable in coNP. This involves adding functionality as well

as path expressions and nominal schemata, which are restricted in a way that allows us to carefully

incorporate them into the existing mosaic technique for the DL 𝒜ℒ𝒞ℋ𝒪ℐℱ with closed predicates

without affecting the coNP upper bound in data complexity.

Keywords
Description Logics, Ontology-mediated Query Answering, Expressive Power, Descriptive Complexity

1. Introduction

Ontology-mediated Queries (OMQs) have received significant attention in the Description

Logic (DL) community as a powerful tool to answer database-like queries, while taking into ac-

count domain knowledge captured in ontologies. The computational complexity of this problem

is now well-understood both in terms of combined complexity and data complexity. Specifically,

for the standard OMQs based on expressive DLs of the 𝒜ℒ𝒞 family, we have coNP-completeness

in data complexity: this is the complexity of checking if a given tuple of individuals belongs

to the answer to an OMQ 𝑄 over an ABox 𝒜, assuming that 𝑄 is fixed and only 𝒜 varies (see,

e.g., [1]). Relative expressiveness of OMQs has also been investigated, e.g., via the established

translations of OMQs into variants of Datalog (see, e.g., [2, 3, 4]).

The expressive power of OMQs from a descriptive complexity [5] perspective has thus far

received limited attention. In this context, we ask whether a given OMQ language is powerful

enough to express all queries computable within some time or space resources, i.e., belonging

to a certain complexity class. It was shown in [2] that there are OMQ languages that capture

certain subclasses of coNP related to constraint satisfaction problems (CSPs). More recently, a

DL 2023: 36th International Workshop on Description Logics, September 2–4, 2023, Rhodes, Greece

$ lukumbuzya@kr.tuwien.ac.at (S. Lukumbuzya)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:lukumbuzya@kr.tuwien.ac.at
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

close connection between OMQ languages with the so-called closed predicates and surjective

CSPs was shown in [6]. In this paper, we continue this line of work and we focus on finding an

OMQ language that precisely captures the complexity class coNP. It is easy to see that OMQs

based on standard expressive DLs and conjunctive queries—while being coNP-complete in

data complexity—are not powerful enough to express all queries computable in coNP. This

follows directly from the monotonicity of standard OMQ languages (e.g., in all cases where

the OMQ language is based on first-order logic). Specifically, if 𝑄 is a Boolean OMQ in such

a language, then for all ABox pairs 𝒜1 ⊆ 𝒜2 we have that 𝑄(𝒜1) = 1 implies 𝑄(𝒜2) = 1.

These OMQ languages cannot capture coNP since there exist (rather trivial) non-monotonic

queries computable in coNP (or even polynomial time). Here is a simple example of such a

(non-monotonic) query: “Does the input ABox have an odd number of individuals?”

We, therefore, pose the following question: “Which features make an OMQ language suffi-

ciently expressive to capture the class of all queries computable in coNP, while still maintaining

coNP-completeness in data complexity?” The summary of our contributions is as follows:

∘ We first present an inexpressibility result for non-monotonic OMQs based on 𝒜ℒ𝒞ℋ𝒪ℐ with

closed predicates. For such expressive OMQs the aforementioned monotonicity-based argument

does not apply, and we need a more sophisticated approach. Specifically, by analyzing an

existing algorithm in [3] and invoking the Non-deterministic Time Hierarchy Theorem, we show

that instance queries mediated by 𝒜ℒ𝒞ℋ𝒪ℐ TBoxes with closed predicates are not expressive

enough to capture coNP.

∘ We present an OMQ language that is powerful enough to express all coNP computable

queries. As our base DL we choose 𝒜ℒ𝒞ℋ𝒪ℐℱ (with closed predicates) and we add to it

nominal schemas [7] of very restricted shapes. We argue that these additions do not cause

an increase in combined complexity and data complexity, i.e. answering ontology-mediated

instance queries remains complete for NExpTime and coNP, respectively. This is done by

suitably modifying the mosaic-based algorithm in [4].

∘ We prove that our enriched OMQ language is powerful enough to express all (so-called

generic) Boolean queries computable in coNP. Each such generic query 𝑞 is associated to a

signature Σ as well as to a set of ABoxes over Σ (also called Σ-ABoxes) in which the answer

to the query is “true”. By saying that “𝑞 is computable in coNP” we mean that there is a

Nondeterministic Turing Machine (NTM) 𝑀𝑞 that recognizes the language of strings representing

Σ-ABoxes in which the answer to the query is “false” and runs in polynomial time in the size

(of the string representation) of the input ABox. We show that the enriched OMQ language can

properly express the computations of 𝑀𝑞 . As a consequence of this and the previous point, we

obtain a language that captures precisely coNP.

2. Preliminaries

Ontology-Mediated Queries (OMQs) We recall here the necessary notions related to

OMQs based on 𝒜ℒ𝒞ℋ𝒪ℐℱ with closed predicates.

We use N𝐶 , N𝑅, and N𝐼 to denote countably infinite, mutually disjoints sets of concept names,

role names, and individuals, respectively. A signature is any finite set Σ ⊆ N𝐶∪N𝑅. An assertion

(or, fact) is an expression of the form 𝑟(𝑎, 𝑏) or 𝐴(𝑏), where 𝑟 ∈ N𝑅, 𝐴 ∈ N𝐶 , and 𝑎, 𝑏 ∈ N𝐼 .

An ABox 𝒜 is any finite set of assertions. If all concept and role names that appear in an ABox

𝒜 belong to a signature Σ, then 𝒜 is a Σ-ABox.

