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Abstract
Axiom weakening is a technique that allows for a fine-grained repair of inconsistent ontologies. Its main
advantage is that it repairs ontologies by making axioms less restrictive rather than by deleting them,
employing refinement operators. In this paper, we build on previously introduced axiom weakening for
𝒜ℒ𝒞, and show how it can be extended to deal with 𝒮ℛ𝒪ℐ𝒬, the expressive and decidable description
logic underlying OWL 2 DL. The main problem here is to ensure that the regularity conditions of𝒮ℛ𝒪ℐ𝒬
are preserved in the weakening process, as not every weaker axiom can be inserted into an ontology
without compromising regularity. We present a basic regularity-preserving weakening approach for
𝒮ℛ𝒪ℐ𝒬, describe briefly a prototype implementation realising it as well as an accompanying Protégé
plugin, and perform and discuss basic evaluations of the approach.
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1. Introduction

Many approaches to repairing inconsistent ontologies amount to identifying problematic axioms
and then removing them (e.g., [1, 2, 3, 4]). Whilst this approach is obviously sufficient to
guarantee that the obtained ontology is consistent, it tends to lead to information loss as a
secondary effect, as we outlined in detail in previous work [5, 6], where also a more extensive
discussion of related work can be consulted. Further, this information loss can be reduced by
weakening the inferential power of an axiom rather than by deleting it [7, 8, 9, 5, 6]. In [5],
axiom weakening using refinement operators has been described for 𝒜ℒ𝒞 and experimentally
evaluated, showing that axiom weakening is able to retain more information than deletion.
In [6], the axiom weakening has been extended to include many aspects of 𝒮ℛ𝒪ℐ𝒬, notably
omitting, however, the weakening of RBox axioms. The authors of [6] further show that the
proposed repair by iterated weakening almost surely terminates.

In this paper, we extend the previous work on axiom weakening in DLs by extending the
underlying basic principles to the logic 𝒮ℛ𝒪ℐ𝒬, including also the weakening of RIAs. We
discuss a number of scenarios where weakening can impact regularity of 𝒮ℛ𝒪ℐ𝒬 RBoxes,
and provide a framework where this is avoided. Additionally, by implementing the proposed
refinement and weakening operators we are able to perform experimental evaluation, also on
ontologies using the more expressive features of 𝒮ℛ𝒪ℐ𝒬. The results reaffirm the results of
[5] for the case of 𝒮ℛ𝒪ℐ𝒬, namely that weakening may significantly outperform deletion.
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2. AxiomWeakening for 𝒮ℛ𝒪ℐ𝒬
We first give a brief description of the DL 𝒮ℛ𝒪ℐ𝒬; for full details, see [10, 11, 12].

2.1. Defining 𝒮ℛ𝒪ℐ𝒬
The syntax of 𝒮ℛ𝒪ℐ𝒬 is based on a vocabulary of three disjoint sets 𝑁𝐶 , 𝑁𝑅, 𝑁𝐼 of, respec-
tively, concept names, role names, and individual names. The sets of, respectively, 𝒮ℛ𝒪ℐ𝒬 roles
and 𝒮ℛ𝒪ℐ𝒬 concepts are generated by the following grammar.

𝑅,𝑆 ::= 𝑈 | 𝑟 | 𝑟− ,

𝐶 ::= ⊥ | ⊤ | 𝐴 | ¬𝐶 | 𝐶 ⊓ 𝐶 | 𝐶 ⊔ 𝐶 | ∀𝑅.𝐶 | ∃𝑅.𝐶 |
≥ 𝑛 𝑆.𝐶 |≤ 𝑛 𝑆.𝐶 | ∃𝑆.Self | {𝑎} ,

where 𝐴 ∈ 𝑁𝐶 is a concept name, 𝑟 ∈ 𝑁𝑅 is a role name, 𝑎 ∈ 𝑁𝐼 is an individual name and
𝑛 ∈ N0 is a non-negative integer. 𝑈 is the universal role. 𝑆 is a simple role in the RBox ℛ (see
below). In the following, ℒ(𝑁𝐶 , 𝑁𝑅, 𝑁𝐼) and ℒ(𝑁𝑅) = 𝑁𝑅 ∪ {𝑈} ∪ {𝑟− | 𝑟 ∈ 𝑁𝑅} denote,
respectively, the set of concepts and roles that can be built over 𝑁𝐶 , 𝑁𝑅, and 𝑁𝐼 in 𝒮ℛ𝒪ℐ𝒬.

