
Semiring Provenance in Expressive Description Logics
Rafael Peñaloza

University of Milano-Bicocca, Italy

Abstract
Provenance refers to the task of identifying and tracing the axiomatic origins of a consequence from a
knowledge base. Semiring provenance uses two operators to represent (i) axioms that together yield the
consequence and (ii) the different possible derivations. To-date, most provenance approaches are limited
to inexpressive logics mainly due to the difficulty in dealing with complex constructors like negations.
We surpass this issue through a general notion of provenance for interpretation-based semantics. We
then show how weighted automata can be exploited to compute this provenance, hence providing an
effective method for computing the provenance of 𝒜ℒ𝒞 consequences.

Keywords
semiring provenance, ALC, weighted automata, non-standard reasoning

1. Introduction

The question of tracing the provenance of consequences has gained quite some interest over the
last years, being translated to and used for dealing with many different knowledge representation
languages. In its basic form, provenance refers to the task of tracing the “origin” or “sources”
of a given consequence, among the pieces of knowledge available—that is, the axioms of a
knowledge base—and, perhaps, rules for manipulating them.

Semiring provenance refers to a general framework that uses two operators—the “addition”
and “product” of the semiring—to represent the full provenance of a consequence. In a nutshell,
the product is used to express which axioms can combine to produce the consequence, while
the addition represents different possible derivations of the same result. Although the name
originates from the database community [1, 2], the same problem has been studied under
different names in other areas, and has been shown to generalise non-standard semantics and
reasoning problems [3, 4, 5, 6, 7, 8, 9].

Existing definitions of semiring provenance over different languages have a common feature:
they rely (sometimes implicitly) on a notion of “proof.” The idea is that the provenance informa-
tion does not only indicate which pieces of knowledge are responsible for a consequence, but
also how they interact for the derivation. The disadvantage of such a view is that it becomes
difficult to apply in knowledge representation languages for which a natural definition of a
proof is unavailable, or difficult to handle within the semiring operations. One example of

DL 2023: 36th International Workshop on Description Logics, September 2–4, 2023, Rhodes, Greece
$ rafael.penaloza@unimib.it (R. Peñaloza)
� https://rpenalozan.github.io/ (R. Peñaloza)
� 0000-0002-2693-5790 (R. Peñaloza)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:rafael.penaloza@unimib.it
https://rpenalozan.github.io/
https://orcid.org/0000-0002-2693-5790
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

such a language is the description logic 𝒜ℒ𝒞 [10], for which the consequence-based reasoning
method [11] makes use of negations, which are not easy to manage in the context of provenance.

When an 𝒜ℒ𝒞 KB entails a consequence, it is often important to understand which of the
constraints (axioms) are violated. Here, provenance comes into play. And yet, it is unclear how
to define the provenance in this situation due, as mentioned already, to the lack of a notion
of proof which can be manipulated in this language. To alleviate this issue, we introduce a
general notion of provenance which depends, instead, on an interpretation-based semantics.
Intuitively, the provenance of a consequence is based on the combinations of axioms that exclude
each possible interpretation not satisfying the consequence. Through this idea, we provide
a sound notion of provenance which is suitable for 𝒜ℒ𝒞, but also for any KR language with
interpretation-based semantics.

The next question is whether this provenance can be effectively computed. We provide a
positive answer to this question whenever the underlying KR language allows for an automata-
based decision procedure, under minor assumptions. In brief, we check that a decision procedure
based on an axiomatic automaton—which encodes the automata for all the sub-KBs of a given
KB—can be modified into a weighted automaton (over a semiring) whose behaviour corresponds
precisely to the provenance of the consequence. We also show how to compute this behaviour,
for arbitrary weighted tree automata. In addition, we show that the behaviour computation
requires only polynomial time in the number of states, although potentially exponential time
on the number of transitions. Yet, for some specific cases (as when the semiring is a lattice)
the latter exponential time upper bound can be reduced. Since there exist automata-based
procedures for reasoning in 𝒜ℒ𝒞 and other DLs [12, 13], our framework yields an effective
procedure for computing the provenance in these languages. The resulting automaton has
exponentially many states on the size of the KB. As a consequence, provenance is computable
in exponential time for these cases, matching the complexity of reasoning.

It is important to consider that, although our motivation arises from trying to understand the
consequences of a KB, the formalism presented in this paper is very general. Our definition
of provenance is applicable to any knowledge representation language with interpretation-
based semantics; and the automata-based provenance computation algorithm works for any
consequence that can be decided through an axiomatic automaton. The main limitation is that
our proofs of correctness require the underlying semiring to be distributive, idempotent, and
commutative. Yet, as we argue at the end of the paper, relaxing any of these conditions is likely
to have important negative consequences on the complexity of the problem.

2. Preliminaries

We assume basic knowledge of DLs [14] and in particular of 𝒜ℒ𝒞. We provide the background
knowledge on semirings and weighted automata needed for understanding the rest of this work.

2.1. Semirings

A semiring is an algebraic structure S = (𝑆,⊕,⊗,0,1) where ⊕ and ⊗ are two associative
binary operators over𝑆, called the addition and product, respectively, such that⊕ is commutative

and has neutral element 0; 1 is the neutral element of ⊗; and ⊗ distributes over ⊕ on both
sides.1 As usual, ⊗ has precedence over ⊕.

Such a semiring is commutative if ⊗ is commutative, ⊕-idempotent if 𝑠⊕ 𝑠 = 𝑠 for all 𝑠 ∈ 𝑆,
and ⊗-idempotent if 𝑠⊗ 𝑠 = 𝑠 for all 𝑠 ∈ 𝑆. S is idempotent if it is both, ⊕- and ⊗-idempotent.

In the context of provenance, for reasons that will become clear later, one often considers
commutative idempotent semirings. A typical example of such a semiring is the structure
L = (𝐿,∨,∧,0,1), where 𝐿 is a bounded distributive lattice, ∨ and ∧ are the join and meet
operators of 𝐿, and 0 and 1 are its least and greatest elements, respectively. A semiring or
lattice S is distributive if both operations distribute over each other. Distributive lattices have
the additional property of being annihilating: for any two elements 𝑠, 𝑡 ∈ 𝑆, it holds that
𝑠⊗ (𝑠⊕ 𝑡) = 𝑠 = 𝑠⊕ (𝑠⊗ 𝑡). Importantly, other distributive idempotent semirings exist, and
other types of semiring may be of interest in different contexts [15, 16, 17].

In this paper, we follow a common approach from provenance and consider distributive
idempotent and commutative semirings only. A useful observation is that if (𝑆,⊕,⊗,0,1) is a
distributive idempotent commutative semiring, then so is its dual semiring S := (𝑆,⊗,⊕,1,0).
That is, exchanging the product and addition operations yields a new semiring. In the following
sections, we will resort to this dual semiring for some constructions and computations.

