
Dispute Resolution with OWL DL and Reasoning
Ildar Baimuratov1,2, Elena Lisanyuk3,4 and Dmitry Prokudin3

1L3S Research Center, Leibniz University Hannover, Hannover, Germany
2TIB - Leibniz Information Centre for Science and Technology, Hannover, Germany
3St Petersburg State University, St Petersburg, Russia
4National Research University Higher School of Economics, Moscow, Russia

Abstract
Dispute resolution is an essential part of argumentation. Although there have been particular advances
in computational argumentation with machine learning, we assume that explicit and deterministic
techniques for dispute resolution still have significant potential. There are semantic approaches to
argument representation, such as the Argument Interchange Format that supports a certain level of
interoperability, but according to our knowledge, dispute resolution techniques based on semantics are
not yet studied. In this research, we consider single mixed disputes through abstract argumentation
frameworks and propose a method for representing such disputes in OWL DL that allows resolving
them with reasoning. Additionally, we develop an algorithm for generating the OWL DL representation
having argument sets and attack relations as input. The algorithm is validated with a proof of concept
implementation, and the OWL DL representation – with an example of correct dispute resolution
performed by reasoning over the generated ontology.

Keywords
Dispute resolution, abstract argumentation frameworks, computational argumentation, OWL DL, rea-
soning

1. Introduction

An argument is a piece of reasoning implying a transition from premises to a conclusion that
expresses the opinion to be defended. Argumentation can be considered from different angles,
among them are persuasion, proof, decision-making, information-seeking, dispute resolution,
etc. Argumentation is a multidisciplinary research field that spans across diverse areas such as
logic, philosophy, language, rhetoric, law, psychology, and computer science. Argumentation
plays an essential role in artificial intelligence study, due to its ability to conjugate user-related
cognitive models with computational models for automated reasoning. Neighboring areas
inside the artificial intelligence domain include machine learning, natural language processing,
discourse analysis, computational linguistics, information extraction, and knowledge represen-
tation. Computational argumentation has recently become a hot topic due to recent advances
in machine learning methods that promise to enable applications of artificial intelligence to
social, economic sciences, and policymaking.

DL 2023: 36th International Workshop on Description Logics, September 2–4, 2023, Rhodes, Greece
$ baimuratov.i@gmail.com (I. Baimuratov); e.lisanuk@spbu.ru (E. Lisanyuk); hogben.young@gmail.com
(D. Prokudin)
� 0000-0002-6573-131X (I. Baimuratov); 0000-0003-0135-4583 (E. Lisanyuk); 0000-0002-9464-8371 (D. Prokudin)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:baimuratov.i@gmail.com
mailto:e.lisanuk@spbu.ru
mailto:hogben.young@gmail.com
https://orcid.org/0000-0002-6573-131X
https://orcid.org/0000-0003-0135-4583
https://orcid.org/0000-0002-9464-8371
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Although there are particular advances in argumentation mining [1], we assume that explicit
and deterministic techniques for dispute resolution still have significant potential. A trustworthy
dispute resolution technique requires a representation format for dialogical argumentation that
would be machine- and human-readable, and enable an algorithmic procedure to derive the
solution. In this research, we aim at OWL-based argumentation representations that provide
dispute resolution with reasoning.

Disputes are divided into single and multiple ones according to the number of propositions
that constitute the parties’ points of view, and into unmixed and mixed ones, depending on
the parties’ intentions to defend their point of view or criticize other opinions, or do both,
respectively [2]. In this study, we consider only single mixed disputes.

The contributions of the present work are the following: 1) a method for representing
argumentation with OWL DL1 that is based on abstract argumentation frameworks and supports
dispute resolution with reasoning, and 2) an algorithm for generating the OWL representation
having argument sets and attack relations as input. The algorithm is validated with a proof of
concept implementation, and the OWL DL representation – with an example of the correct
dispute resolution performed by reasoning over the generated ontology.

