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Abstract

Knowledge Graphs are inherently incomplete, so the relationships that hold between their entities have

to be discovered on the go. Generating explanations for such predictions has become a fundamental

task in the perspective of eXplainable AI. This task boils down to finding meaningful (knowledge-level)

reasons for predicting a certain relationship to hold between entities. To date, effective link prediction

methods are based on embedding models, that represent entities and relationships in a vector space to be

learned. Our goal is to extend a semantically enriched approach to generating explanations by exploring

graph searches for patterns in similar situations. These patterns justify predictions made through an

underlying embedding model, leading to the production of explanations. Since a bottleneck of the method

is the search for similar entities and relations in the embedding space, we propose a solution based on the

integration of clustering to make this search more efficient. This solution has been empirically evaluated

with new experiments, proving the improvement in efficiency while preserving the effectiveness.
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1. Introduction

Knowledge Graphs (KGs) are multi-relational graphs designed to organize and share real-world

knowledge where nodes represent entities of interest and edges represent different types of

relationships between such entities [1]. We will focus on the latter category of KGs embodied

as shared ontologies, ultimately expressed in Description Logics (DLs) [2], and rely on reasoning

to better exploit the wealth of available underlying knowledge.

Due to the inherent incompleteness and heterogeneity of the sources for large KGs, two of

the most compelling basic tasks on them are link prediction and triple classification that amount,

respectively, predicting an unknown component of a triple and assessing the truth of a new or

existing triple. For these purposes, lots of numeric-statistical models have been proposed, in

particular methods that learn vector representations (embedding models) that have been shown

to scale even to very large KGs. The downside is that these models are difficult for human

experts to interpret and verify. Thus an elusive aspect concerns the trust in predictions made
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through such models (e.g., in the context of a KG about drugs, the prediction of a side effect

for a given compound): the more complex and accurate the models get, the less explainable

become the reasons supporting their predictions. As a consequence, providing explanations for

the predicted results has become increasingly important.

Current solutions to the problem of computing explanations (e.g. see [3, 4, 5]) can be distin-

guished into two main categories [6]: those related to the internal mechanisms of a model, and

those that can motivate the output predictions. Specifically, two possible approaches can be

identified [7]: Pattern-based methods guide the process of creating numerical representations of

the data contained in the KG by narrowing the search space so that each dimension corresponds

to a pattern. A-posteriori methods aim at constructing explanations after the model has delivered

its predictions; they do not explain the reasons for which the internal mechanism of the model

produced a given output, but try to find a suitable explanation based on the observed output

and on the model input, i.e., the KG evidence.

We will focus on the latter approach as it allows to adopt link prediction models based on

numerical representations of the data that are more scalable with respect to the former, and

thereby more suitable for real large-scale KGs and more capable of generating explanations

for the predictions made. In fact, there are only a few examples of approaches that are able to

explain link predictions with KGs. We will focus on an improved a-posteriori method that can

provide semantic-based explanations for link prediction on KGs. In particular, given a prediction,

the goal is to understand why it was made, giving valuable reasons to enable the user to judge

the output, understand the motivations, and thus increase confidence in the prediction.

Specifically, moving from the SemanticCrossE explanation approach [8], that is based on

eliciting analogous justification patterns (exploiting a semantic similarity measure) to build

effective explanations, we propose a more efficient solution that exploits a clustering structure of

the embeddings to speed up the search and, consequently, the entire explanation process. This

is motivated by the fact that whilst the adoption of the semantic measures employed yielded a

greater ability to capture the underlying KG semantics which improved the effectiveness of the

process, it also showed noticeable limitations in efficiency which restrains the scalability of the

approach to the large dimensions of current KGs. The new solution preserves the handling of

semantics that characterizes the approach while making the explanation process more applicable

in practice. Indeed, in our comparative study, we show experimentally that while the adoption

of clustering results in a significantly more efficient explanation process, the quality of the

explanations generated using either variant of the method is substantially comparable.

The rest of this paper is organized as follows. The functional foundations of our solution are

recalled in §2. The proposed explanation process is presented in §3, while in §4 we illustrate

the comparative experimental study in terms of efficiency and effectiveness of the variants. §5

summarizes the conclusions and delineates a possible further extension.