From now on, unless otherwise specified, S refers to an arbitrary–but fixed–distributive
idempotent commutative semiring over the set 𝑆, S = (𝑆,⊕,⊗,0,1), and 𝑠 to an element of 𝑆.

2.2. Weighted Tree Automata

Weighted tree automata generalise tree automata by allowing weights—from a given semiring—
on their transitions [18, 19]. We consider only weighted automata on infinite trees [17, 20].
Given a number 𝑘 ∈ N, we denote as 𝐾 the set {1, . . . , 𝑘}, and 𝐾* is the set of all finite words
over 𝐾 . We see 𝐾* as an infinite tree, where each word 𝑤 ∈ 𝐾* is a node interpreted in the
standard manner, with 𝜀 being the root and 𝑤𝑖 the 𝑖-th successor of 𝑤. For a set 𝐿, an 𝐿-labelled
tree is a function lab : 𝐾* → 𝐿 which assigns an element of 𝐿 to each node of the tree. To
make the reference to a tree explicit, we often name the function lab as 𝑇 . For a node 𝑢 ∈ 𝐾*,
−−−→
lab(𝑢) denotes the tuple (lab(𝑢), lab(𝑢1), . . . , lab(𝑢𝑘)).

Definition 1 (weighted automata). Let S be a semiring and 𝑘 ∈ N. A weighted looping tree
automaton (WTA) over S for arity 𝑘 is a tuple 𝒜 = (𝑄, in,wt) where 𝑄 is a finite set of states;
in : 𝑄 → 𝑆 is the initial weight function; and wt : 𝑄𝑘+1 → 𝑆 is the transition weight function.

A run of the WTA 𝒜 is a 𝑄-labelled tree 𝑅 : 𝐾* → 𝑄. The class of all runs of 𝒜 is denoted by
run𝒜. The weight of the run 𝑅 is wt(𝑅) :=

⨂︀
𝑢∈𝐾* wt(

−−−→
𝑅(𝑢)). The behaviour of the WTA 𝒜 is

‖𝒜‖ :=
⨁︁

𝑅∈run𝒜

in(𝑅(𝜀))⊗ wt(𝑅).

Weighted tree automata generalise unweighted tree automata [21]. A looping tree automa-
ton (LTA) is a tuple 𝒜 = (𝑄, 𝐼,∆) where 𝑄 is the set of states, 𝐼 ⊆ 𝑄 is the set of initial states,
and ∆ ⊆ 𝑄𝑘+1 is the transition relation—recall that 𝑘 is the tree arity. Consider now the Boolean

1Typically, but not always, 0 is required to annihilate over ⊗.

semiring B := ({0,1},∨,∧,0,1), where ∨ and ∧ are the standard Boolean disjunction and
conjunction over the truth values 0 (false) and 1 (true). The LTA (𝑄, 𝐼,∆) can be seen as the
weighted automaton (𝑄, in,wt) over B where in and wt are the characteristic functions of 𝐼
and ∆, respectively. Under this view, accepted runs are those with weight 1, and the automaton
is non-empty (accepts at least one run) iff its behaviour is 1—and is empty if its behaviour is
0. Note that since we only consider distributive, idempotent, and commutative semirings, the
behaviour of a WTA is well-defined.

Despite being a special case, for consistency and readability we use the notation (𝑄, 𝐼,∆)
when dealing with LTA and (𝑄, in,wt) when dealing with WTA. Both types of automata will
be denoted with 𝒜, allowing the context to clarify if it is a TA or a WTA.

3. Interpretation-based Provenance

The basic idea behind provenance is to keep track of the different combinations of axioms in
a knowledge base which yield a consequence of interest. In logic-based KR languages, this is
usually instantiated as a mirror of how (derived) consequences can be combined to yield new
(previously implicit) consequences. The issue with this approach is that provenance semantics
must be defined anew for each logical formalism, and it is not obvious how to define the
provenance in settings where consequences are not cumulative in this sense. For instance, it is
not obvious how to define provenance for 𝒜ℒ𝒞 consequences in this manner. We introduce a
general notion of provenance based on (tree-shaped) interpretation semantics.

Definition 2 (KR language). A KR language is a triple (T, I, |=) where T is a potentially infinite
set of axioms, I is a class of labelled trees called interpretations, and |= ⊆ I× T is the binary
satisfiability relation. A knowledge base (KB) is a finite set of axioms 𝒯 ⊆ T. The interpretation
𝐼 ∈ I is a model of the KB 𝒯 iff 𝐼 |= 𝛼 for all 𝛼 ∈ 𝒯 . An axiom 𝛼 ∈ T is a consequence of a KB
𝒯 (denoted 𝒯 |= 𝛼) iff 𝐼 |= 𝛼 holds for every model 𝐼 of 𝒯 .

Under this definition, the consequence relation between KBs and axioms is monotonic: adding
more axioms to a KB can never remove a consequence. DLs are examples of KR languages
(Φ, I, |=), whereΦ is the set of all GCIs, I is the class of all DL interpretations, and 𝐼 |= 𝐶 ⊑ 𝐷 iff
𝐶𝐼 ⊆ 𝐷𝐼 as usual. In this case, a KB 𝒯 (called often TBox in DL) is inconsistent iff 𝒯 |= ⊤ ⊑ ⊥.
We fix an arbitrary KR language (T, I, |=), and assume that every axiom is annotated with an
element of the semiring S. The provenance of a consequence traces the combinations of axioms
that yield it, as formalised next.

Definition 3 (provenance). Let S be a semiring and (T, I, |=) a KR language. An annotated KB
is a pair (𝒯 , lab) where 𝒯 ⊆ T and lab : 𝒯 → 𝑆. The provenance of 𝛼 ∈ T w.r.t. the annotated
KB (𝒯 , lab) is Prov𝒯 (𝛼) :=

⨂︀
𝐼∈I,𝐼 ̸|=𝛼

⨁︀
𝛽∈𝒯 ,𝐼 ̸|=𝛽 lab(𝛽).

We analyse this definition in more detail. Traditionally, provenance is defined as an addition
of products of labels referring to combinations of axioms that yield a consequence. We take a
dual approach inspired by an approach from process analysis [22]. For 𝛼 to be a consequence,
any interpretation 𝐼 that does not satisfy 𝛼 must be excluded from the set of models; this is
expressed by the outer product. The “addition”

⨁︀
𝛽∈𝒯 ,𝐼 ̸|=𝛽 lab(𝛽) intuitively expresses that at

least one axiom violated by 𝐼 is needed to exclude 𝐼 . This is clarified by the following example.

𝐴 𝐴 𝐵

𝐼1 𝐼2 𝐼3

𝑟 𝑟

Figure 1: Representatives for interpretations violating axioms in 𝒯 from Example 4.