We next define the notions of TBox, ABox, and (regular) RBox, of complex role inclusions,
and of (non-)simple roles: A TBox 𝒯 is a finite set of concept inclusions (GCIs) of the form
𝐶 ⊑ 𝐷 where 𝐶 and 𝐷 are concepts. The TBox is used to store terminological knowledge
concerning the relationship between concepts. An ABox 𝒜 is a finite set of statements of the
form 𝐶(𝑎), 𝑅(𝑎, 𝑏), ¬𝑅(𝑎, 𝑏), 𝑎 = 𝑏, and 𝑎 ̸= 𝑏, where 𝐶 is a concept, 𝑅 is a role and 𝑎 and
𝑏 are individual names. The ABox expresses knowledge regarding individuals in the domain.
An RBox ℛ is a finite set of role inclusions (RIAs) of the form 𝑅1 ∘ · · · ∘𝑅𝑛 ⊑ 𝑅, and disjoint
role axioms disjoint(𝑆1, 𝑆2) where 𝑅, 𝑅1, . . . , 𝑅𝑛, 𝑆1, and 𝑆2 are roles. 𝑆1 and 𝑆2 are simple
(defined next) in the RBox ℛ. The special case of 𝑛 = 1 is a simple role inclusion, while we
call the cases where 𝑛 > 1 complex role inclusions. The RBox represents knowledge about the
relationships between roles.

The set of non-simple roles in ℛ is the smallest set such that: 𝑈 is non-simple; any role 𝑅
that appears as the super role of a complex RIA 𝑅1 ∘ · · · ∘𝑅𝑛 ⊑ 𝑅 where 𝑛 > 1 is non-simple;
any role 𝑅 that appears on the right-hand side of a simple RIA 𝑆 ⊑ 𝑅 where 𝑆 is non-simple,
is also non-simple; and a role 𝑟 is non-simple if and only if 𝑟− is non-simple. All other roles are
simple.

For convenience, let us define the function inv(𝑅) such that inv(𝑟) = 𝑟− and inv(𝑟−) = 𝑟
for all role names 𝑟 ∈ 𝑁𝑅. An RBox ℛ is regular if there exists a preorder ⪯, i.e., a transitive
and reflexive relation over the set of roles appearing in ℛ such that, 𝑅 ⪯ 𝑆 ⇐⇒ inv(𝑅) ⪯ 𝑆,
and all RIAs in ℛ are of the forms: inv(𝑅) ⊑ 𝑅, 𝑅 ∘ 𝑅 ⊑ 𝑅, 𝑆 ⊑ 𝑅, 𝑅 ∘ 𝑆1 ∘ · · · ∘ 𝑆𝑛 ⊑ 𝑅,
𝑆1 ∘ · · · ∘ 𝑆𝑛 ∘𝑅 ⊑ 𝑅, or 𝑆1 ∘ · · · ∘ 𝑆𝑛 ⊑ 𝑅, where 𝑛 > 1 and 𝑅, 𝑆, 𝑆1, · · · , 𝑆𝑛 are roles such
that 𝑆 ⪯ 𝑅, 𝑆𝑖 ⪯ 𝑅, and 𝑅 ̸⪯ 𝑆𝑖 for 𝑖 = 1, . . . , 𝑛. This regularity restriction has been chosen
to align with the implementation of the OWL 2 DL [13] profile checker in the OWL API [14].