2. Basics: Embedding Models for KGs and Explanations

Embedding models, a popular solution to link prediction problems on KGs are briefly recalled,

then we focus on the task of explaining predictions and specifically on SemanticCrossE, a

method that can exploit schema-level semantics which was targeted for further enhancements.



2.1. Knowledge Graphs and Embedding Models

A Knowledge Graph [1] can be defined as a data structure denoted with 𝒦(ℰ ,ℛ) involving a

set of the nodes ℰ , or entities, and a set of arcs ℛ, i.e. the relationships which connect entities.

Adopting the RDF data model, a KG can be regarded as a set of triples ⟨𝑠, 𝑝, 𝑜⟩, i.e. subject,

predicate, and object where 𝑠, 𝑜 ∈ ℰ and 𝑝 ∈ ℛ. In RDF, the terms are denoted by the elements

of the sets 𝒰 (URIs), ℬ (blank nodes) and ℒ (literals). Hence an RDF Graph is a set triples ⟨𝑠, 𝑝, 𝑜⟩
with: 𝑠 ∈ 𝒰 ∪ ℬ, 𝑝 ∈ 𝒰 , and 𝑜 ∈ 𝒰 ∪ ℬ ∪ ℒ [7].

Several models have been proposed for embedding KGs in low-dimensional vector spaces [9],

that learn a unique distributed representation (or embedding) for each entity and predicate

therein considering different types of components (e.g. point-wise, complex, discrete, Gaussian,

manifold). Here we adopt an embedding vector-space based on R.

Regardless of the learning procedure, these models share a fundamental characteristic: given

𝒦(ℰ ,ℛ), they represent each entity 𝑥 ∈ ℰ as a continuous embedding vector e𝑥 ∈ R𝑘
, where

the dimension 𝑘 ∈ N is a user-defined hyperparameter. Similarly, each predicate 𝑝 ∈ ℛ is

associated to a scoring function 𝑓𝑝 : R𝑘 × R𝑘 → R. For each pair of entities 𝑠, 𝑜 ∈ ℰ , the score

𝑓𝑝(e𝑠, e𝑜) measures the confidence in the fact that the statement encoded by ⟨𝑠, 𝑝, 𝑜⟩ holds true.

The embedding of all entities and predicates in 𝒦 is learned by minimizing a margin-based

loss function (i.e. one that takes into account differences with their sign).

2.2. Computing Explanations of Link Predictions

SemanticCrossE, a method for computing explanations for link predictions on KGs, was

devised to better exploit the underlying semantics [8]. Given a predicted triple, the formulation

of an explanation is based on searching for paths of relations that link its subject to the object.

We are not interested in the orientation of the edges. This search is driven by the similarities

among both relation embeddings and entity embeddings, and makes structural comparisons

with other paths in the KG: the reliability of an explanation is reinforced by the presence of

similar paths (referred to as support).

Example 1 ([8]). Given the predicted triple ⟨𝑋, fatherOf,𝑀⟩ a suitable explanation may be

given by the chain pattern (path) ⟨𝑋, hasWife, 𝑍⟩, ⟨𝑍, hasChild,𝑀⟩ that is supported by an

analogous situation, the occurrence of a similar triple ⟨𝑌, fatherOf, 𝑋⟩ that is known to be true

(not just a hypothesis) for which the explanation is ⟨𝑌, hasWife, 𝑆⟩, ⟨𝑆, hasChild, 𝑋⟩.

Given a predicted triple ⟨ℎ, 𝑟, 𝑡⟩ for the query ⟨ℎ, 𝑟, ?⟩, the main idea consists in looking

for (short) paths from ℎ to 𝑡, and provide them as explanations (see [8] for a longer example

on the application of this method). This search aims at finding analogous situations that can

support the explanation (similarity will be discussed in the next §3.1): this requires a structural

comparison between paths (patterns) that support the explanation. The process is summarized

in Algo. 1, whose steps are described as follows:

Given the predicted ⟨ℎ, 𝑟, 𝑡⟩:

1. Find the set 𝒮𝑟 of the 𝑘𝑟 closest relationships to 𝑟 (line 6);

2. Search for the set 𝒫(ℎ, 𝑡) of (all) paths between ℎ and 𝑡 (lines 7-8):



Algorithm 1 Explanation and support of a prediction

1 input 𝒦(ℰ ,ℛ): knowledge graph; ⟨ℎ, 𝑟, 𝑡⟩: predicted triple;

2 𝑘𝑒, 𝑘𝑟 : max numbers of similar entities, relations;