Example 4. Consider the annotated 𝒜ℒ𝒞 KB

𝒯 := {⊤ ⊑ ∃𝑟.𝐴, ⊤ ⊑ ∀𝑟.𝐵, 𝐴 ⊓𝐵 ⊑ ⊥, 𝐴 ⊑ ¬𝐴},

with the axioms labelled as 𝑠1, . . . , 𝑠4, respectively. 𝒯 is inconsistent; that is, 𝒯 |= ⊤ ⊑ ⊥.
To compute the provenance for inconsistency, we have to multiply over all interpretations (since
none satisfies ⊤ ⊑ ⊥) the addition of the labels of the axioms they violate. Since we consider
only idempotent semirings, it suffices to partition I by the axioms they violate. Representatives of
these classes are depicted in Figure 1. The interpretation 𝐼1 violates 𝑠1 only. 𝐼2 violates 𝑠2 and 𝑠4
yielding 𝑠2 ⊕ 𝑠4; and 𝐼3 similarly yields 𝑠3 ⊕ 𝑠4. Prov𝒯 (⊤ ⊑ ⊥) is the product of those additions:
𝑠1 ⊗ (𝑠2 ⊕ 𝑠4)⊗ (𝑠3 ⊕ 𝑠4).

If the semiring S is annihilating, distributing this expression yields (𝑠1 ⊗ 𝑠4)⊕ (𝑠1 ⊗ 𝑠2 ⊗ 𝑠3).
The attentive reader will notice that the sets of axioms corresponding to each of these products (that
is, {⊤ ⊑ ∃𝑟.𝐴,𝐴 ⊑ ¬𝐴}, and {⊤ ⊑ ∃𝑟.𝐴,⊤ ⊑ ∀𝑟.𝐵,𝐴 ⊓𝐵 ⊑ ⊥, }) characterise the minimal
inconsistent sub-KBs; also known as justifications in the DL literature [23, 24].

As this example suggests, our definition of provenance traces the axioms that are responsible
for a consequence. Consider the notion of a justification of a consequence w.r.t. a KB as a
(subset-) minimal sub-KB that entails the consequence [24, 25]. If the underlying semiring is
annihilating, the provenance of a consequence can be obtained by operating over the labels of
the axioms appearing in the justifications [26]. Thus, as expected, our notion of provenance
generalises that of justification-based explanations; also known as axiom pinpointing [6].

Theorem 5. Let 𝒯 be a KB and 𝛼 a consequence, and Just𝒯 (𝛼) the class of all justifications of 𝛼
w.r.t. 𝒯 . If the semiring S is annihilating, then Prov𝒯 (𝛼) =

⨁︀
𝒥∈Just𝒯 (𝛼)

⨂︀
𝛽∈𝒥 lab(𝛽).

From a different point of view, this definition also generalises reasoning problems based on
Gödel (fuzzy) logic or min-based possibilistic logic [27, 28]. Despite the simplicity of Example 4,
it is in general not obvious how to compute the provenance of a consequence. In fact, a direct
application of Definition 3 is made impossible from the fact that the class I of interpretations is
potentially infinite. In Example 4 we had to resort to a partition of I into equivalence classes
defined by the axioms each interpretation violates. In more general settings, or as the number
of axioms grows, it is not obvious how to apply this approach. In Section 5 we see that for the
special case of 𝒜ℒ𝒞, creating and handling this partition is always possible.

Next we develop a method for computing the provenance of consequences for arbitrary KR
languages having automata-based decision processes, with only some minor limitations.

4. Automata-based Provenance

Recall that it is possible, for a given 𝒜ℒ𝒞 TBox 𝒯 , to construct an automaton whose runs
characterise the models of 𝒯 . Consistency can thus be verified through an emptiness test of the
constructed automaton: does it accept at least one successful run? The automaton is empty iff
𝒯 is inconsistent. Similarly, our definition of provenance requires us to operate, akin to the
behaviour of weighted automata, over all possible interpretations. This suggests that it should
be possible to modify the automata-based decision procedure into the problem of computing
the behaviour of an adequate weighted automaton.

Before formally describing the construction of the weighted automaton, two things should
be taken into account. First, there is a duality between the emptiness of an automaton, and the
consequence of interest. If the consequence (in the case of 𝒜ℒ𝒞 inconsistency) holds, then its
automaton is empty; that is, its behaviour is 0—which is usually interpreted as not having a
property. Dualising the Boolean semiring and using B instead yields the “intuitive” answer of 1
when the consequence follows. Building on this intuition, the weighted automaton uses the
dual structure S instead of the original one S.

Second, the automata-based decision procedure for a consequence cannot be based on an
arbitrary construction; rather, it should grasp the effect of each axiom from the KB over the
derivation of the consequence. Otherwise, it becomes impossible to trace the provenance of
the consequence. To deal with this issue, we recall the notion of axiomatic automata from [29].
Briefly, we consider automata-based decision procedures which take a KB 𝒯 and an axiom 𝛼,
and construct a LTA 𝒜𝒯 ,𝛼 such that 𝒯 |= 𝛼 iff 𝒜𝒯 ,𝛼 is empty. To grasp the influence of the
axioms in the KB over the consequence, we consider only automata that “contain”—in a sense
that will become clear briefly—all the automata for each sub-KB 𝒯 ′ ⊆ 𝒯 . The idea is that the
automaton 𝒜𝒯 ′,𝛼 for each 𝒯 ′ ⊆ 𝒯 can be obtained by adding states and transitions to 𝒜𝒯 ,𝛼.
This is achieved through restricting functions.

Definition 6 (restricting functions). Let 𝒜 = (𝑄, 𝐼,∆) be a LTA of arity 𝑘, and 𝒯 a KB. A
transition restricting function is a function ∆res : 𝒯 → P(𝑄𝑘+1); an initial restriction function
is a function 𝐼res : 𝒯 → P(𝑄). They are extended to sets of axioms in 𝒯 ′ ⊆ 𝒯 by defining

∆res(𝒯 ′) :=
⋂︁

𝛼∈𝒯 ′

∆res(𝛼), 𝐼res(𝒯 ′) :=
⋂︁

𝛼∈𝒯 ′

𝐼res(𝛼).

Given 𝒯 ′ ⊆ 𝒯 , the 𝒯 ′-restricted subautomaton of 𝒜 w.r.t. ∆res and 𝐼res is the LTA

𝒜|𝒯 ′ := (𝑄, 𝐼 ∩ 𝐼res(𝒯 ′),∆ ∩∆res(𝒯 ′)).

The restricting functions express which of the initial states and transitions are allowed for
a given axiom 𝛼 ∈ 𝒯 . Hence, if a whole set of axioms is considered, only the elements of 𝒜
that are allowed by all of them (the intersection) can be included. By including more axioms
in a sub-KB, we disallow more initial states and transitions, which makes it more likely to
obtain an empty automaton. This is coherent with the monotonicity of consequences. This
also simulates the notion of entailment from Definition 2. Each run of the automaton acts as a
representative of a class of interpretations, and the restricting functions as a means to express
which interpretations are satisfied by which axioms.