We define the set of roles N+
𝑅 as follows: N+

𝑅 = {𝑝, 𝑝− | 𝑝 ∈ N𝑅}. Furthermore, we define

the set N+
𝐶 of basic concepts as N+

𝐶 = N𝐶 ∪ {{𝑜} | 𝑜 ∈ N𝐼} ∪ {⊤,⊥}. (Complex) concepts are

defined according to the following syntax 𝐶 := 𝐴 | 𝐶 ⊓ 𝐶 | 𝐶 ⊔ 𝐶 | ¬𝐶 | {𝑜} | ∃𝑟.𝐶 | ∀𝑟.𝐶 ,

where 𝐴 ∈ N𝐶 , 𝑜 ∈ N𝐼 , and 𝑟 ∈ N+
𝑅. We call the concepts of the form {𝑜}, where 𝑜 ∈ N𝐼 ,

nominals. Axioms are expressions of the form 𝐶 ⊑ 𝐷 (concept inclusions), 𝑟 ⊑ 𝑝 (role inclusions),

and (func 𝑟) (functionality assertion), where 𝐶,𝐷 are concepts and 𝑟, 𝑝 are roles. A TBox is a

finite set of axioms. A knowledge base (with closed predicates) (KB) is a tuple (𝒯 ,Σ,𝒜), where

𝒯 is a TBox, Σ ⊆ N𝐶 ∪ N𝑅 is a set of closed predicates and 𝒜 is an ABox. We use Nom(𝒦)
to denote the set {{𝑜} | 𝑜 ∈ N𝐼 , and 𝑜 occurs in 𝒦}. The semantics of TBoxes and ABoxes

as given above is defined in the standard way using interpretations of the form ℐ = (Δℐ , ·ℐ).
Additionally, we make the Standard Name Assumption (SNA), which is common when dealing

with closed predicates and which forces us to interpret every constant occurring in the KB

as itself. We say that ℐ satisfies a KB 𝒦 = (𝒯 ,Σ,𝒜), in symbols ℐ ⊨ 𝒦, if ℐ satisfies 𝒯 and

𝒜 and (i) for each 𝐴 ∈ Σ, 𝐴ℐ = {𝑎 | 𝐴(𝑎) ∈ 𝒜, 𝐴 ∈ Σ ∩ N𝐶}, and (ii) for each 𝑟 ∈ Σ,

𝑟ℐ = {(𝑎, 𝑏) | 𝑟(𝑎, 𝑏) ∈ 𝒜, 𝑟 ∈ Σ ∩N𝑅}.

In the literature, an OMQ is often given as a pair (𝒯 , 𝑞), where 𝒯 is a TBox and 𝑞 is a

Conjunctive Query (CQs). In this paper, we do not deal with general CQs: here 𝑞 is just an

atomic query or an inconsistency query (corresponding to a Boolean CQ ∃𝑥.⊥(𝑥)). On the other

hand, our OMQs include closed predicates. Thus, an ontology-mediated atomic query is a triple

𝑄 = (𝒯 ,Σ, 𝑃), where 𝒯 is a TBox and Σ ∪ {𝑃} ⊆ N𝐶 ∪N𝑅. If 𝑃 is a concept name, then the

answer to 𝑄 over an ABox 𝒜 is the set of all individuals 𝑎 such that 𝑎ℐ ∈ 𝑃 ℐ
for all models ℐ of

(𝒯 ,Σ,𝒜). The definition of an answer in case 𝑃 is a role name is analogous. An inconsistency

query given as a pair 𝑄 = (𝒯 ,Σ). For such 𝑄 and any ABox 𝒜, we let 𝑄(𝒜) = 1 if (𝒯 ,Σ,𝒜)
has no model, and 𝑄(𝒜) = 0 if (𝒯 ,Σ,𝒜) has a model.

Turing Machines A Nondeterministic Turing Machine (NTM) is a tuple 𝑀 =
(Γ, 𝑄, 𝛿, 𝑞0, 𝑞acc , 𝑞rej), where Γ is an alphabet, 𝑄 is a set of states, 𝛿 ⊆ (Γ ∪ {𝐵}) × 𝑄 ×
(Γ ∪ {𝐵}) × 𝑄 × {−1,+1} is a transition relation, and 𝑞0, 𝑞acc , 𝑞rej ∈ 𝑄 are the initial state,

the accepting state, and the rejecting state, respectively. The symbol 𝐵 is the blank symbol. An

NTM 𝑀 takes as input a finite word 𝑤 over Γ, which is written on an infinite tape: the blank

symbol 𝐵 is written in every cell that is not occupied by 𝑤. Initially, the read-write head of 𝑀
is over the first symbol of 𝑤 and the machine is in state 𝑞0. The computation of 𝑀 is defined in

the usual way. If there is a run of 𝑀 on 𝑤 that reaches 𝑞acc , then 𝑀 accepts 𝑤. The language of

𝑀 is defined as the set of all words over Γ that 𝑀 accepts.

3. Inexpressbility Result

We present here our inexpressibility results. For this, we first need to formalise generic queries

over ABoxes, and clarify the notion of membership of such queries in a complexity class.

Definition 1 (Generic Boolean Queries). For an ABox 𝒜, we use Adom(𝒜) to denote the set

of individuals that appear in 𝒜. We say ABoxes 𝒜1,𝒜2 are isomorphic, if they are equal up

to renaming of individuals, i.e. there is a bijection 𝑓 : Adom(𝒜1) → Adom(𝒜2) such that

𝒜2 = {𝐴(𝑓(𝑐) | 𝐴(𝑐) ∈ 𝒜1)} ∪ {𝑟(𝑓(𝑐), 𝑓(𝑑)) | 𝑟(𝑐, 𝑑) ∈ 𝒜1)}.

A Generic Boolean Query (GBQ) 𝑄 over a signature Σ is a function that maps each Σ-ABox 𝒜
to a value 𝑄(𝒜) ∈ {0, 1}, and is such that 𝑄(𝒜1) = 𝑄(𝒜2) holds for any pair 𝒜1, 𝐴2 of

isomorphic Σ-ABoxes.

The assumption that answers GBQs are invariant under isomorphic ABoxes is natural: we

are interested in queries about the structure of ABoxes, and they should not depend on the

concrete names of individuals. Dropping this assumption would render the expressivness

analysis virtually meaningless: because an OMQ (or any standard database query) can only use

a finite number of constants in the query expression, many computationaly trivial queries could

not be expressed even in very powerful query languages.

Turing Machines operate on strings. This means that in order to compute an answer to a

query over an ABox 𝒜, we need to suitably encode 𝒜 as a string. We choose a simple encoding,

where we first enumerate all pairs 𝑐𝑖, 𝑐𝑗 of individuals in 𝒜. Then, for each such pair, we store

in a single symbol all the concept names asserted for those individuals along with the roles that

link them. Note that different types of encodings are possible (cf. [5], Chapter 2.2).