3 output explanations of the predicted triple and and their supports

4 𝐸𝑥𝑝𝑙← ∅; /∗ working set of explanations ∗/
5 𝑆𝑢𝑝𝑝← ∅ /∗ support set ∗/
6 /∗ Find the most similar relations to r ∗/

7 Select 𝒮𝑟 ⊆ ℛ, with |𝒮𝑟| = 𝑘𝑟
8 for each path−type 𝑖 do
9 Compute the path−set 𝒫𝑖 = {𝑃 of type 𝑖 | ∀𝑡𝑟𝑖𝑝𝑙𝑒 ∈ 𝑃 : 𝒦 ⊢ 𝑡𝑟𝑖𝑝𝑙𝑒}

10 /∗ Find the most similar entities to h ∗/

11 Select 𝒮ℎ ⊆ ℰ , with |𝒮ℎ| = 𝑘𝑒
12 for each path 𝑃 ∈

⋃︀
𝑖 𝒫𝑖 do

13 if (𝑃 ∈ 𝒫(ℎ𝑠, 𝑡𝑠) s.t. ∀𝑇 ∈ 𝑃 : 𝒦 ⊢ 𝑇 ) ∧ (ℎ𝑠 ∈ 𝒮ℎ)
14 𝐸𝑥𝑝𝑙← 𝐸𝑥𝑝𝑙 ∪ 𝑃
15 𝑆𝑢𝑝𝑝← 𝑆𝑢𝑝𝑝 ∪ {{⟨ℎ𝑠, 𝑃, 𝑡𝑠⟩, ⟨ℎ𝑠, 𝑟, 𝑡𝑠⟩}}
16 return 𝐸𝑥𝑝𝑙, 𝑆𝑢𝑝𝑝

• a maximum length is fixed to limit the search space; considering only lengths 1 and

2, then six types of patterns are possible: 𝑃1 = {⟨ℎ, 𝑟𝑠, 𝑡⟩}, 𝑃2 = {⟨𝑡, 𝑟𝑠, ℎ⟩}, 𝑃3 =
{⟨𝑒′, 𝑟𝑠, ℎ⟩, ⟨𝑒′, 𝑟′, 𝑡⟩}, 𝑃4 = {⟨𝑒′, 𝑟𝑠, ℎ⟩, ⟨𝑡, 𝑟′, 𝑒′⟩}, 𝑃5 = {⟨ℎ, 𝑟𝑠, 𝑒′⟩, ⟨𝑒′, 𝑟′, 𝑡⟩},

𝑃6 = {⟨ℎ, 𝑟𝑠, 𝑒′⟩, ⟨𝑡, 𝑟′, 𝑒′⟩}, where 𝑟𝑠 is a relationship similar to 𝑟, 𝑟′ stands for any

other relationship, and 𝑒′ for any other entity;

• a direct search is employed to find similar paths of type 1 and 2, and bidirectional

search to find paths of types 3 through 6.

3. Find the set 𝒮ℎ of the 𝑘𝑒 closest entities to ℎ (line 9);

• note that considering ℎ𝑠 ∈ 𝒮ℎ, entities 𝑡𝑠 s.t. ⟨ℎ𝑠, 𝑟, 𝑡𝑠⟩ ∈ 𝒦 are also determined.

𝒫(ℎ𝑠, 𝑡𝑠) denotes the set of paths involving the entities found in this step.

4. Search for similar structures to support the explanation (lines 10-13):

• if there exists a path 𝑃 from ℎ𝑠 to 𝑡𝑠 (i.e. similar to ⟨ℎ𝑠, 𝑟, 𝑡𝑠⟩ determined at the

previous step) whose triples 𝑇 can be derived from 𝒦, then 𝑃 is an explanation for

⟨ℎ, 𝑟, 𝑡⟩ (this is denoted with a special triple: ⟨ℎ𝑠, 𝑃, 𝑡𝑠⟩);
• triples in 𝑃 describe an analogous situation w.r.t. ⟨ℎ, 𝑟, 𝑡⟩ involving similar entities

and relationships: then the support is extended with 𝑃 which joins a similar head

to a similar tail through a relation that is similar to 𝑟, i.e. analogously to ⟨ℎ𝑠, 𝑟, 𝑡𝑠⟩.