Definition 7 (axiomatic automata). Let 𝒜 = (𝑄, 𝐼,∆) be an LTA of arity 𝑘, 𝒯 a KB, and
∆res : 𝒯 → P(𝑄𝑘+1), 𝐼res : 𝒯 → P(𝑄) restriction functions. The triple (𝒜,∆res, 𝐼res) is
called an axiomatic automaton for 𝒯 . Let 𝛼 be an axiom such that 𝒯 |= 𝛼. The axiomatic
automaton (𝒜,∆res, 𝐼res) is correct for 𝒯 |= 𝛼 (w.r.t. the underlying KR language) iff for every
𝒯 ′ ⊆ 𝒯 it holds that 𝒯 ′ |= 𝛼 iff 𝒜|𝒯 ′ is empty.

Under this definition, we can check which combinations of axioms entail a consequence 𝛼
simply by checking emptiness of the restricted automata as long as the axiomatic automaton
is correct for this consequence relation. The next step is to transform a correct axiomatic
automaton for 𝒯 |= 𝛼 into a process that computes the provenance of the consequence 𝛼 w.r.t.
the labels of the axioms in 𝒯 . The approach constructs a weighted automaton whose behaviour
corresponds precisely to the desired provenance. The main idea is very natural: we combine
the information from the axiomatic automaton with the notion of axioms that are violated in
an interpretation to keep track of the provenance operations. In this sense, the weights of the
automaton correspond to the annotations of the axioms that they violate; these are expressed
through two violating functions, constructed over the restricting functions. Recall that we
consider a fixed but arbitrary distributive semiring S = (𝑆,⊕,⊗,0,1). Moreover, as usual, we
define

⨁︀
𝑠∈∅ 𝑠 := 0; i.e., an addition over an empty set is the neutral element 0.

Definition 8 (provenance automata). Let (𝒜,∆res, 𝐼res) be an axiomatic automaton for 𝒯 |= 𝛼
with 𝒜 = (𝑄, 𝐼,∆) of arity 𝑘. The violating functions ∆vio : 𝑄𝑘+1 → 𝑆 and 𝐼vio : 𝑄 → 𝑆 are:

∆vio(𝑞0, 𝑞1, . . . , 𝑞𝑘) :=
⨁︁

{𝛽∈𝒯 |(𝑞0,...,𝑞𝑘)/∈Δres(𝛽)}

lab(𝛽), 𝐼vio(𝑞) :=
⨁︁

{𝛽∈𝒯 |𝑞 /∈𝐼res(𝛽)}

lab(𝛽).

The provenance automaton induced by (𝒜,∆res, 𝐼res) is the WTA over S = (𝑆,⊗,⊕,1,0)
𝒜Prov := (𝑄, in,wt) where:

in(𝑞) :=

{︃
𝐼vio(𝑞) 𝑞 ∈ 𝐼,

1 otherwise;
wt(𝑞0, . . . , 𝑞𝑘) :=

{︃
∆vio(𝑞0, . . . , 𝑞𝑘) (𝑞0, . . . , 𝑞𝑘) ∈ ∆,

1 otherwise.

If a run 𝑅 of 𝒜 is accepted by 𝒜 then its weight is wt(𝑅) =
⨁︀

𝑢∈𝑅 ∆vio(
−−−→
𝑅(𝑢));2 otherwise,

wt(𝑅) = 1. From the definition of ∆vio, this expression resembles the internal addition in the
definition of provenance (Definition 3). This is not coincidental. The behaviour of the automaton
𝒜Prov, which applies ⊗ over the weights of all runs yields the provenance as expected.

Theorem 9. If (𝒜,∆res, 𝐼res) is correct for 𝒯 |= 𝛼, then ‖𝒜Prov‖ = Prov𝒯 (𝛼).

This result tells us that the behaviour of the WTA 𝒜Prov yields the provenance of a con-
sequence; yet, we still do not know how to compute this behaviour. To our knowledge, the
only effective algorithms for computing the behaviour of weighted automata appear in [29, 30].
Abstracting from the acceptance conditions that they handle, the proofs of their correctness rely
on specific properties of distributive lattices and are not directly applicable to our case where
distributive semirings are considered. We provide an algorithm that builds on the ideas of the
standard emptiness test approach for unweighted automata [31].
2Recall that we are using the dual semiring S, where the semiring “product” is ⊕.

Behaviour Computation

Let 𝒜 be a WTA over the semiring S. To compute the behaviour of 𝒜, we need to compute the
weight of all successful runs of 𝒜. From the distributivity of S, it follows that

‖𝒜‖ =
⨁︁

𝑅∈run𝒜

in(𝑅(𝜀))⊗ wt(𝑅) =
⨁︁
𝑞∈𝑄

in(𝑞)⊗
⨁︁

𝑅∈run𝒜,𝑅(𝜀)=𝑞

wt(𝑅)

Based on this insight, we construct a function swt : 𝑄 → 𝑆 computing, for each state 𝑞 ∈ 𝑄,
the addition of the weights of all runs starting with 𝑞; that is, swt(𝑞) =

⨁︀
𝑅∈run𝒜,𝑅(𝜀)=𝑞 wt(𝑅).

This function is constructed recursively, by considering runs of increasing depth. We start
with the function swt0 where swt0(𝑞) := 0 if for all 𝑞1, . . . , 𝑞𝑘 ∈ 𝑄,wt(𝑞, 𝑞1, . . . , 𝑞𝑘) = 0 and
swt0(𝑞) = 1 otherwise. It identifies the weights of runs of depth 0; that is, those that only
contain the root node, and allow for at least one transition. Then we iteratively construct for
each 𝑛 ∈ N the functions:

swt𝑛+1(𝑞) = swt𝑛(𝑞)⊕
⨁︁

𝑞1,...,𝑞𝑘∈𝑄

(︂
wt(𝑞, 𝑞1, . . . , 𝑞𝑘)⊗

𝑘⨂︁
𝑖=1

swt𝑛(𝑞𝑖)

)︂
.

It is easy to verify, based on distributivity, that swt𝑛(𝑞) yields the sum of all the runs of depth
at most 𝑛 starting with the state 𝑞. Let swt be the limit of the functions swt𝑛 as 𝑛 grows to
infinity. Then we get the following result.

Theorem 10. Let 𝒜 be a WTA and swt the function defined above. ‖𝒜‖ =
⨁︀

𝑞∈𝑄 in(𝑞)⊗ swt(𝑞).