Definition 2 (Encoding ABoxes as words). Consider a fixed signature Σ. A 2-type over Σ is

a tuple (𝑇,𝑅, 𝑇 ′), where 𝑇, 𝑇 ′ ⊆ Σ ∩ N𝐶 and 𝑅 ⊆ Σ ∩ N+
𝑅. We let ΓΣ

denote the set of all

2-types over Σ. We next define an encoding function 𝑒𝑛𝑐Σ that maps Σ-ABoxes to words over

ΓΣ
. Assume a Σ-ABox 𝒜 with ℓ individuals and take an arbitrary enumeration 𝑐1, . . . , 𝑐ℓ of the

individuals in 𝒜. Then we define 𝑒𝑛𝑐Σ(𝒜) = 𝜎1,1 . . . 𝜎1,ℓ 𝜎2,1 . . . 𝜎2,ℓ . . . 𝜎ℓ,1 . . . 𝜎ℓ,ℓ, where each

𝜎𝑖,𝑗 := ({𝐴 | 𝐴(𝑐𝑖) ∈ 𝒜}, {𝑟 | 𝑟(𝑐𝑖, 𝑐𝑗) ∈ 𝒜}, {𝐴 | 𝐴(𝑐𝑗) ∈ 𝒜}).

Based on the encoding above, we can now define membership of a GBQ in a complexity class.

Definition 3. Let Σ be a signature and 𝑄 a GBQ over Σ. We say 𝑄 belongs to a complexity class

𝒞, if the language {𝑒𝑛𝑐Σ(𝒜) | 𝒜 is a Σ-ABox with 𝑄(𝒜) = 1} over the alphabet ΓΣ
belongs to 𝒞.

Proposition 1. Assume a GBQ 𝑄 over Σ. The following are equivalent:

1. 𝑄 belongs to coNP.

2. There is an integer 𝑘 and a NTM 𝑀 with alphabet ΓΣ
such that, for any Σ-ABox 𝒜 we have:

a) 𝑄(𝒜) = 0 iff 𝑀 accepts 𝑒𝑛𝑐Σ(𝒜);
b) 𝑀 terminates within |𝑒𝑛𝑐Σ(𝒜)|𝑘 computation steps.

As we have already seen in the introduction, OMQs based on classical first-order logic do not

capture coNP due to their monotonicity. We can also show that the same applies to inconsistency

queries based on 𝒜ℒ𝒞ℋ𝒪ℐ with closed predicates, which are non-monotonic in general.

Theorem 1. There exists a GBQ 𝑄1 over Σ such that:

(a) 𝑄1 belongs to coNP, and

(b) there is no inconsistency query 𝑄2 = (𝒯 ,Σ′), with 𝒯 in 𝒜ℒ𝒞ℋ𝒪ℐ , such that 𝑄1(𝒜) =
𝑄2(𝒜) holds for all Σ-ABoxes 𝒜.

Proof. To see this, we can analyze the running time of the algorithm in [3] for checking satisfia-

bility of an 𝒜ℒ𝒞ℋ𝒪ℐ knowledge base 𝒦 = (𝒯 ,Σ′,𝒜), where Σ′
is a set of closed predicates.

We assume that 𝒯 ,Σ′
are fixed, and we want an algorithm that takes an ABox 𝒜 as input and

checks if 𝒦 = (𝒯 ,Σ′,𝒜) is consistent. Specifically, based on [3], we have an algorithm that

runs in time bounded by |𝒜|𝑘 × ℓ+ 𝑣, where ℓ and 𝑣 are constants that depend on 𝒯 and Σ′
,

while 𝑘 is a constant that does not depend on 𝒯 or Σ′
. In other words, there is a constant 𝑘, such

that for any 𝒯 and Σ′
, we can build a non-deterministic algorithm that checks the consistency

of an input ABox 𝒜 in the KB 𝒦 = (𝒯 ,Σ′,𝒜), and that runs in time 𝒪(|𝒜|𝑘).
The key here is that the constant 𝑘 does not depend on 𝒯 orΣ′

. Using an𝒜ℒ𝒞ℋ𝒪ℐ TBox with

closed predicates one can capture decision problems that can be solved via a non-deterministic

TM in time that is polynomial with degree 𝑘. However using the Non-deterministic Time

Hierarchy Theorem, we know that there are problems that can be solved in non-deterministic

polynomial time, but not in polynomial time with polynomial degree 𝑘. Specifically, there a

problems solvable in time 𝒪(𝑛𝑘+1) but not 𝒪(𝑛𝑘).

We note that the above result can be formulated also for OMQs with atomic queries and a

certain class of conjunctive queries, but it is unclear if it generalizes to OMQs with CQs. This

is because the proof of Theorem 1 relies on an upper bound on the running time of a known

algorithm for 𝒜ℒ𝒞ℋ𝒪ℐ with closed predicates. To the best of our knowledge, no suitable upper

bounds on data complexity are known in the case of CQs over 𝒜ℒ𝒞ℋ𝒪ℐ KBs. Furthermore, at

this point, it is unfortunately unclear whether one can prove the same inexpressibility result for

𝒜ℒ𝒞ℋ𝒪ℐℱ with closed predicates. This is left as future work.

4. Language Extension

As stated above, it is unclear whether OMQs based on plain 𝒜ℒ𝒞ℋ𝒪ℐℱ with closed predicates

are capable of capturing coNP. However, we present an extension of this OMQ language that

we prove is powerful enough to do so. To this end, we assume a countably infinite set N𝑉 of

variables. We refer to the expressions of the form {𝑥}, where 𝑥 ∈ N𝑉 , as nominal variables.

Complex roles are expressions of the form 𝐴? ∘𝑃 s.t. 𝐴 ∈ N+
𝐶 and 𝑃 is of the form 𝑟1 ∘𝐴1? ∘

. . . 𝑟𝑛 ∘ 𝐴𝑛, where 𝑛 ≥ 1 and 𝑟𝑖 ∈ N+
𝑅, 𝐴𝑖 ∈ N+

𝐶 , for all 1 ≤ 𝑖 ≤ 𝑛. We call an expression of

type 𝐴?, where 𝐴 ∈ N+
𝐶 a test role.