In the original formulation of CrossE [3], the analogy between pairs of entities or relationships

was assessed using the Euclidean distance, applied to their embeddings. However it is well

known that this metric may be inadequate when the assumption of isotropy for the underlying

vector-space does not hold. Considering the crucial role of similarity in the explanation process,

other measures have been considered in SemanticCrossE.



3. Extending the Explanation Method

Moving from the initial ideas behind CrossE, various extensions were foreseen and finally

incorporated in the ultimate implementation of the explanation method, namely:

• further measures that are capable of capturing the underlying semantics of the KG to

better direct the process towards more accurate explanations;

• the usage of such measures within clustering algorithms is intended to produce groupings

of embeddings that can be exploited to accelerate the key task of similarity search.

3.1. Extended Measure

The Semantic Cosine similarity measure was motivated by the purpose of enhancing the expla-

nation process by better exploiting the available knowledge. Compared to the Euclidean norm,

it can capture additional and/or complementary information in the resulting embedding space.

The semantics of the KGs, particularly when represented by rich representation languages, such

as RDF-S and OWL, is often disregarded. Being able to exploit the KG semantics may lead to

generate more accurate explanations for link predictions.

Hence, the semantic Cosine measure was introduced [8] to better assess the similarity of

two vector embeddings on the ground of additional semantic information. Such information is

captured by a score function defined to this purpose.

We consider the set 𝒞 of the classes occurring in 𝒦(ℰ ,ℛ), and the functions 𝐶𝑙 : ℰ → 𝒞,

𝐷𝑜 : ℛ → 𝒞, 𝑅𝑎 : ℛ → 𝒞 that return, resp., the conjunction of the classes an entity belongs

to, the domain and range of a relation. We also resort to the retrieval service [2], denoted in

the following as function 𝑟𝑒𝑡 : 𝒞 → 2ℰ , a reasoning service that returns the entities in 𝒦(ℰ ,ℛ)
that can be proven to belong to a given class.

The semantic Score function for pairs of entities 𝑒, 𝑒′ ∈ ℰ is defined by:

sScore(𝑒, 𝑒′) =
|ret[𝐶𝑙(𝑒) ⊓ 𝐶𝑙(𝑒′)]|
|ret[𝐶𝑙(𝑒) ⊔ 𝐶𝑙(𝑒′)]|

. (1)

Analogously, given any two relationships 𝑟, 𝑟′ ∈ ℛ, it is defined:

sScore(𝑟, 𝑟′) =
|ret[𝐷𝑜(𝑟) ⊓𝐷𝑜(𝑟′)]|
|ret[𝐷𝑜(𝑟) ⊔𝐷𝑜(𝑟′)]|

+
|ret[𝑅𝑎(𝑟) ⊓𝑅𝑎(𝑟′)]|
|ret[𝑅𝑎(𝑟) ⊔𝑅𝑎(𝑟′)]|

(2)

Given 𝒦(ℰ ,ℛ), the semantic Cosine measure for two entities 𝑒, 𝑒′ ∈ ℰ is defined by:

semCos𝛼,𝛽(𝑒, 𝑒
′) = 𝛼 · sScore(𝑒, 𝑒′) + 𝛽 · simcos(e, e

′) (3)

where e represents the respective embedding vector and 𝛼, 𝛽 ∈ [0, 1] 𝑠.𝑡. 𝛼 + 𝛽 = 1. In the

case of relations 𝑟, 𝑟′ ∈ ℛ the measure is defined analogously.

Similarly, the semantic Score for relations can be computed by considering their domains

and/or ranges, that are ultimately class expressions, and summing the degree of similarity

between the domains and the degree of similarity between the ranges.However computing

concept retrieval by using a standard reasoner may turn out to be computationally prohibitive,



or even infeasible from a practical viewpoint, when very large KGs, consisting of millions of

triples, are considered. For this reason, an approximated form of the semantic Cosine measure

and more specifically of the semantic Score function was proposed [8].

3.2. Learning Clustering Structures to Enhance Similarity Search

Clustering has been shown to provide an added value to the explanation process [10]. Moving

from the base approach delineated in the previous section, the selection of the most similar

entities and relations can be optimized by grouping their embeddings in clusters.