Let 𝑆(𝒜):={𝑠 ∈ 𝑆 | ∃𝑞0, . . . , 𝑞𝑘 ∈ 𝑄.wt(𝑞0, . . . , 𝑞𝑘) = 𝑠} be the set of all weights appearing
in 𝒜. All values appearing in the functions swt𝑛 belong to the semiring 𝑆𝒜 generated by 𝑆(𝒜);
that is, they are constructed through arbitrary additions and products of elements of 𝑆(𝒜).3

Due to distributivity, every such element can be rewritten in monomial form; that is, it can be
expressed as an addition of monomials, where a monomial is a product of elements of 𝑆(𝒜).
Idempotency allows us to restrict this even further, by requiring that each monomial appears
at most once in the addition, and each element of 𝑆(𝒜) appears at most once in a monomial.
Note that since S can be any arbitrary distributive idempotent semiring, and the weights of the
transitions can be arbitrary elements of 𝑆, the monomial form of an element may not be unique.
For our purposes, it suffices to know that there always exists one.

Define a partial ordering over the elements of 𝑆𝒜 as follows. Let 𝑠, 𝑡 ∈ 𝑆𝒜; 𝑠 is contained in 𝑡
(denoted 𝑠 ⊆ 𝑡) if there are monomial forms of 𝑠 and 𝑡 such that every monomial from 𝑠 appears
also in 𝑡. One can see that for every 𝑛 ∈ N and every 𝑞 ∈ 𝑄 it follows that swt𝑛(𝑞) ⊆ swt𝑛+1(𝑞);
that is, the construction of swt is monotonically increasing and swt is its least fixpoint [32]. This
fixpoint is bounded from above by the maximal element �̂� :=

⨁︀
𝑇⊆𝑆(𝒜)

⨂︀
𝑠∈𝑇 𝑠 constructed as

the sum of all possible monomials over 𝑆(𝒜).
By the previous arguments, if there is an 𝑛 ∈ N such that swt𝑛 = swt𝑛+1, then swt𝑛 = swt.

To understand how expensive it is to compute swt is suffices to bound the number of iterations
that yield different functions. Since swt𝑛(𝑞) ⊆ swt𝑛+1(𝑞), if swt𝑛 ̸= swt𝑛+1 there exists some

3In particular, 1 is the monomial formed by empty products, and 0 is the object with an empty addition of monomials.

state 𝑞 ∈ 𝑄 and a monomial 𝑚 appearing in swt𝑛+1(𝑞) but not in swt𝑛(𝑞). That is, every strictly
increasing iteration must add at least one monomial to some state. The number of monomials is
bounded by 2|𝑆(𝒜)|; thus after at most |𝑄| · 2|𝑆(𝒜)| iterations the fixpoint is found. Assuming
that semiring operations take constant time,4 each iteration requires as many operations as
there are transitions in 𝒜; i.e., |𝑄𝑘+1| of them for each state. Thus, the time for each iteration is
bounded polynomially by the number of states of 𝒜 yielding the following result.

Theorem 11. The behaviour of a WTA 𝒜 = (𝑄, in,wt) over a distributive, commutative, idem-
potent semiring S can be computed in time polynomial in |𝑄| but exponential on the cardinality of
the range of wt.

As usual, this upper bound is based on the worst-case scenario and can be reduced in special
cases. For instance, if S is a distributive lattice, the annihilation property limits the class of
monomials of interest to (perhaps surprisingly) a polynomial tree-depth, yielding a polynomial
upper bound over |𝑄| which does not depend explicitly on the range of wt [26, 29].

5. Provenance in 𝒜ℒ𝒞
We now pivot to the special case of 𝒜ℒ𝒞 and show how the automata-based approach can be
used to trace the provenance of inconsistency of a TBox in this setting. The automata-based
decision procedure for 𝒜ℒ𝒞 TBox inconsistency tries to construct a special kind of tree-shaped
model called a Hintikka tree [12]. In the following, we assume any concept to be (implicitly)
rewritten into negation normal form (NNF).

Given a TBox 𝒯 , sub(𝒯) denotes the set that contains ¬𝐶 ⊔𝐷 for each 𝐶 ⊑ 𝐷 ∈ 𝒯 , and
is closed under subconcepts. A set 𝐻 ⊆ sub(𝒯) is a Hintikka set iff (i) 𝐶 ⊓ 𝐷 ∈ 𝐻 implies
{𝐶,𝐷} ⊆ 𝐻 ; (ii)𝐶⊔𝐷 ∈ 𝐻 implies {𝐶,𝐷}∩𝐻 ̸= ∅; and (iii) for every𝐴 ∈ 𝑁𝐶 {𝐴,¬𝐴} ̸⊆ 𝐻 .
In words, a Hintikka set is a logically consistent set of concepts, which preserves the semantics
of ⊓ and ⊔. Such a set is compatible with the GCI 𝐶 ⊑ 𝐷 iff either 𝐻 = ∅ or ¬𝐶 ⊔𝐷 ∈ 𝐻 .

Hintikka sets label the nodes of the tree, and existential restrictions are satisfied by their succes-
sors. Let 𝑘 be the number of existential restrictions in sub(𝒯). To know which successor refers
to which existential restriction we fix an arbitrary bijection 𝜙 : {∃𝑟.𝐶 | ∃𝑟.𝐶 ∈ sub(𝒯)} → 𝐾 .
Some successors will be labeled with the dummy Hintikka set ∅ to keep the constant arity
𝑘. The tuple of Hintikka sets (𝐻0, 𝐻1, . . . ,𝐻𝑘) satisfies the Hintikka condition iff for every
∃𝑟.𝐶 ∈ sub(𝒯), (i) if ∃𝑟.𝐶 ∈ 𝐻0, then {𝐶} ∪ {𝐷 | ∀𝑟.𝐷 ∈ 𝐻0} ⊆ 𝐻𝜙(∃𝑟.𝐶); and (ii) if
∃𝑟.𝐶 /∈ 𝐻0, then 𝐻𝜙(∃𝑟.𝐶) = ∅. It is compatible with the GCI 𝛼 iff 𝐻0, . . . ,𝐻𝑘 are all compati-
ble with 𝛼.

Definition 12 (𝒜ℒ𝒞 automaton). Let 𝒯 be a TBox and 𝑘 the number of existential restrictions in
sub(𝒯). The axiomatic automaton for 𝒯 is the triple (𝒜𝒯 ,∆res𝒯 , 𝐼res𝒯) where 𝒜 = (𝑄,∆, 𝑄)
with 𝑄 the set of all Hintikka sets and ∆ the set of tuples satisfying the Hintikka condition; ∆res𝒯
maps each 𝛼 ∈ 𝒯 to the set of tuples compatible with 𝛼; and 𝐼res𝒯 (𝛼) = 𝑄 for all 𝛼 ∈ 𝒯 .

4Depending on the structure of S, this assumption may require a more precise specification. For instance [29]
introduce structure sharing for efficient calculations.