2. Related Work

A method for the formal representation of an argument is called an argumentation framework.
There are several argumentation frameworks. In [3], Phan Minh Dung proposed abstract
argumentation frameworks, where an argument is an abstract entity whose role is determined
solely by its relationship to other arguments. The former idea allows abstracting from the
structural distinctions among them, making the notion of argument demonstration derivative
from the notion of acceptability of arguments.

Considering the computational aspect, currently, the most widely used argument representa-
tion is the Argument Interchange Format (AIF) [4]. It is intended to exchange data between
various argumentation tools and applications. Its abstract model includes three groups of enti-
ties: 1) argument entities and relations between them, 2) entities describing the communication
of arguments, and 3) ones describing the context of arguments. Arguments are represented as
directed graphs, called argumentation networks, where nodes represent statements or argu-
mentation patterns, and edges are unlabeled. Various implementations of AIF were considered,
including one in the RDF format2. In [5], an OWL DL implementation of AIF was proposed. It
allows the classification and inference of argument schemes, but the dispute resolution problem
and dialogical argumentation, in general, were not considered. The AIF format is used in
the OVA tool [6] for analyzing and annotating argumentation texts in natural language. The
annotation can be represented in formats such as JSON, RDF and Prolog. For the accumulation
of annotated texts, an online database AIFdb was created [7].

A project [8] develops a software system designed to support the study of argumentation
in popular science texts in the Russian language. For annotating texts, the authors extend AIF
model with the weight of the argument scheme and of its elements. Data is represented in RDF

1https://www.w3.org/TR/owl-guide/
2https://www.w3.org/RDF/

https://www.w3.org/TR/owl-guide/
https://www.w3.org/RDF/

format. The system implements the identification of argumentative indicators and automated
evaluation of the persuasiveness of the arguments.

Another argument representation format, Argdown3 is a Markdown4-inspired argument
mark-up language, implemented as a context-free grammar and parser. It allows representing
dialogical argumentation and generating argument maps but does not provide any dispute
resolution procedures.

The legal domain is closely related to the argumentation theory. The Legal Knowledge
Interchange Format (LKIF) [9] is designed for two purposes: 1) as a reusable and extensible
core ontology for legal knowledge bases, and 2) as an interchange format for existing legal
knowledge representation languages. The LKIF ontology includes entities for cases, obligations,
and relations between them. Similarly to AIF, LKIF annotates argumentation rules as nodes of a
specific argumentation scheme. LKIF rules are implemented not within OWL DL syntax, but as
an extension of SWRL with support for negation and defeasible reasoning. LKIF is used via the
XML format in the Carneades system [10].

In [11], the authors proposed an approach for the advanced access and reasoning facilities
on legislation. The authors use the provision model that includes various provision types and
attributes. They formalize it with OWL DL language and use it together with domain ontologies
to form a structural mark-up of legal texts. They demonstrate how reasoning can be applied to
infer indirect relations between provisions and how to query them with SPARQL. However, the
model is too domain-specific and can not be scaled for argumentation.

3. Method

3.1. Abstract Argumentation Framework

Our dispute resolution algorithm is based on Dung’s abstract argumentation framework, de-
scribed in [3].

Definition 1. An argumentation framework 𝐴𝐹 is a pair

𝐴𝐹 =< 𝐴𝑅, 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 >,

where 𝐴𝑅 is a set of arguments and 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 ⊆ 𝐴𝑅×𝐴𝑅.

We say that an argument 𝑎 attacks an argument 𝑏 (or 𝑏 is attacked by 𝑎) if 𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑎, 𝑏) holds.
Similarly, we say that a set 𝑆 of arguments attacks 𝑎 (or 𝑎 is attacked by 𝑆) if 𝑎 is attacked
by an argument in 𝑆. The binary abstract relation 𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑎, 𝑏) between arguments 𝑎 and
𝑏 symbolizes how the criticism of argument 𝑎 rejects argument 𝑏; and how a further critical
development in the dialog 𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑐, 𝑎) rejects argument 𝑎 by counterattacking it and thereby
returns argument 𝑏 as defended.