Thus, by prepending a preliminary phase to find good clustering structures over the em-

bedding vectors it is possible to guide the search for the most similar relations/entities by

considering only relation/entity embeddings within a single cluster. To this purpose, vector

similarity measures can be employed for an efficient computation. Of course with large numbers

of clusters, they will tend to be less crowded hence some semantically similar embeddings may

be missing from the targeted cluster. This may cause finding sub-optimal neighbors hence

limiting the effectiveness of the explanation method. Hence a trade-off has to be made between

number of clusters and quality of the resulting explanations.

Two simple unsupervised algorithms, namely 𝑘-Means and Agglomerative clustering, were

considered to find a given number of groupings exploiting the similarity measures employed also

in the explanation process. More complex tree-structures borrowed from Nearest Neighbors

methods may represent a natural extension to the approach we adopt in this work.

4. Experiments

The objective of the experiments was twofold: first, to analyze the quality of the explanations

generated for link predictions, and second, to assess how the choice of the similarity measure

affected the quality of the explanations produced by the prediction method. The study also

aimed at exploring how clustering structures could help speed up similarity search.

Clustering techniques were exploited in order to speed up the similarity search in the pre-

sented explanation methods while preserving their effectiveness. The adopted similarity measure

varied in accordance to the metric employed in the explanation phase. The clustering phase

preceded the explanation process. This phase consisted in finding, for each embedding, the

(three) closest neighbors. Then the explanations were produced for the predicted triples, and the

outcomes of the process were evaluated via the same metrics adopted in the former experiment.

Code and datasets employed are publicly available
1
.

Evaluation Metrics To assess the quality of the predictions, we adopted the metrics employed

in the original evaluation of CrossE [3] also in combination with other measures [8], namely:

• Elapsed Time per experiment to assess the gain in efficiency resulting from employing

pre-computed clustering structures in the key-task of similarity search;

1

https://github.com/itsfrank98/SemanticCrossE/tree/clustering_2

https://github.com/itsfrank98/SemanticCrossE/tree/clustering_2


• Recall: proportion of predicted triples for which the model can generate explanations:

#EPs/#Ps , where #EPs counts the predictions with at least one explanation and #Ps
stands for the total number of predictions;

– conforming to the mentioned previous experiments, only short explanations paths

(maximal length 2) were considered, which limits the number of possible explana-

tions, maintaining a greater focus on their quality and brevity;

– note that the number of explanations generated per predicted triple is not taken

into account: the recall is not affected by this number;

• Average Support: number of explanations generated, on average, for each predic-

tion:
1
|𝒫|

∑︀
𝑇∈𝒫 |𝐸𝑥𝑝𝑙(𝑇 )|, counting the number of explanations |𝐸𝑥𝑝𝑙(𝑇 )| gener-

ated for each predicted triple 𝑇 , where 𝒫 is the set of predictions for a query:

{𝑇 | 𝑇 = ⟨ℎ, 𝑟, 𝑡⟩ predicted for ⟨ℎ, 𝑟, ?⟩}
– essentially the measure quantifies the reliability of the explanations: the larger the

support the more reliable and credible the prediction;

– each of the six types of explanation path was evaluated in terms of the adopted

metrics: this allows a quantitative comparison of the different settings.

Knowledge Graphs For the sake of comparison, the same KGs adopted in the mentioned

original evaluations were considered [3]. We recall that, since they lack of significant semantic

information actually taken into account by SemanticCrossE, we considered DBpedia15k as

additional dataset for performing further tests in order to stress on the possible utility of the

semantic component or not. Details on the adopted KGs are summarized below:

• WN18 contains 40, 943 entities and 18 relations. It was extracted from WordNet
2
, where

linguistic relations (e.g., hypernymy, etc.) between synsets/entities are represented;

• FB15k-237 contains 14, 541 entities and 237 relationships. It is a subset of the original

dataset FB15k containing relation triples and textual mentions of Freebase
3

entity pairs.

• DBpedia15k contains 12, 862 entities and 279 relations with 180, 000 triples extracted

from DBpedia (see [11]).

Parameters Setup For the comparison, as the same algorithm was used in the preliminary

link prediction phase, the settings used for the original evaluation in [3] (and also in [8]) were

maintained in the new experiments.

Specifically, in [3] it was suggested to consider a fixed initial number 𝑘 of similar relations

and 𝑗 of most similar entities. Clearly, the larger these values, the greater would be the recall,

but also the resulting noise. In the aim of generating explanations of good quality, small values

have been considered: 𝑘 = 𝑗 = 3. As regards the semantic score function, the considered

settings for the weights was 𝛼 = 0.2 and 𝛽 = 0.8; the motivation is that cosine similarity

applies to the embeddings computed by CrossE, incorporating more latent information learned,

while the semantic measure enforces the similarity complementarily.