For the case of 𝒜ℒ𝒞, the fundamental element is ∆res𝒯 , which guarantees that all nodes in
the tree satisfy the GCIs of the sub-TBox of interest. Or, from a dual view, can be used to see
which axioms are violated in a tree-shaped interpretation.

Theorem 13. The axiomatic automaton (𝒜𝒯 ,∆res𝒯 , 𝐼res𝒯) is correct for 𝒯 w.r.t. inconsistency.

By Theorem 9, the behaviour of 𝒜Prov
𝒯 yields the provenance for inconsistency of the TBox

𝒯 . Thus this provenance can be effectively computed.
As usual for 𝒜ℒ𝒞 and other DLs, the approach for dealing with inconsistency can be applied,

with minor variations, to other reasoning tasks. For instance, if one is interested in verifying
whether a concept 𝐶 is unsatisfiable w.r.t. 𝒯 —that is, whether every model 𝐼 of 𝒯 is such that
𝐶𝐼 = ∅—it suffices to modify the set of initial states of the automaton 𝒜 (Definition 12) to
contain only those Hintikka sets that include the concept 𝐶 . Then, the provenance for the
entailment of 𝐶 ⊑ 𝐷 w.r.t. 𝒯 becomes the provenance for unsatisfiability of 𝐶 ⊓ ¬𝐷.

6. Variants and Extensions

Consider once again Example 4. Under the assumption of annihilation, we first computed the
provenance to be equivalent to 𝑠1⊗(𝑠2⊕𝑠4)⊗(𝑠3⊕𝑠4). It turns out that each of these additions
characterises a so-called diagnosis: a minimal set of axioms that, when removed from the KB,
cancel the consequence [33]. For instance, we notice that if we remove the first axiom, the
resulting KB {⊤ ⊑ ∀𝑟.𝐵,𝐴 ⊓𝐵 ⊑ ⊥, 𝐴 ⊑ ¬𝐴} is consistent. This is consistent with the well-
known duality between justifications and repairs, observed in different domains [34, 35, 36, 37].
Thus, if rather than explaining a consequence through its provenance one was interested in
removing it, one could use a similar technique to compute this “correction provenance.” The
only necessary change would be to consider the original semiring S as underlying the weights
of the provenance automaton, rather than the dual S as done for provenance.

One assumption that we make in the definition of general KR languages (see Definition 2) is
that any combination of axioms can form a KB—indeed, a KB is defined as a set of axioms. In
some cases, it makes sense to restrict the class of KBs to so-called admissible sets of axioms,
where if a set 𝒯 is admissible, then any subset of 𝒯 is also admissible [38]. For instance in
expressive description logics, some axioms can only be used if the symbols that appear in them
do not appear in other axioms [39]. Importantly, even if we restrict the KBs of KR languages to
such admissible sets of axioms, the definition of an axiomatic automaton and the construction
of the provenance automaton as presented above still work. Hence, our approach is general
enough to handle also the settings discussed in [38].

7. Conclusions

We have considered a semantic notion of provenance, which can be readily applied to arbitrary
knowledge representation languages that allow for an interpretation-based consequence relation.
In contrast to other existing notions of provenance [40, 41, 42], our notion does not depend
on an executional consequence relationship between the axioms in a knowledge base, but
rather on how they combine to exclude interpretations negating the consequence of interest.

The advantage of our definition is that it allows us to handle provenance in languages where
consequence-based reasoning methods are not available, or require awkward constructions.

At first sight, our definition of provenance may not be very intuitive. It is based on finding the
combinations of axioms that guarantee consequences to be entailed, taking into consideration
the interpretation-based semantics. As a means to justify our approach, we show that it naturally
generalises one of the best known special cases of provenance; namely, that of finding all subset-
minimal sub-KBs that entail the consequence. Moreover, it generalises the cases of weighted
reasoning where weights come from a distributive lattice [43]. It is worth mentioning that,
while we use axiom pinpointing as a motivation and an example for the formalism, the approach
is applicable to provenance over any distributive, idempotent, and commutative semiring.

From a practical point of view, we showed how to transform any axiomatic automaton which
is correct for deciding a consequence, into a weighted automaton whose behaviour corresponds
precisely to the provenance of the consequence. We also provide an effective algorithm for
computing this behaviour by recursively considering runs of increasing length. Computing
the provenance is not more expensive than standard reasoning (based on automata emptiness),
except for a potential exponential overhead on the number of different transition weights.

To showcase the importance and use of our definitions, we instantiated the framework on
𝒜ℒ𝒞. Although there exist consequence propagation methods for this logic [11], its “natural”
reasoning method is based on the construction of (tree) models. Applying our construction, we
showed that computing the provenance in this logic requires exponential time, which matches
the complexity of deciding inconsistency.

One may consider that limiting the framework to distributive, idempotent, commutative
semirings is a very strong restriction. Yet, these assumptions are justified in the context of
our framework. Idempotency and commutativity are relatively common requirements in the
context of provenance for expressive languages; see e.g., [41]. Indeed, there is some evidence
that a lack of idempotency yields to a high complexity, and perhaps even undecidability of
provenance-related problems. If the operators are not commutative, then one can construct
increasingly long monomials, in detriment to the resource upper bounds derived. Distributivity,
on the other hand, is useful for the automata behaviour computation. Indeed, it is known that
even for the case of lattice-valued WTA, the polynomial-time upper bounds depend strongly on
distributivity [44]. Moreover, the construction of the provenance automaton depends on the
dualisation of the semiring, which is only guaranteed for the class of algebras considered here.
This last issue can be solved by considering diagnose-based provenance, instead of explanations.
On the other hand, some applications of provenance do consider less restrictive scenarios
looking at e.g., the Viterbi semiring whose product is not idempotent or the tropical semiring
with non-idempotent addition.

Some automata-based reasoning methods are not based on the interpretation semantics,
but follow a more consequence-based approach of building “proofs” for the derivation of a
consequence. Examples of this view are propositional resolution [45] and the completion-based
approach for ℰℒ [46]. In future work we will study the connection between these automata-based
approaches, and verify whether provenance can be computed efficiently over them.

Acknowledgments

This work was partially supported by the MUR for the Department of Excellence DISCo at the
University of Milano-Bicocca and under the PRIN project PINPOINT Prot. 2020FNEB27, CUP
H45E21000210001.

References

[1] T. J. Green, G. Karvounarakis, V. Tannen, Provenance semirings, in: Proc. of PODS 2007,
ACM, 2007, pp. 31–40. doi:10.1145/1265530.1265535.

[2] T. J. Green, V. Tannen, The semiring framework for database provenance, in: Proc. of
PODS 2017, ACM, 2017, pp. 93–99. doi:10.1145/3034786.3056125.