Now, in addition to standard 𝒜ℒ𝒞ℋ𝒪ℐℱ axioms, we allow axioms of the following shape:

(trans 𝑠), for a restricted role 𝑠 ∈ N𝑅 (transitivity axiom) (6)

∃𝑃.({𝑥} ⊓ ∃𝑠.{𝑦}) ⊓ ∃𝑅.{𝑦} ⊑ 𝐵, where 𝐵 ∈ N𝐶 , 𝑠 is a restricted role, and𝑃,𝑅

are complex roles consisting only of tests and functional roles and 𝑥, 𝑦 ∈ N𝑉
(7)

∃𝑃.({𝑥} ⊓ ¬∃𝑠.{𝑦}) ⊓ ∃𝑅.{𝑦} ⊑ 𝐵, where 𝐵 ∈ N𝐶 , 𝑠 is a restricted role, and 𝑃,𝑅

are complex roles consisting only of tests and functional roles and 𝑥, 𝑦 ∈ N𝑉
(8)

{𝑥} ⊑ ∀𝑃.{𝑥}, where 𝑃 is a complex role (9)

{𝑥} ⊓𝐴 ⊑ ∀𝑠.¬{𝑥}, where 𝐴 ∈ N𝐶 , 𝑠 is a restricted role, and 𝑥 ∈ N𝑉 (10)

Note that in the previous definition, we refer to functional and restricted roles. We say that a

role 𝑝 is functional if (func 𝑝) ∈ 𝒯 . Intuitively, a role 𝑝 is restricted if we can guarantee that, in

any model ℐ of the KB, (𝑒, 𝑒′) ∈ 𝑝ℐ implies that 𝑒 and 𝑒′ are constants occurring in the KB. We

next give a syntactic definition that, albeit incompletely, characterizes such roles.

Definition 4. A concept 𝐴 ∈ N+
𝐶 is restricted w.r.t. a TBox 𝒯 and a set Σ of closed predicates if

one of the following conditions hold: (i) 𝐴 ∈ Σ∪Nom(𝒦)∪ {⊥}, or (ii) 𝐴 ⊑ 𝐵1 ⊔ · · · ⊔𝐵𝑛 ∈ 𝒯 ,

where 𝐵𝑖 is a restricted concept or an expression of the form ∃𝑟 or ∃𝑟−, for a restricted role 𝑟.

A role 𝑟 ∈ N+
𝑅 is called restricted w.r.t. a TBox 𝒯 and a set Σ of closed predicates if one of the

following holds: (i) 𝑟 ∈ Σ, (ii) {∃𝑟 ⊑ 𝐴,∃𝑟− ⊑ 𝐵} ⊆ 𝒯 , where 𝐴 and 𝐵 are restricted concepts,

(iii) 𝑟− is a restricted role, or (iv) 𝑟 ⊑ 𝑠, where 𝑠 is a restricted role.

Extended semantics Let ℐ = (Δℐ , ·ℐ) be an interpretation and 𝒦 be a KB. The extension

of the interpretation function ·ℐ to complex roles 𝑃 of the form 𝐴? ∘ 𝑟1 ∘𝐴1? ∘ · · · ∘ 𝑟𝑛 ∘𝐴𝑛?
is defined as 𝑃 ℐ := {𝑒0 ∈ Δℐ ∩ 𝐴ℐ | ∃𝑒1, . . . , 𝑒𝑛 ∈ Δℐ

s.t. (𝑒𝑖−1, 𝑒𝑖) ∈ 𝑟ℐ𝑖 , 𝑒𝑖 ∈ 𝐴ℐ
𝑖 , for

all 1 ≤ 𝑖 ≤ 𝑛}. The semantics of transitivity axioms is standard: ℐ satisfies (trans 𝑠) if

(𝑒1, 𝑒2) ∈ 𝑠ℐ and (𝑒2, 𝑒3) ∈ 𝑟ℐ implies (𝑒1, 𝑒3) ∈ 𝑟ℐ . The axioms of the form (7)-(10) are

reminiscent of nominal schemas introduced in [8, 7]. In these works, the semantics of such

nominal schemas is given by grounding the knowledge base with respect to the set of all

individuals N𝐼 , where N𝐼 is assumed to be finite. For our purposes, we ground 𝒦 with respect to

Nom(𝒦) by uniformly replacing all nominal variables with nominals in Nom(𝒦) in all possible

ways. We use ground(𝒦) to denote such grounding of 𝒦 and we say that ℐ satisfies 𝒦 if it

satisfies ground(𝒦).

Theorem 2. The KB satisfiability problem in 𝒜ℒ𝒞ℋ𝒪ℐℱ with closed predicates extended with

axioms of the form (6)-(10) is NP-complete in data, and NExpTime-complete in combined complexity.

Proof sketch. Due to space restrictions, we only offer a brief sketch of the decision procedure

that runs in nondeterministic exponential time in the size of the given knowledge base, and in

nondeterministic polynomial time, in if the TBox and the set of closed predicates are considered

fixed. The first step in this procedure is to guess the extensions of restricted concepts and roles

over the individuals occurring in the given knowledge base. These concepts and role names are

now considered closed. Since all transitivity axioms only involve restricted roles, we can right

away check whether they are satisfied and eliminate them. Thus, what is left to do is devise

a procedure that can decide satisfiability of KBs with closed predicates whose TBox contains

no transitivity axioms, and where all restricted concepts and role names are now considered

closed. We do this by modifying the mosaic approach introduced in [4] for 𝒜ℒ𝒞ℋ𝒪ℐℱ with

closed predicates to support complex roles and nominal schemas.

5. The Encoding

Theorem 3 (Main result). Assume a signature Σ and a GBQ 𝑄 over Σ that belongs to coNP.