2

https://wordnet.princeton.edu/

3

https://web.archive.org/web/20100228011242/http://www.freebase.com/

https://wordnet.princeton.edu/
 https://web.archive.org/web/20100228011242/http://www.freebase.com/


Table 1
Parameter settings per KG (see [8] for their exact role in the algorithm)

parameters KGs
WN18 FB5K-237 DBpedia15k

negative examples 𝑛 50 50 50

learning rate 𝜂 0.01 0.01 0.01

embeddings dim. 𝑑 100 100 100

regularization 𝜆 10−4 10−5 10−5

batch size 𝐵 2048 4000 4000

Finally, also for the settings of the link prediction parameters were the same used in [8]. The

Tensorflow implementation of the model exploited an Adam optimizer and a dropout of 0.5
was applied to the similarity operator (max. number of iterations: 500). Further settings with

parameter values were selected differently on a per-dataset basis and are reported in Table 1.

The parameter values are the same used for the experimental evaluations in [8].

As regards the clustering methods considered in the preliminary phase, finding an optimal

number of clusters 𝐾 may be done beforehand via cross-validation or during their execution.

We preliminarily tested both techniques on various values of 𝐾 . In the following we present

results for 𝐾 = 8, 10, 15 as larger numbers have been shown to worsen the performance of the

explanation methods, as expected. More complete results are made available in the repository.

Finally, as regards the choice of the similarity measure for the explanation algorithm (and

also by the clustering procedure), the settings involved in the evaluation will be indicated as

orig., cos, acos: the first corresponds to adopting the Euclidean distance, as in the original

approach [3]; in the second setting the cosine similarity is adopted, and the third involves the

approximate semantic Cosine measure [8]. This was tested only on DBpedia15k since it was the

only KG with semantic annotations. In this case the Manhattan distance has been considered

for clustering as a faster replacement for the semantic cosine similarity.

In the following the results of the experiments carried out are summarized and discussed. We

first recall those collected by testing the models with embeddings not grouped in clusters by

similarity [8]. Then we illustrate and discuss the results of new experiments where clustering

techniques have been exploited for grouping the embeddings into different numbers of clusters.

In the experiments described in [8] the explanation algorithm was executed on the predicted

triples of each dataset. For each measure, the explanations were produced considering limited

portions (2% and 5%) of the total amount of predictions. This is because very low ranked

predicted triples might turn out to be incorrect and, as a consequence, the corresponding

explanations would turn out to be useless.

Efficiency Gain The results reported in Table 2 show the advantage, in terms of elapsed time,

achieved by prepending the construction of a clustering structure to speed up the retrieval of

neighbouring embeddings, a crucial task for the explanation process.

Various values for the number of clusters were experimented, varying also the similarity

measure which was also adopted by the two clustering methods. Specifically they were run

using Euclidean distance, cosine similarity and the Manhattan distance as a replacement for

the approximated Cosine similarity additionally considered only in the experiments with

DBpedia15k. As expected, with the usage of clustering, the total elapsed time reduced along



Table 2
Elapsed time (hh:mm:ss): comparing the original setting without clustering to the ones exploiting the

clusters produced by 𝐾-Means and Agglomerative for various values of𝐾

dataset measure 𝐾-Means Clustering Agglomerative

Orig. 8 10 15 8 10 15

WN18
orig. 2:19:46 0:24:45 0:18:53 0:21:37 1:09:47 0:43:44 0:43:01

cos 3:40:47 1:17:22 0:44:50 0:33:38 0:30:19 0:25:16 0:17:51

DBpedia15k
orig. 0:13:42 0:02:23 0:01:49 0:00:57 0:01:55 0:01:40 0:01:20

cos 0:36:37 0:04:26 0:03:36 0:01:43 0:10:29 0:10:39 0:09:18

alt. 1:33:13 0:24:44 0:14:15 0:09:36 0:32:36 0:27:39 0:14:03

FB15k
orig. 0:18:54 0:03:11 0:02:15 0:01:27 0:02:22 0:02:07 0:01:30

cos 0:33:22 0:06:16 0:03:53 0:02:22 0:16:47 0:13:57 0:11:06

Table 3
Results of the experiments with the various settings and measures (no clustering exploited for similarity

search): recall and average support per explanation by path type [8]

dataset measure % recall avg.support
1 2 3 4 5 6

WN18
orig.