[3] L. F. Sikos, D. Philp, Provenance-aware knowledge representation: A survey of data models
and contextualized knowledge graphs, Data Science and Engineering 5 (2020) 293–316.
doi:10.1007/s41019-020-00118-0.

[4] R. Dividino, S. Sizov, S. Staab, B. Schueler, Querying for provenance, trust, uncertainty
and other meta knowledge in RDF, Journal of Web Semantics 7 (2009) 204–219.

[5] F. Baader, B. Hollunder, Embedding defaults into terminological knowledge representation
formalisms, J. Automated Reas. 14 (1995) 149–180. doi:10.1007/BF00883932.

[6] S. Schlobach, R. Cornet, Non-standard reasoning services for the debugging of description
logic terminologies, in: Proc. of IJCAI 2003, Morgan Kaufmann, 2003, pp. 355–362. URL:
http://ijcai.org/Proceedings/03/Papers/053.pdf.

[7] A. Kalyanpur, B. Parsia, M. Horridge, E. Sirin, Finding all justifications of OWL DL
entailments, in: Proc. of ISWC 2007, volume 4825 of Lecture Notes in Computer Science,
Springer, 2007, pp. 267–280. doi:10.1007/978-3-540-76298-0_20.

[8] H. Kleine Büning, O. Kullmann, Minimal unsatisfiability and autarkies, in: Handbook
of Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and
Applications, IOS Press, 2021, pp. 571–633. doi:10.3233/FAIA200997.

[9] O. Kullmann, I. Lynce, J. Marques-Silva, Categorisation of clauses in conjunctive normal
forms: Minimally unsatisfiable sub-clause-sets and the lean kernel, in: Proc. of SAT 2006,
volume 4121 of Lecture Notes in Computer Science, Springer, 2006, pp. 22–35. doi:10.1007/
11814948_4.

[10] M. Schmidt-Schauß, G. Smolka, Attributive concept descriptions with complements,
Artificial Intelligence 48 (1991) 1–26.

[11] F. Simancik, Y. Kazakov, I. Horrocks, Consequence-based reasoning beyond Horn ontolo-
gies, in: T. Walsh (Ed.), Proceedings of the 22nd International Joint Conference on Artifi-
cial Intelligence, IJCAI/AAAI, 2011, pp. 1093–1098. doi:10.5591/978-1-57735-516-8/
IJCAI11-187.

[12] F. Baader, J. Hladik, R. Peñaloza, Automata can show PSPACE results for description logics,
Information and Computation 206 (2008) 1045–1056. doi:10.1016/j.ic.2008.03.006.

[13] D. Calvanese, D. Carbotta, M. Ortiz, A practical automata-based technique for reasoning
in expressive description logics, 2011, pp. 798–804. doi:10.5591/978-1-57735-516-8/
IJCAI11-140.

http://dx.doi.org/10.1145/1265530.1265535
http://dx.doi.org/10.1145/3034786.3056125
http://dx.doi.org/10.1007/s41019-020-00118-0
http://dx.doi.org/10.1007/BF00883932
http://ijcai.org/Proceedings/03/Papers/053.pdf
http://dx.doi.org/10.1007/978-3-540-76298-0_20
http://dx.doi.org/10.3233/FAIA200997
http://dx.doi.org/10.1007/11814948_4
http://dx.doi.org/10.1007/11814948_4
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-187
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-187
http://dx.doi.org/10.1016/j.ic.2008.03.006
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-140
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-140

[14] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider (Eds.), The Description
Logic Handbook: Theory, Implementation, and Applications, second ed., Cambridge
University Press, 2007.

[15] A. Kaya, M. Satyanarayana, Semirings satisfying properties of distributive type, Proceed-
ings of the American Mathematical Society 82 (1981) 341–346.

[16] F. Pastijn, Y. Guo, The lattice of idempotent distributive semiring varieties, Science in
China Series A: Mathematics 42 (1999) 785–804. doi:10.1007/BF02884266.

[17] Z. Fülöp, H. Vogler, Weighted tree automata – may it be a little more?, 2022. doi:10.48550/
ARXIV.2212.05529.

[18] H. Seidl, Finite tree automata with cost functions, in: J. C. Raoult (Ed.), CAAP ’92, Springer,
Berlin, Heidelberg, 1992, pp. 279–299.

[19] M. Droste, W. Kuich, H. Vogler, Handbook of Weighted Automata, EATCS, 1st ed., Springer,
2009.

[20] M. Droste, G. Rahonis, Weighted automata and weighted logics on infinite words, in: Proc.
of DLT 2006, volume 4036 of Lecture Notes in Computer Science, Springer, 2006, pp. 49–58.
doi:10.1007/11779148_6.

[21] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison, M. Tom-
masi, Tree automata techniques and applications, 2008.

[22] D. Deutch, Y. Moskovitch, V. Tannen, A provenance framework for data-dependent process
analysis, Proc. VLDB Endow. 7 (2014) 457–468. doi:10.14778/2732279.2732283.

[23] R. Peñaloza, Explaining axiom pinpointing, in: C. Lutz, U. Sattler, C. Tinelli, A. Turhan,
F. Wolter (Eds.), Description Logic, Theory Combination, and All That - Essays Dedicated
to Franz Baader on the Occasion of His 60th Birthday, volume 11560 of Lecture Notes in
Computer Science, Springer, 2019, pp. 475–496. doi:10.1007/978-3-030-22102-7_22.

[24] M. Horridge, J. Bauer, B. Parsia, U. Sattler, Understanding entailments in OWL, in:
Proceedings of the Fifth OWLED Workshop, volume 432 of CEUR Workshop Proceedings,
CEUR-WS.org, 2008. URL: http://ceur-ws.org/Vol-432/owled2008eu_submission_23.pdf.

[25] R. Peñaloza, Axiom pinpointing, in: Applications and Practices in Ontology Design,
Extraction, and Reasoning, volume 49 of Studies on the Semantic Web, IOS Press, 2020, pp.
162–177. URL: https://ebooks.iospress.nl/volumearticle/56013. doi:10.3233/SSW200042.

[26] F. Baader, M. Knechtel, R. Peñaloza, Context-dependent views to axioms and consequences
of semantic web ontologies, J. Web Sem. 12–13 (2012) 22–40. doi:10.1016/j.websem.
2011.11.006.

[27] N. Preining, Gödel logics – a survey, in: Logic for Programming, Artificial Intelligence,
and Reasoning, Springer, Berlin, Heidelberg, 2010, pp. 30–51.

[28] D. Dubois, H. Prade, Possibilistic logic - an overview, in: Computational Logic, vol-
ume 9 of Handbook of the History of Logic, Elsevier, 2014, pp. 283–342. doi:10.1016/
B978-0-444-51624-4.50007-1.

[29] F. Baader, R. Peñaloza, Automata-based axiom pinpointing, J. Automated Reas. 45 (2010)
91–129. doi:10.1007/s10817-010-9181-2.