Unlike the entailment relation, the attack relation is not reflexive, symmetric, or transitive.
This transferred the formal logical representation of argumentation from the microlevel of the
internal structure of the argument to the macrolevel of the structure of argumentation in the

3https://argdown.org/
4https://daringfireball.net/projects/markdown/syntax

https://argdown.org/
https://daringfireball.net/projects/markdown/syntax

dispute and made it possible to overcome the restrictions of the classical argumentation analysis
on modeling criticism.

Another feature of this argumentation framework is the usage of procedural semantics instead
of classical logic frameworks. For a set of arguments, procedural semantics allows to define
subsets with specific properties, including consistency and completeness, where required. Thus,
Dung defines a conflict-free set of arguments.

Definition 2. A set 𝑆 of arguments is said to be conflict-free if there are no arguments 𝑎 and 𝑏
in 𝑆 such that 𝑎 attacks 𝑏.

The notion of acceptability allows determining dispute outcomes.

Definition 3. An argument 𝑎 ∈ 𝐴𝑅 is acceptable with respect to a set 𝑆 of arguments iff for
each argument 𝑏 ∈ 𝐴𝑅: if 𝑏 attacks 𝑎 then 𝑏 is attacked by 𝑆.

Finally, an admissible set of arguments is a set of acceptable arguments.

Definition 4. A conflict-free set of arguments 𝑆 is admissible iff each argument in 𝑆 is acceptable
with respect to 𝑆.

For a resolution of the single unmixed dispute, it is sufficient that there is a nonempty
admissible subset of arguments, that is, there is at least one acceptable argument. Thus, the
dispute resolution problem can be considered as a classification of arguments into admissible
sets.

Example 1. Let us consider the original example of argumentation from Dung’s paper [3]:

• I: My government cannot negotiate with your government because your government doesn’t
even recognize my government.

• A: Your government doesn’t recognize my government either.
• I: But your government is a terrorist government.

This argument is formalized as two argumentation sets 𝐼 = {𝑖1, 𝑖2} and 𝐴 = {𝑎}, and attack
pairs {(𝑖1, 𝑎), (𝑎, 𝑖1), (𝑖2, 𝑎)}. Both sets are conflict-free, but the argument 𝑎 is not acceptable
w.r.t. 𝐼 , as it is attacked by 𝑖2, but no argument from 𝐴 attacks 𝑖2. Thus, there is a non-empty
admissible subset only for 𝐼 .

3.2. OWL DL Implementation

Our OWL DL implementation of Dung’s framework is designed in a way that provides the
automatic classification of arguments into admissible sets with reasoning. We illustrate the
implementation with listings in the Manchester syntax.

The formalization of the basic elements of the framework is straightforward. Each argument
set is represented as an owl:Class.

Class: <onto.owl#A>

SubClassOf:
owl:Thing

Listing 1: Example of an argument set

Each argument is considered to be an owl:NamedIndividual. The belonging of an argument
to the argument set is represented with the rdf:type relation. The text of the argument is stored
in rdfs:label.

Individual: <onto.owl#a>

Annotations:
rdfs:label "Your government doesn’t recognize my government either"^^xsd:string

Types:
<onto.owl#A>

Listing 2: Example of an argument

To represent the attacks relation, the owl:ObjectProperty ’attacks’ is defined (for clearness,
here and further we write custom OWL entities in apostrophes). Also, the property ’isAt-
tackedBy’ is defined as owl:inverseOf ’attacks’. It is required for defining admissible sets of
arguments.

ObjectProperty: <onto.owl#attacks>

InverseOf:
<onto.owl#isAttackedBy>

Listing 3: Declaration of the ’attacks’ relation

Now we can assert that one argument attacks another.

Individual: <onto.owl#a>
...