2% 0.0026 1.00 4.19 2.94 2.74 2.05 2.04

5% 0.0010 1.00 4.19 2.86 2.67 1.99 1.99

cos
2% 0.0029 1.00 4.13 2.16 2.11 2.03 2.06

5% 0.0010 1.00 4.13 2.12 2.07 1.99 2.01

DBpedia15k

orig.
2% 0.0024 1.34 1.21 2.95 1.46 1.86 2.59

5% 0.0010 1.34 1.20 2.93 1.45 1.84 2.50

cos
2% 0.0021 1.35 1.18 2.97 1.51 1.94 2.69

5% 0.0009 1.34 1.17 3.08 1.50 1.93 2.66

acos
2% 0.0020 1.35 1.17 2.95 1.51 1.94 2.69

5% 0.0010 1.35 1.18 2.95 1.50 1.92 2.58

FB15k-237
orig.

2% 0.0297 2.94 1.82 39.83 49.47 35.34 29.19

5% 0.0154 2.88 1.80 38.79 49.16 34.19 26.91

cos
2% 0.0304 3.20 2.07 39.80 50.82 40.61 33.43

5% 0.0162 3.15 2.04 37.65 47.28 39.00 30.27

with the number of clusters that were considered as the number of required comparisons decays.

This happens because each embedding is compared only against those in the same cluster.

Of course there is a sort of trade-off to be made with effectiveness of the explanation process.

However, considering the effectiveness of the explanation process discussed in the following, it

is possible to conclude that clusterings can yield an appreciable gain in efficiency to the overall

explanation process with no significant loss in effectiveness.

Effectiveness For comparative purposes, the outcomes of the experiments in terms of the

metrics aiming at assessing the effectiveness of the plain explanation process, with no clustering

involved, are recalled in Table 3. Tables 4 and 5 report the outcomes the explanation process

evaluation when preceded by the preliminary clustering phase, involving, respectively, the

two mentioned algorithms and the different similarity measures. It is worthwhile to notice

that the fixed number of most similar relationships and most similar entities considered in the

generation of the explanations (see discussion in §4) limits the computational costs but also

the recall. Differently from the discussion on time, for brevity, the outcomes reported to these

tables are related to experiments with a fixed minimal number of clusters, as larger numbers

tended to worsen the performance of the overall explanation process, as expected.



Table 4
Results (explanation) for the extended method with clusters computed by 𝐾-Means

dataset measure % recall avg.support
1 2 3 4 5 6

WN18
orig.

2% 0.0010 0.0 2.39 3.24 2.91 1.93 1.91

5% 0.0004 0.0 2.39 3.17 2.85 1.89 1.86

cos
2% 0.0028 1.00 4.10 2.12 2.00 1.84 1.81

5% 0.0011 1.00 4.10 2.10 1.98 1.83 1.79

DBpedia15k

orig.
2% 0.0021 1.32 1.22 3.27 1.38 1.60 2.54

5% 0.0021 1.32 1.22 3.27 1.38 1.60 2.54

cos
2% 0.0019 1.24 1.17 3.13 1.38 1.62 2.62

5% 0.0009 1.24 1.17 3.08 1.38 1.61 2.52

acos
2% 0.0019 1.39 1.21 3.61 1.53 1.93 2.69

5% 0.0009 1.38 1.21 3.61 1.53 1.91 2.57

FB15k
orig.

2% 0.0594 16.69 5.98 206.59 377.97 185.39 210.45

5% 0.0340 15.14 5.81 193.41 366.44 172.41 187.08

cos
2% 0.0593 16.69 5.98 206.59 377.97 185.38 210.45

5% 0.0339 15.14 5.82 193.41 366.44 172.42 187.08

𝐾-Means. Table 4 reports the results with a clustering structure produced by 𝐾-Means with

𝐾 = 8. Considering the outcomes of the experiments with WN18, it can be noticed that in the

case where the Euclidean distance was used the recall is much inferior with respect the original

method with no clustering (see Table 3). Conversely, the results in terms of average support are

more comparable, with some cases in favor of the extended method. In the experiments where

the cosine similarity was used the outcomes in terms of both recall and support are only slightly

inferior w.r.t. those of the original method. In the experiments with DBPedia15k, the outcomes

observed when the Euclidean distance was adopted show no noticeable difference. Hence the

gap previously observed in the experiments with WN18 may be an exception, probably due to the

specific embeddings produced in that case. Indeed no noticeable difference can be appreciated

also in the cases involving 𝐾-Means clustering in combination with the other two similarity

measures. Similar considerations can be made for the outcomes in terms of avg. support which

presented even some cases (path types) where the extended method performed slightly better.