Then there is a TBox 𝒯 in extended 𝒜ℒ𝒞ℋ𝒪ℐℱ such that the Boolean inconsistency query OMQ

𝑞 = (𝒯 ,Σ) has the following property: for all Σ-ABoxes 𝒜, 𝑄(𝒜) = 𝑞(𝒜).

n2

r1
y

!"#$
c1 c5

%&'$%&'$

ABox (
c2 c3 c4

)*+#$
)*+#$!"#$

c1 c5
ABox (

c2 c3 c4

h

r1
y r2

y
r1
y r2

y

r1
x r2

x

r1
x r2

x

r2
yr1

x r2
x

n2

h
v

Figure 1: Construction of the 𝑛𝑘 × 𝑛𝑘 grid, for 𝑘 = 2. Left: Assigning coordinates to grid nodes. Right:
Propagation of coordinates along horizontal successors.

The rest of this section serves as a proof sketch for the theorem above. Let 𝑄 be a GBQ

over some signature Σ that is in coNP. According to Proposition 1, there is a nondeterministic

Turing machine 𝑀 that decides the language {encΣ(𝒜) | 𝑄(𝒜) = 0,𝒜 is a Σ-ABox} and its

running time is bounded by 𝑛𝑘
, where 𝑘 is a constant and 𝑛 is the size of the input word. We

show that we can come up with a TBox 𝒯𝑀 such that for the ontology-mediated inconsistency

query 𝑄𝑀 = (𝒯𝑀 ,Σ), 𝑄𝑀 (𝒜) = 𝑄(𝒜), for all Σ-ABoxes 𝒜. The basic idea is to craft 𝒯𝑀 in a

way that ensures that all models of (𝒯 ,Σ,𝒜) contain a grid structure of size 𝑛𝑘 × 𝑛𝑘
. We then

use this grid to simulate the given Turing machine 𝑀 as follows. The first row of the grid stores

the initial configuration of 𝑀 while each subsequent row stores the next configuration in some

computation of 𝑀 . Finally, we eliminate those computations that do not end in acceptance of

the word. As a result, we have that each model of (𝒯𝑀 ,Σ,𝒜) corresponds to a computation

of 𝑀 that accepts encΣ(𝒜), and vice versa: every computation of 𝑀 that ends in acceptance

of encΣ(𝒜) corresponds to some model of (𝒯𝑀 ,Σ,𝒜), for all Σ-ABoxes 𝒜. Thus, checking

whether 𝑀 accepts encΣ(𝒜) boils down to checking whether (𝒯𝑀 ,Σ,𝒜) is unsatisfiable, which

is equivalent answering the inconsistency query 𝑄𝑀 .

We now begin with our construction. In the rest of this section we assume we are given a

GBQ in the form of a nondeterministic Turing machine 𝑀 = (ΓΣ, 𝑄, 𝛿, 𝑞0, 𝑞acc , 𝑞rej) and an

integer constant 𝑘.

5.1. Constructing the 𝑛𝑘 × 𝑛𝑘 Grid

Consider an arbitrary ABox 𝒜 over some signature Σ. We next show how to build a KB

𝒦 = (𝒯 ,Σ,𝒜) s.t. that each model ℐ of 𝒦 contains a 𝑛𝑘 × 𝑛𝑘
grid formed by the domain

elements, where 𝑛 is the number of known individuals (i.e., the number of individuals occurring

in 𝒜 plus two special constants first and last).
We begin by generating different domain elements that serve as grid nodes. Each such

grid node is associated two words of length 𝑘 over the known individuals that serve as its 𝑥-

and 𝑦-coordinate in the grid. This is accomplished using roles two sets of functional roles:

𝑟1𝑥, . . . 𝑟
𝑘
𝑥 and 𝑟1𝑦, . . . 𝑟

𝑘
𝑦 . We say that a domain element 𝑒 has an 𝑥-coordinate 𝑐1𝑐2 · · · 𝑐𝑘 , if (𝑒, 𝑐𝑖)

participates in 𝑟𝑖𝑥, for each 𝑖, 1 ≤ 𝑖 ≤ 𝑘. The 𝑦-coordinate of 𝑒 is defined analogously. This is

illustrated in Figure 1, left. In the first step of the construction, we let the special individual

first be the origin of the grid and set its 𝑥- and 𝑦- coordinates to first · · · first. To generate the

remainder of the grid nodes, we add axioms that create a binary tree rooted in first using two

roles ℎ and 𝑣, denoting horizontal and vertical successors, respectively. We next assign the 𝑥-

and 𝑦-coordinates to each grid node in the tree making sure that they respect a certain pattern.

To do this, we use a linear order over the known individuals that we can can easily generate by

using first and last as the designated first and last elements and guessing the remaining part of

the successor relation, encoded using the role . We then lift this linear order to words of length

𝑘 over the available individuals and add axioms that require that for each grid node 𝑒 with the

horizontal successor 𝑒′, the 𝑥-coordinate of 𝑒′ is the successor of the 𝑥-coordinate of 𝑒 with

respect to the generalized linear order, while the 𝑦-coordinate remains unchanged. We then do a

similar thing with the vertical successor 𝑒′′ of 𝑒. Namely, the 𝑦-coordinate of 𝑒′′ is the successor

of the 𝑦-coordinate of 𝑒 with respect to the generalized linear order, while the 𝑥-coordinate

stays the same. Figure 1, on the right illustrates this. It is not hard to see that all possible pairs

of 𝑥- and 𝑦-coordinates occur within this tree. Now, the only thing that is left to do is to merge

nodes with same coordinates. This is easy: we simply let the special individual last be the only

grid node with last · · · last as its 𝑥- and 𝑦-coordinate. Propagating backwards from last while

relying on the fact that each grid node has at most one ℎ- and at most one 𝑣-predecessor, we

can easily see that each different combination of the coordinates occurs exactly one time – thus

we have 𝑛2𝑘
different grid nodes. Moreover, the way we assigned their coordinates ensures that

they form a proper grid. We next detail the construction by providing all the relevant axioms.

Collect constants from 𝒜. We first collect in Adom all the individuals occurring in 𝒜:

Adom ≡
⨆︁

𝐴∈N+
𝐶∩Σ

𝐴 ⊔
⨆︁

𝑟∈N+
𝑅∩Σ

(∃𝑟 ⊔ ∃−𝑟)

Guess a linear order. We next add the axioms that guess a linear order over the known

individuals, stored using the concept name Node. We use two individuals First and Last as

designated first and last elements in this linear order. The role stores the successor relation,

and lessThan is a role that stores the induced "less than" relation.