Facts:
<onto.owl#attacks> <onto.owl#i1>

Listing 4: Example of asserting the ’attacks’ relation

In order to provide reasoning under Open World Assumption (OWA), we have to “close” each
individual argument with respect to the list of arguments it attacks. We do this by asserting that
the argument belongs to an unnamed class that has the relation ’attacks’ to the set of arguments
it attacks, constructed with owl:oneOf operator under owl:allValuesFrom restriction. If the
argument attacks no argument, we assert that it attacks only owl:Nothing.

Individual: <onto.owl#a>
...

Types:
...

<onto.owl#attacks> only ({onto.owl#i1>}),
...

Listing 5: Example of closing an argument regarding the ’attacks’ relation

For the same reason, we also close each individual argument regarding the relation ’isAt-
tackedBy’.

Individual: <onto.owl#a>
...

Types:
...

<onto.owl#isAttackedBy> only ({<onto.owl#i1> , <onto.owl#i2>})
...

Listing 6: Example of closing an argument regarding the ’isAttackedBy’ relation

To define a conflict-free set in a manner that supports reasoning under the OWA, we can not
use the owl:complementOf operator. Thus, for each argument set we form a union of all other
argument sets with owl:unionOf. Then its conflict-free subset is defined as a class that has the
relation ’attacks’ only (owl:allValuesFrom) to the union of other argument sets.

Class: <onto.owl#AConflictFree>

EquivalentTo:
<onto.owl#A>
and (<onto.owl#attacks> only (<onto.owl#I>))

SubClassOf:
<onto.owl#A>

Listing 7: Example of a conflict-free set

For each conflict-free set, an admissible subset is defined as a class that has the relation
’isAttackedBy’ only (owl:allValuesFrom) to the arguments that have the relation ’isAttackedBy’
to some (owl:someValuesFrom) arguments from the initial conflict-free set. Thus, if an argument
is attacked by no arguments, it also belongs to the admissible set.

Class: <onto.owl#AAdmissible>

EquivalentTo:
<onto.owl#AConflictFree>
and (<onto.owl#isAttackedBy> only (<onto.owl#isAttackedBy> some <onto.owl#

AConflictFree>))

SubClassOf:
<onto.owl#AConflictFree>

Listing 8: Example of an admissible set

Example 2. Let us implement the argument from the Example 1 in OWL DL. The resulting class
hierarchy visualized with Protege interface is presented in Fig. 1. The full declarations of the
arguments 𝑖1, 𝑎 and 𝑖2 are presented in Listings 9, 10 and 11 respectively.

Individual: <onto.owl#i1>

Annotations:
rdfs:label "My government cannot negotiate with your government because your

government doesn’t even recognize my government"^^xsd:string

Figure 1: The hierarchy of classes for Example 1

Types:
<onto.owl#I>,
<onto.owl#attacks> only ({<onto.owl#a>}),
<onto.owl#isAttackedBy> only ({<onto.owl#a>})

Facts:
<onto.owl#attacks> <onto.owl#a>

Listing 9: Declaration of 𝑖1

Individual: <onto.owl#a>

Annotations:
rdfs:label "Your government doesn’t recognize my government either"^^xsd:string

Types:
<onto.owl#A>,
<onto.owl#attacks> only ({<onto.owl#i1>}),
<onto.owl#isAttackedBy> only ({<onto.owl#i1> , <onto.owl#i2>})

Facts:
<onto.owl#attacks> <onto.owl#i1>

Listing 10: Declaration of 𝑎

Individual: <onto.owl#i2>

Annotations:
rdfs:label "But your government is a terrorist government"^^xsd:string

Types:
<onto.owl#I>,
<onto.owl#attacks> only ({<onto.owl#a>}),
<onto.owl#isAttackedBy> only owl:Nothing

Facts:
<onto.owl#attacks> <onto.owl#a>

Listing 11: Declaration of 𝑖2

3.3. Ontology Generating Algorithm

The algorithm is intended to generate the described OWL DL representations of arguments
using the list of argument sets and attack pairs as input. For better readability, the algorithm is
divided into three steps.