[30] M. Droste, W. Kuich, G. Rahonis, Multi-valued MSO logics over words and trees, Funda-
menta Informaticae 84 (2008) 305–327.

[31] M. Y. Vardi, P. Wolper, Automata-theoretic techniques for modal logics of programs, Journal
of Computer and System Sciences 32 (1986) 183–221. doi:10.1016/0022-0000(86)

http://dx.doi.org/10.1007/BF02884266
http://dx.doi.org/10.48550/ARXIV.2212.05529
http://dx.doi.org/10.48550/ARXIV.2212.05529
http://dx.doi.org/10.1007/11779148_6
http://dx.doi.org/10.14778/2732279.2732283
http://dx.doi.org/10.1007/978-3-030-22102-7_22
http://ceur-ws.org/Vol-432/owled2008eu_submission_23.pdf
https://ebooks.iospress.nl/volumearticle/56013
http://dx.doi.org/10.3233/SSW200042
http://dx.doi.org/10.1016/j.websem.2011.11.006
http://dx.doi.org/10.1016/j.websem.2011.11.006
http://dx.doi.org/10.1016/B978-0-444-51624-4.50007-1
http://dx.doi.org/10.1016/B978-0-444-51624-4.50007-1
http://dx.doi.org/10.1007/s10817-010-9181-2
http://dx.doi.org/10.1016/0022-0000(86)90026-7
http://dx.doi.org/10.1016/0022-0000(86)90026-7

90026-7.
[32] A. Tarski, A lattice-theoretical fixpoint theorem and its applications., Pacific Journal of

Mathematics 4 (1955) 285–309.
[33] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1987) 57–

95. URL: https://www.sciencedirect.com/science/article/pii/0004370287900622. doi:https:
//doi.org/10.1016/0004-3702(87)90062-2.

[34] E. Birnbaum, E. L. Lozinskii, Consistent subsets of inconsistent systems: structure and
behaviour, Journal of Experimental & Theoretical Artificial Intelligence 15 (2003) 25–46.
doi:10.1080/0952813021000026795.

[35] M. H. Liffiton, K. A. Sakallah, Algorithms for computing minimal unsatisfiable sub-
sets of constraints, Journal of Automated Reasoning 40 (2008) 1–33. doi:10.1007/
s10817-007-9084-z.

[36] A. Ignatiev, N. Narodytska, N. Asher, J. Marques-Silva, On relating ‘why?’ and ‘why
not?’ explanations, CoRR abs/2012.11067 (2020). URL: https://arxiv.org/abs/2012.11067.
arXiv:2012.11067.

[37] F. Baader, R. Peñaloza, B. Suntisrivaraporn, Pinpointing in the description logic EL+, in:
Proc. of KI 2007, volume 4667 of Lecture Notes in Artificial Intelligence, Springer-Verlag,
Osnabrück, Germany, 2007, pp. 52–67.

[38] F. Baader, R. Peñaloza, Axiom pinpointing in general tableaux, Journal of Logic and
Computation 20 (2010) 5–34. doi:10.1093/logcom/exn058.

[39] I. Horrocks, O. Kutz, U. Sattler, The even more irresistible SROIQ, in: Proc. of KR 2006,
AAAI Press, 2006, pp. 57–67. URL: http://www.aaai.org/Library/KR/2006/kr06-009.php.

[40] K. M. Dannert, E. Grädel, Provenance Analysis: A Perspective for Description
Logics?, Springer International Publishing, Cham, 2019, pp. 266–285. doi:10.1007/
978-3-030-22102-7_12.

[41] C. Bourgaux, A. Ozaki, R. Peñaloza, L. Predoiu, Provenance for the description logic ELHr,
ijcai.org, 2020, pp. 1862–1869. doi:10.24963/ijcai.2020/258.

[42] M. Knorr, C. V. Damásio, R. Gonçalves, J. Leite, Towards provenance in heterogeneous
knowledge bases, in: Logic Programming and Nonmonotonic Reasoning, Springer Inter-
national Publishing, Cham, 2022, pp. 287–300.

[43] S. Borgwardt, R. Peñaloza, Consistency reasoning in lattice-based fuzzy description logics,
International Journal of Approximate Reasoning 55 (2014) 1917–1938. doi:10.1016/j.
ijar.2013.07.006.

[44] K. Lehmann, R. Peñaloza, The complexity of computing the behaviour of lattice automata
on infinite trees, Theoretical Computer Science 534 (2014) 53–68. URL: http://www.
sciencedirect.com/science/article/pii/S0304397514001625. doi:10.1016/j.tcs.2014.02.
036.

[45] M. Davis, H. Putnam, A computing procedure for quantification theory, J. ACM 7 (1960)
201–215. doi:10.1145/321033.321034.

[46] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in: Proc. of IJCAI 2005, Professional
Book Center, 2005, pp. 364–369. URL: http://ijcai.org/Proceedings/05/Papers/0372.pdf.

http://dx.doi.org/10.1016/0022-0000(86)90026-7
http://dx.doi.org/10.1016/0022-0000(86)90026-7
http://dx.doi.org/10.1016/0022-0000(86)90026-7
https://www.sciencedirect.com/science/article/pii/0004370287900622
http://dx.doi.org/https://doi.org/10.1016/0004-3702(87)90062-2
http://dx.doi.org/https://doi.org/10.1016/0004-3702(87)90062-2
http://dx.doi.org/10.1080/0952813021000026795
http://dx.doi.org/10.1007/s10817-007-9084-z
http://dx.doi.org/10.1007/s10817-007-9084-z
https://arxiv.org/abs/2012.11067
http://arxiv.org/abs/2012.11067
http://dx.doi.org/10.1093/logcom/exn058
http://www.aaai.org/Library/KR/2006/kr06-009.php
http://dx.doi.org/10.1007/978-3-030-22102-7_12
http://dx.doi.org/10.1007/978-3-030-22102-7_12
http://dx.doi.org/10.24963/ijcai.2020/258
http://dx.doi.org/10.1016/j.ijar.2013.07.006
http://dx.doi.org/10.1016/j.ijar.2013.07.006
http://www.sciencedirect.com/science/article/pii/S0304397514001625
http://www.sciencedirect.com/science/article/pii/S0304397514001625
http://dx.doi.org/10.1016/j.tcs.2014.02.036
http://dx.doi.org/10.1016/j.tcs.2014.02.036
http://dx.doi.org/10.1145/321033.321034
http://ijcai.org/Proceedings/05/Papers/0372.pdf

	1 Introduction
	2 Preliminaries
	2.1 Semirings
	2.2 Weighted Tree Automata

	3 Interpretation-based Provenance
	4 Automata-based Provenance
	5 Provenance in ALC
	6 Variants and Extensions
	7 Conclusions