Node ≡ Adom ⊔ {First} ⊔ {Last} {𝑥} ⊓ Node ⊑ ∀lessThan.¬{𝑥}
Node ⊑ ∃next.Node ⊔ {Last} next ⊑ lessThan
Node ⊑ ∃next−.Node ⊔ {First} (trans lessThan)
(func next) ∃lessThan ⊑ Node
(func next−) ∃lessThan− ⊑ Node

Axioms on the left-hand side are responsible for guessing the successor relation of the linear

order that is being generated. They ensure that all individuals except for the last one have a

successor, and all individuals except for the first one have a predecessor. Moreover, successors

and predecessors must be unique. Axioms on the right-hand side says that the transitive closure

of contains no cycles, meaning that we have a proper linear order. The last two axioms serve

as guards to ensure that a transitivity assertion is made over a restricted role.

Creating the grid structure. To create a 𝑛𝑘 × 𝑛𝑘
grid, we take the approach above and add,

for all 1 ≤ 𝑖 ≤ 𝑘, the following axioms that create a binary tree routed in first using ℎ and 𝑣:

GridNode ⊑
d

1≤𝑖≤𝑘(∃𝑟𝑖𝑥.Node ⊓ ∃𝑟𝑖𝑦.Node) (func ℎ)

{First} ≡ GridNode ⊓
d

1≤𝑖≤𝑘(∃𝑟𝑖𝑥.{First} ⊓ ∃𝑟𝑖𝑦.{First}) (func ℎ−)

GridNode ⊑ ∃ℎ.GridNode ⊔ (
d

1≤𝑖≤𝑘 ∃𝑟𝑖𝑥.{Last}) (func 𝑣)

GridNode ⊑ ∃𝑣.GridNode ⊔ (
d

1≤𝑖≤𝑘 ∃𝑟𝑖𝑦.{Last}) (func 𝑣−)
d

1≤𝑖≤𝑘 ∃𝑟𝑖𝑥.{Last} ⊑ ¬∃ℎ.⊤ (func 𝑟𝑖𝑥)d
1≤𝑖≤𝑘 ∃𝑟𝑖𝑦.{Last} ⊑ ¬∃𝑣.⊤ (func 𝑟𝑖𝑦)

The first axiom on the left-hand side states that every grid node has 2k pointers to the known

individuals using functional roles 𝑟𝑖𝑥 and 𝑟𝑖𝑦 , 1 ≤ 𝑖 ≤ 𝑘 that encode its 𝑥- and 𝑦-coordinates.

The second axiom on the left-hand side sets first as a designated origin point with 𝑥- and

𝑦-coordinates first · first. The rest of the axioms simply create the tree.

We next make sure that the coordinates align, i.e., if 𝑒′ is an ℎ-successor of 𝑒, then the 𝑦-

coordinates of 𝑒 and 𝑒′ coincide, while the 𝑥-coordinate of 𝑒′ is a successor of the 𝑥-coordinate

of 𝑒 w.r.t. to the linear order in extended to words of length 𝑘. For example, if the 𝑥-coordinate

of 𝑒 is 𝑐𝑘 · · · 𝑐𝑖 · last · · · last, where 𝑐𝑖 ̸= 1, then the 𝑥-coordinate of 𝑑 is 𝑐𝑘 · · · 𝑐′𝑖 · first · · · first,
where 𝑐′𝑖 is the successor of 𝑐𝑖 according to the given linear order. We now define the axioms

that do this and add for all 𝑖, 1 ≤ 𝑖 ≤ 𝑘:

GridNode ⊓ ¬∃𝑟𝑖𝑥.{Last} ⊓
d

1≤𝑗≤𝑖 ∃𝑟
𝑗
𝑥.{Last} ⊑ IncrX𝑖

IncrX𝑖 ⊑ ∀ℎ.(
d

1≤𝑗≤𝑖 ∃𝑟
𝑗
𝑥.{First})

{First} ⊑ ∀(𝑟𝑖𝑥)−.∀ℎ−.∀𝑟𝑖𝑥.{Last})

{𝑥} ⊑ ∀Node? ∘ (𝑟𝑖𝑥)− ∘ IncrX𝑖? ∘ ℎ ∘ 𝑟𝑖𝑥 ∘ next−.{𝑥})

{𝑥} ⊑ ∀Node? ∘ (𝑟𝑗𝑥)− ∘ IncrX𝑖? ∘ ℎ ∘ 𝑟𝑗𝑥.{𝑥}
{𝑥} ⊑ ∀Node? ∘ (𝑟𝑖𝑦)− ∘ ℎ ∘ 𝑟𝑖𝑦.{𝑥}

We only show how to handle the 𝑥-coordinate, since the 𝑦-coordinate is treated analogously.

Finally, we add the axiom that triggers the merging of the nodes with same coordinates:

{Last} ≡ GridNode ⊓
l

1≤𝑖≤𝑘

(∃𝑟𝑖𝑥.{Last} ⊓ ∃𝑟𝑖𝑦.{Last})

5.2. Encoding the Turing Machine

We next simulate the computation of 𝑀 using the grid we just created. We assume we have

the following concept names available: (i) 𝐴1, �̄�1, 𝐴2, 𝐴2̄, 𝐴𝑠, �̄�𝑠, for all 𝐴 ∈ Σ ∩N𝐶 and all

𝑟 ∈ Σ ∩N𝑅, (ii) 𝐿𝛾 , for all symbols 𝛾 ∈ ΓΣ′ ∪ {𝐵}, (iii) 𝑆𝑞 , for all 𝑞 ∈ 𝑄, and (iv) 𝐻< and 𝐻>.