Algorithm 1 declares basic entities including argument sets, arguments, ’attacks’ and ’isAt-
tackedBy’ relations, and infers ’isAttackedBy’ statements with reasoning. Not considering
reasoning, the algorithm has linear complexity, as it only runs once through both lists of
arguments in argument sets and of attack pairs.

Algorithm 1 Basic entities generation
Require: Argument sets, attack pairs

Create ontology 𝑂
for argument set 𝐴 in argument sets do

Create an owl:Class 𝐶
for argument 𝑎 ∈ 𝐴 do

Create an owl:NamedIndividual 𝑖 of rdf:type 𝐶
end for

end for
Create owl:ObjectProperty ’attacks’
Create owl:ObjectProperty ’isAttackedBy’
Assert ’isAttackedBy’ owl:inverseOf ’attacks’
for (𝑎1, 𝑎2) in attack pairs do

Find the instance 𝑖1 in 𝑂 for 𝑎1
Find the instance 𝑖2 in 𝑂 for 𝑎2
Assert 𝑖1 ’attacks’ 𝑖2

end for
Run reasoner

Algorithm 2 closes arguments regarding ’attacks’ and ’isAttackedBy’ relation to support
the reasoning under OWA. This algorithm also has linear complexity regarding the number of
arguments.

Algorithm 3 declares conflict-free and admissible subsets of arguments for each input argu-
ment set and classifies arguments into them with reasoning. As declaring a conflict-free set
for the argument set requires constructing a list of other argument sets, this algorithm has
quadratic complexity regarding the number of argument sets.

Thus, the algorithm generates an ontology that contains an empty admissible subset for
each argument set. These admissible subsets are then populated by classifying arguments with
reasoning.

4. Proof of Concept

Input Data For proof of concept, the input data, i.e. argument sets and attack pairs, are
represented in JSON format. Its structure includes two high-level keys: argument_sets and

Algorithm 2 Closing world
Require: Ontology 𝑂

for argument instance 𝑖 in 𝑂 do
Get the set 𝐴𝑡𝑡𝑎𝑐𝑘𝑠𝑖 of the arguments 𝑖 attacks
if 𝐴𝑡𝑡𝑎𝑐𝑘𝑠𝑖 is empty then

Assert 𝑖 rdf:type (’attacks’ owl:AllValuesFrom owl:Nothing)
else

Assert 𝑖 rdf:type ’attacks’ owl:AllValuesFrom owl:OneOf(𝐴𝑡𝑡𝑎𝑐𝑘𝑠𝑖))
end if
Get the set 𝐼𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑑𝐵𝑦𝑖 of the arguments 𝑖 is attacked by
if 𝐼𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑑𝐵𝑦𝑖 is empty then

Assert 𝑖 rdf:type (’isAttackedB’ owl:AllValuesFrom owl:Nothing)
else

Assert 𝑖 rdf:type (’isAttackedBy’ owl:AllValuesFrom owl:OneOf(𝐼𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑑𝐵𝑦𝑖))
end if

end for

Algorithm 3 Inferring solution
Require: Argument sets, ontology 𝑂

for argument set 𝐴𝑖 in argument sets do
Find the class 𝐶𝑖 for 𝐴𝑖 in 𝑂
Create its subclass 𝐶𝑐𝑓

Create an empty set 𝑆
for argument set 𝐴𝑗 in argument sets do

if 𝐴𝑖 is not 𝐴𝑗 then
Find the class 𝐶𝑗 for 𝐴𝑗 in 𝑂
Add 𝐶𝑗 to 𝑆

end if
end for
Assert 𝐶𝑐𝑓 owl:equivalentClass (owl:intersectionOf (𝐶𝑖, ’attacks’ owl:allValuesFrom

owl:unionOf(𝑆)))
Create subclass 𝐶𝑎 of 𝐶𝑐𝑓

Assert 𝐶𝑎 owl:equivalentClass (owl:intersectionOf (𝐶𝑐𝑓 , ’isAttackedBy’
owl:allValuesFrom (’isAttackedBy’ owl:someValuesFrom 𝐶𝑐𝑓)))
end for
Run reasoner

attack_pairs. The key argument_sets has a dictionary, where each item represents an argument
set. The argument set item has a label and a dictionary of arguments that belong to it. Each
argument item in the latter dictionary has a label and a text. The key attack_pairs has a list
of two-element lists of argument labels that represent attack pairs. Formatted input data for
Example 1 are provided in Listing 12.