Examining the outcomes of experiments with FB15k, there is a noticeable improvement observed

brought by the employment of the extended method: in almost all cases the recall doubled while

the gain is even larger in terms of average support in all of the cases considered. A possible

motivation is that, especially with this KG, querying for more explanations is possible as more

relevant embeddings are considered after exploiting the clustering structure.

Agglomerative Clustering. Table 5 presents the results obtained with the same KGs, employing

Agglomerative in its extended version targeting 𝐾 = 10 clusters. Considering the outcomes

of the experiments with WN18, we observe that the recall measures are quite comparable (with

even a tiny improvement in the 5% sub-case where the cosine measure is adopted). Similar

considerations can be made for the outcomes in terms of average support. In the case of

DBPedia15k, one can observe that recall for the various sub-cases was almost similar. Analogous

considerations can be made for the outcomes in terms of average support where, again, small

improvements were observed for some specific path-types. Finally, in the experiments with

FB15k, we observed more significant differences of the performance of the method when the

clustering is adopted. Namely the outcomes show a higher recall for all sub-cases. This is even



Table 5
Results (explanation) for the extended method with clusters computed by Agglomerative

dataset measure % recall avg.support
1 2 3 4 5 6

WN18
orig.

2% 0.0025 1.00 4.29 2.31 2.30 2.08 2.05

5% 0.0010 1.00 4.29 2.26 2.23 2.02 2.05

cos
2% 0.0027 1.00 4.22 2.20 2.13 1.97 2.00

5% 0.0011 1.00 4.22 2.16 2.10 1.93 1.96

DBpedia15k

orig.
2% 0.0023 1.33 1.21 2.89 1.45 1.86 2.61

5% 0.0011 1.33 1.21 2.86 1.44 1.84 2.52

cos
2% 0.0019 1.19 1.25 3.02 1.29 1.56 2.44

5% 0.0009 1.19 1.12 2.97 1.28 1.55 2.35

acos
2% 0.0019 1.38 1.21 3.61 1.53 1.92 2.69

5% 0.0009 1.37 1.21 3.61 1.53 1.89 2.57

FB15k
orig.

2% 0.0599 16.79 6.01 211.22 379.76 188.33 210.39

5% 0.0341 15.49 5.84 198.01 370.54 175.18 187.41

cos
2% 0.0674 19.04 7.72 208.39 285.69 209.59 195.57

5% 0.0396 17.06 7.45 184.81 253.52 186.21 166.07

more apparent in terms of the average support outcomes where, again, major improvements

were recorded for almost all path-types. Regarding these improvements, the considerations

made in the analogous experiments with the different clustering method still apply.

5. Conclusion and Further Extensions

We have proposed a solution to the problem of generating explanations for link predictions on

KGs. This work presented an integrated structural and semantic approach based on searching

for paths and examples of similar structures that justify the predictions made exploiting an

embedding model. CrossE was adopted as a base embedding model to compute predictions, and

an integrated algorithm based on semantic similarity measures was employed for producing ex-

planations of the predictions. This procedure was further extended with a preliminary clustering

phase aimed at grouping similar embeddings to improve the efficiency of the recurring key-task

of retrieving neighbors. The solution enhanced with this extension have been experimentally

evaluated, demonstrating that the semantics-aware approach is able to provide more meaningful

explanations, compared to the baseline and that the preliminary clustering phase can speed up

the overall process without degrading its effectiveness.

A natural further enhancement of the proposed framework will consist in taking into account

additional semantic information in KGs that can be exploited, such as transitivity and symmetry

properties of the relationships. Another extension regarding the clustering phase can come from

adopting classical methods from the related literature that can autonomously decide the number

of clusters, such as nonparametric methods, e.g. those that produce hierarchical structures, such

as ball-trees or kD-trees based on the similarity of the entities.
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