Copying 𝒜 onto the input tape. The first row of the grid, referred to as the input tape,

represents the initial configuration of 𝑀 . Recall that we encode Σ-ABoxes over the signature

as words of length 𝑛2
where each position in the word represents a pair of individuals in 𝒜 and

each pair of individuals occurring in 𝒜 is represented by one position in the word. We now

add axioms that make sure that each one of the first 𝑛2
cells on the input tape corresponds to a

single pair of individuals occurring in the KB, while the remainder of the cells on the input tape

are filled out with the blank symbol B. This is done by assuring that every input cell, i.e., a node

in the first row, has two pointers to known individuals: hasFst and hasSnd. If for some input cell

𝑒 there are two known individuals 𝑎, 𝑏 s.t. (𝑒, 𝑎) participates in hasFst and (𝑒, 𝑏) participates in

hasSnd, then 𝑒 represents the pair (𝑎, 𝑏). To ensure that all pairs are represented on the input

tape, we follow the same approach as for the grid construction. Namely, the available linear

order is lifted to pairs of known individuals, and we require that a horizontal successor of some

input cell also represents the next pair w.r.t. to this linear order. Once all pairs are represented,

the remaining input cells are set to blank, i.e., they participate in the concept 𝐿𝐵 . We defer the

exact axioms to the appendix.

We next need put the correct symbols in each cell on the input tape. Recall that, if position 𝑖
in the encoding of the ABox represents the pair (𝑎, 𝑏), we have the following symbol at position

𝑖: 𝛾 = ({𝐴 | 𝐴(𝑎) ∈ 𝒜}, {𝑟 | 𝑟(𝑎, 𝑏) ∈ 𝒜}, {𝐴 | 𝐴(𝑏) ∈ 𝒜}) ∈ ΓΣ′
. We next add axioms

that ensure exactly that. Namely, if a cell on the input tape represents the pair (𝑎, 𝑏), then it

participates in the concept 𝐿𝛾 . We first copy the information about which concept and role

names 𝑎 and 𝑏 participate in. To this end, for 𝐴 ∈ Σ ∩N𝐶 and every 𝑟 ∈ Σ ∩N𝑅 we add:

𝐴1 ⊓ �̄�1 ⊑ ⊥ ∃hasFst.𝐴 ⊑ 𝐴1 ∃¬hasFst.𝐴 ⊑ �̄�1

𝐴2 ⊓ �̄�2 ⊑ ⊥ ∃hasSnd.𝐴 ⊑ 𝐴2 ∃¬hasSnd.𝐴 ⊑ �̄�2

𝐴𝑠 ⊓ �̄�𝑠 ⊑ ⊥ ∃hasFst.({𝑥} ⊓ ∃𝑠.{𝑦}) ⊓ ∃hasSnd.{𝑦} ⊑ 𝐴𝑠

∃hasFst.({𝑥} ⊓ ¬∃𝑠.{𝑦}) ⊓ ∃hasSnd.{𝑦} ⊑ �̄�𝑠

Finally, for each 𝛾 = (𝑇,𝑅, 𝑇 ′) ∈ ΓΣ
, we add:

l

𝐴∈𝑇,
𝐵∈(Σ∩N𝐶)∖𝑇

(𝐴1 ⊓ �̄�1) ⊓
l

𝐴∈𝑇 ′,
𝐵∈(Σ∩N𝐶)∖𝑇 ′

(𝐴2 ⊓ �̄�2) ⊓
l

𝑠∈𝑅,
(𝑟∈Σ∩N𝑅)∖𝑅

(𝐴𝑠 ⊓ �̄�𝑟) ⊑ 𝐿𝛾 ,

We now use the rest of the grid to simulate the computation of the TM 𝑀 . Recall that a row

in the grid stores a configuration that 𝑀 is currently in, while 𝑣 corresponds to time. To this

end, we need to ensure that for each row 𝜚 in the grid satisfies two conditions. Firstly, there is

exactly one element 𝑒 in 𝜚 where 𝑆𝑞 holds for some and at most one 𝑞 ∈ 𝑄. For other elements

𝑒′ ̸= 𝑒 in 𝜚, 𝑆𝑞 does not hold for any 𝑞. Secondly, for all elements of 𝑒 in 𝜚, 𝐿𝛾 holds for exactly

one 𝛾 ∈ Γ∪{𝐵}. It is then clear that each row is indeed a valid encoding of some configuration

of 𝑀 . If 𝑆𝑞 for a node 𝑒 in 𝜚, then 𝑀 is in state 𝑞 and the read-write head is in the position 𝑒.

We next add the axioms that ensure that at the beginning, 𝑀 is in the state 𝑞0 and the

read-write head is above the first symbol:

InputCell ⊓
l

1≤𝑖≤𝑘

𝑟𝑖𝑥.{First} ⊑ 𝑆𝑞0 𝑆𝑞 ⊑
l

𝑞′∈(𝑄∖{𝑞})

𝑆𝑞′ , for all 𝑞 ∈ 𝑄

Further, for all (𝑞, 𝛾) ∈ 𝑄×Γ∪{𝐵}, we add the following axiom that selects one configuration

among possible next configurations, and overwrites the current symbol, changes the state and

moves the read-write head accordingly:

𝑆𝑞 ⊓ 𝐿𝛾 ⊑
(︀ ⨆︁
(𝑞′,𝛾′,+1)∈𝛿(𝑞,𝛾)

∀𝑣.(𝐿𝛾′ ⊓ ∀ℎ.𝑆𝑞′)
)︀
⊔
(︀ ⨆︁
(𝑞′,𝛾′,−1)∈𝛿(𝑞,𝛾)

∀𝑣.(𝐿𝛾′ ⊓ ∀ℎ−.𝑆𝑞′)
)︀

For all states 𝑞 ∈ 𝑄, we mark the positions that are not under the read-write head:

𝑆𝑞 ⊑ (∀ℎ.𝐻<) ⊓ (∀ℎ−.𝐻>) 𝐻< ⊑
l

𝑞∈𝑄
𝑆𝑞′ ⊓ ∀ℎ.𝐻< 𝐻> ⊑

l

𝑞∈𝑄
𝑆𝑞′ ⊓ ∀ℎ−.𝐻<

The intuition of the above is as follows. If in some position 𝑒 we have 𝑆𝑞 , then all the position

to the right from 𝑒 are marked with 𝐻<. Intuitively, 𝐻< (resp. 𝐻>) says that the read-write

head is behind (resp. ahead) and thus these positions do not participate in 𝑆𝑞 , for any 𝑞.