{

"argument_sets": {
"I": {
"i1": "My government cannot negotiate with your government because your government

doesn’t even recognize my government",
"i2": "But your government is a terrorist government"

},
"A": {
"a": "Your government doesn’t recognize my government either"

}
},
"attack_pairs": [
[
"i1", "a"

],
[
"a", "i1"

],
[
"i2", "a"

]
]

}

Listing 12: Input data based on Example 1

Prototype The algorithm was implemented with Python language using Owlready2 library5

for working with OWL and the Pellet reasoner [12]. The prototype is available in GitHub6, as
well as the input data and the ontology generated from Example 1. Additionally, a separate
script runs the reasoner over the generated ontology to classify arguments into conflict-free or
admissible sets.

Results The most intransparent parts of the algorithm are running reasoner for 1) inferring
’isAttackedBy’ assertions, and 2) classifying arguments into conflict-free and admissible sets.
We provide the logs of these runs, conducted in Windows 10 OS with Intel Core i7-11850H CPU
and 16GB RAM. The first run took 0.72 s. and as a result, 6 individual assertions were inferred,
see Listing 13. The second run classified 3 individuals for 0.75 s., see Listing 14.

* Owlready2 * Pellet took 0.7212517261505127 seconds
* Owlready2 * Pellet output:

http://www.w3.org/2002/07/owl#Thing
onto.owl#A - (onto.owl#a)
onto.owl#I - (onto.owl#i1, onto.owl#i2)

PROPINST: onto.owl#i1 onto.owl#attacks onto.owl#a
PROPINST: onto.owl#i1 onto.owl#isAttackedBy onto.owl#a
PROPINST: onto.owl#a onto.owl#attacks onto.owl#i1
PROPINST: onto.owl#a onto.owl#isAttackedBy onto.owl#i1

5https://owlready2.readthedocs.io/en/latest/
6https://github.com/ldrbmrtv/computational_argumentation_dung

https://owlready2.readthedocs.io/en/latest/
https://github.com/ldrbmrtv/computational_argumentation_dung

PROPINST: onto.owl#a onto.owl#isAttackedBy onto.owl#i2
PROPINST: onto.owl#i2 onto.owl#attacks onto.owl#a

Listing 13: Inferring ’isAttackedBy’ relation

* Owlready2 * Pellet took 0.75439453125 seconds
* Owlready2 * Pellet output:

http://www.w3.org/2002/07/owl#Thing
onto.owl#A

onto.owl#AConflictFree - (onto.owl#a)
onto.owl#AAdmissible

onto.owl#I
onto.owl#IConflictFree

onto.owl#IAdmissible - (onto.owl#i1, onto.owl#i2)

Listing 14: Classifying arguments

In result, the arguments 𝑖1 and 𝑖2 were correctly classified as acceptable, and assigned to
the class 𝐼𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒, i.e. the admissible subclass of the argument set 𝐼 . And the argument
𝑎 was correctly assigned only to the class 𝐴𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐹𝑟𝑒𝑒, i.e. the conflict-free subset of the
argument set 𝐴.