As one of the last steps, we need to add an axiom that copies the content of the tape that is

not overwritten. For all 𝛾 ∈ Γ ∪ {𝐵} we add: 𝐿𝛾 ⊓ (𝐻> ⊔𝐻<) ⊑ ∀𝑣.𝐿𝛾

We are now almost done with our construction of 𝒯𝑀 : for any Σ-ABox 𝒜, each model

of (𝒯 ,Σ,𝒜), where 𝒯 is the TBox we have constructed so far, corresponds to one possible

computation of 𝑀 on the encoding of 𝒜. By assumption, 𝑀 always terminates, which means

that in each model of the theory we will either have some object for which 𝑞acc holds or some

object for which 𝑞rej holds. Finally, to obtain 𝒯𝑀 , we add the axiom 𝑞rej ⊑ ⊥ to 𝒯 . Now, every

model of (𝒯𝑀 ,Σ,𝒜) corresponds to computation of 𝑀 accepting the encoding of 𝒜. Thus, for

𝑄𝑀 = (𝒯𝑀 ,Σ), 𝑄𝑀 (𝒜) = 1 if and only if there are no accepting computations of 𝑀 ran on

encΣ, that is, 𝑄(𝐴) = 1.

6. Discussion

In this paper, we have discussed some of the expressiveness limitation of very expressive OMQ

languages, and then proposed an extension of 𝒜ℒ𝒞ℋ𝒪ℐℱ equipped with closed predicates as

OMQ language that captures precisely the class of generic Boolean queries over ABoxes that

are computable in coNP.

The arguments presented in the paper can also be applied to standard Horn-DLs (with no

closed predicates). For instance, the OMQ language that couples inconsistency and instance

queries with ℰℒℋℐℱ ontologies is PTime-hard, but it cannot express all queries computable in

PTime. It is not difficult see that extending ℰℒℋℐℱ with a built-in linear order is not sufficient

to capture PTime, but the further addition of the features described in Section 4 leads to a DL

that allows to precisely capture PTime.

Acknowledgments

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software

Program (WASP) funded by the Knut and Alice Wallenberg Foundation. It was also partially

supported by the Austrian Science Fund (FWF) project P30873.

References

[1] M. Ortiz, D. Calvanese, T. Eiter, Data complexity of query answering in expressive descrip-

tion logics via tableaux, J. Autom. Reason. 41 (2008) 61–98. URL: https://doi.org/10.1007/

s10817-008-9102-9. doi:10.1007/s10817-008-9102-9.

[2] M. Bienvenu, B. ten Cate, C. Lutz, F. Wolter, Ontology-based data access: A study through

disjunctive datalog, CSP, and MMSNP, ACM Trans. on Database Systems 39 (2014) 33:1–

33:44. URL: http://doi.acm.org/10.1145/2661643. doi:10.1145/2661643.

[3] S. Ahmetaj, M. Ortiz, M. Simkus, Polynomial rewritings from expressive description logics

with closed predicates to variants of datalog, Artificial Intelligence 280 (2020) 103220. URL:

https://doi.org/10.1016/j.artint.2019.103220. doi:10.1016/j.artint.2019.103220.

[4] T. Gogacz, S. Lukumbuzya, M. Ortiz, M. Simkus, Datalog rewritability and data complexity

of ALCHOIF with closed predicates, in: D. Calvanese, E. Erdem, M. Thielscher (Eds.), Proc.

of KR 2020, 2020, pp. 434–444. URL: https://doi.org/10.24963/kr.2020/44. doi:10.24963/kr.
2020/44.

[5] N. Immerman, Descriptive complexity, Graduate texts in computer science, Springer, 1999.

URL: https://doi.org/10.1007/978-1-4612-0539-5. doi:10.1007/978-1-4612-0539-5.

[6] C. Lutz, I. Seylan, F. Wolter, The data complexity of ontology-mediated queries with closed

predicates, Logical Methods in Computer Science 15 (2019). URL: https://doi.org/10.23638/

LMCS-15(3:23)2019. doi:10.23638/LMCS-15(3:23)2019.

[7] M. Krötzsch, F. Maier, A. Krisnadhi, P. Hitzler, A better uncle for OWL: nominal schemas

for integrating rules and ontologies, in: S. Srinivasan, K. Ramamritham, A. Kumar, M. P.

Ravindra, E. Bertino, R. Kumar (Eds.), Proceedings of the 20th International Conference on

World Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1, 2011, ACM, 2011, pp.

645–654. URL: https://doi.org/10.1145/1963405.1963496. doi:10.1145/1963405.1963496.

[8] M. Krötzsch, S. Rudolph, Nominal schemas in description logics: Complexities clarified,

in: C. Baral, G. D. Giacomo, T. Eiter (Eds.), Proc. of KR 2014, AAAI Press, 2014. URL:

http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8027.

https://doi.org/10.1007/s10817-008-9102-9
https://doi.org/10.1007/s10817-008-9102-9
http://dx.doi.org/10.1007/s10817-008-9102-9
http://doi.acm.org/10.1145/2661643
http://dx.doi.org/10.1145/2661643
https://doi.org/10.1016/j.artint.2019.103220
http://dx.doi.org/10.1016/j.artint.2019.103220
https://doi.org/10.24963/kr.2020/44
http://dx.doi.org/10.24963/kr.2020/44
http://dx.doi.org/10.24963/kr.2020/44
https://doi.org/10.1007/978-1-4612-0539-5
http://dx.doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.23638/LMCS-15(3:23)2019
https://doi.org/10.23638/LMCS-15(3:23)2019
http://dx.doi.org/10.23638/LMCS-15(3:23)2019
https://doi.org/10.1145/1963405.1963496
http://dx.doi.org/10.1145/1963405.1963496
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8027

	1 Introduction
	2 Preliminaries
	3 Inexpressbility Result
	4 Language Extension
	5 The Encoding
	5.1 Constructing the nk ×nk Grid
	5.2 Encoding the Turing Machine

	6 Discussion