5. Conclusion

In this research, we reviewed existing solutions related to semantic argument representation
and concluded that among them, there is no approach that would provide a dispute resolu-
tion technique. Based on Dung’s abstract argumentation frameworks, we proposed a method
for OWL DL representation of single mixed disputes designed in a manner that allows their
resolution with reasoning. Moreover, we proposed an algorithm for the generation of the
OWL DL representations having argument sets and attack pairs as input. The algorithm has
quadratic complexity and is validated with a proof of concept implementation. The proposed
representation is validated with an example of the correct dispute resolution over the gener-
ated ontology. Future work will address extending the present approach for implementing
complete, preferred and stable extensions of argument sets, and developing approaches for the
computational resolution of other types of disputes. The latter may require considering other
argumentation frameworks. We also plan to automate the input data preparation with text
annotation, NLP techniques and machine learning.

Acknowledgments

This work was co-funded by the European Research Council for the project ScienceGRAPH
(Grant agreement ID: 819536) and NFDI4DataScience funded by the German Research Foun-
dation (DFG project number 460234259). The support from the Russian Science Foundation,
project No. 20-18-00158, realised at St. Petersburg State University, is kindly recognized.

References

[1] M. Lippi, P. Torroni, Argumentation mining: State of the art and emerging trends, ACM
Trans. Internet Technol. 16 (2016). doi:10.1145/2850417.

[2] F. H. Van Eemeren, R. Grootendorst, A systematic theory of argumentation: The pragma-
dialectical approach, Cambridge University Press, 2004.

[3] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games, Artificial Intelligence 77 (1995) 321–
357. doi:10.1016/0004-3702(94)00041-X.

[4] C. Chesñevar, Mcginnis, S. Modgil, I. Rahwan, C. Reed, G. Simari, M. South, G. Vreeswijk,
S. Willmott, Towards an argument interchange format, The Knowledge Engineering
Review 21 (2006) 293–316. doi:10.1017/S0269888906001044.

[5] I. Rahwan, C. Reed, The argument interchange format, Argumentation in Artificial
Intelligence (2009) 383–402. doi:10.1007/978-0-387-98197-0_19.

[6] M. Janier, J. Lawrence, C. Reed, Ova+: An argument analysis interface, Fron-
tiers in Artificial Intelligence and Applications 266 (2014) 463–464. doi:10.3233/
978-1-61499-436-7-463.

[7] J. Lawrence, F. Bex, C. Reed, M. Snaith, Aifdb: Infrastructure for the argument web, in:
Computational Models of Argument, IOS Press, 2012, pp. 515–516.

[8] Y. Zagorulko, N. Garanina, A. Sery, O. Domanov, Ontology-based approach to organizing
the support for the analysis of argumentation in popular science discourse, in: Artificial
Intelligence: 17th Russian Conference, RCAI 2019, Ulyanovsk, Russia, October 21–25, 2019,
Proceedings 17, Springer, 2019, pp. 348–362.

[9] A. Boer, R. Winkels, F. Vitali, MetaLex XML and the Legal Knowledge Interchange Format,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 21–41.

[10] T. F. Gordon, Introducing the carneades web application, in: Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Law, 2013, pp. 243–244.

[11] E. Francesconi, Semantic model for legal resources: Annotation and reasoning over
normative provisions, Semantic Web 7 (2016) 255–265. doi:10.3233/SW-140150.

[12] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, Y. Katz, Pellet: A practical owl-dl reasoner,
Web Semant. 5 (2007) 51–53. doi:10.1016/j.websem.2007.03.004.

http://dx.doi.org/10.1145/2850417
http://dx.doi.org/10.1016/0004-3702(94)00041-X
http://dx.doi.org/10.1017/S0269888906001044
http://dx.doi.org/10.1007/978-0-387-98197-0_19
http://dx.doi.org/10.3233/978-1-61499-436-7-463
http://dx.doi.org/10.3233/978-1-61499-436-7-463
http://dx.doi.org/10.3233/SW-140150
http://dx.doi.org/10.1016/j.websem.2007.03.004

	1 Introduction
	2 Related Work
	3 Method
	3.1 Abstract Argumentation Framework
	3.2 OWL DL Implementation
	3.3 Ontology Generating Algorithm

	4 Proof of Concept
	5 Conclusion