Definition 1. A 𝒮ℛ𝒪ℐ𝒬 ontology 𝒪 = 𝒯 ∪ 𝒜 ∪ ℛ consists of a TBox 𝒯 , an ABox 𝒜, and a
RBox ℛ in the language of 𝒮ℛ𝒪ℐ𝒬, and where the RBox ℛ is regular.

The semantics of 𝒮ℛ𝒪ℐ𝒬 is defined using interpretations 𝐼 = ⟨∆𝐼 , ·𝐼⟩, where ∆𝐼 is a non-
empty domain and ·𝐼 is a function associating to each individual name 𝑎 an element of the



domain 𝑎𝐼 ∈ ∆𝐼 , to each concept 𝐶 a subset of the domain 𝐶𝐼 ⊆ ∆𝐼 , and to each role 𝑅 a
binary relation on the domain 𝑅𝐼 ⊆ ∆𝐼 ×∆𝐼 ; see [12, 10] for further details. An interpretation
𝐼 is a model for 𝒪 if it satisfies all the axioms in 𝒪.

Given two concepts 𝐶 and 𝐷 we say that 𝐶 is subsumed by 𝐷 (or 𝐷 subsumes 𝐶) with respect
to the ontology 𝒪, written 𝐶 ⊑𝒪 𝐷, if 𝐶𝐼 ⊆ 𝐷𝐼 in every model 𝐼 of 𝒪. Further, 𝐶 is strictly
subsumed by 𝐷, written 𝐶 ⊏𝒪 𝐷, if 𝐶 ⊑𝒪 𝐷 but not 𝐷 ⊑𝒪 𝐶 . Analogously, given two roles
𝑅 and 𝑆, 𝑅 is subsumed by 𝑆 with respect to 𝒪 (𝑅 ⊑𝒪 𝑆) if 𝑅𝐼 ⊑ 𝑆𝐼 in all models 𝐼 of 𝒪.
Again, 𝑅 ⊏𝒪 𝑆 holds if 𝑅 ⊑𝒪 𝑆 but not 𝑆 ⊑𝒪 𝑅.

2.2. Weakening, reference ontologies, covers, refinement operator

The case of 𝒜ℒ𝒞. Axiom weakening, as discussed in [5], is based on refinement operators.
Two types of refinement operators are used, a specialization operator and a generalization
operator. They return for a given concept a set of, respectively, more specific or more general
concepts. In [5] the proposed refinement operator is based on upward and downward cover
sets. The upward or downward cover for a concept is the set of, respectively, the most specific
generalization or most general specializations from the set of subconcepts. Given an inconsistent
ontology 𝒪 = 𝒯 ∪ 𝒜 ∪ℛ, to be able to compute a non-trivial upcover and downcover, we first
need to find a consistent subontology 𝑂ref of 𝒪 to serve as reference ontology. One approach
is to pick a random maximal consistent subset of 𝒪 and choose it as reference ontology 𝑂ref;
another is to choose the intersection of all maximal consistent subsets of 𝒪 (e.g., [15]).

Once a reference ontology 𝑂ref has been chosen, and as long as 𝒪 is inconsistent, we select a
“bad axiom” and replace it with a random weakening of it with respect to 𝑂ref. We can randomly
sample a number of (or all the) minimally inconsistent subsets of axioms 𝐼1, 𝐼2, . . . 𝐼𝑘 ⊆ 𝒪
and return one axiom in 𝒯 ∪ 𝒜 from the ones occurring the most often. Weakening of GCIs
is performed by either using the specialization operator to refine the left-hand side or the
generalization operator for the right-hand side. For class assertions, the concept is refined using
the generalization operator.

The case of 𝒮ℛ𝒪ℐ𝒬. The main difficulties that arise when weakening axioms in 𝒮ℛ𝒪ℐ𝒬
ontologies, and especially when weakening RIAs, are related to ensuring that the constraints
on the use of non-simple roles and the regularity of the RBox as a whole are maintained. Not
every weaker axiom can be inserted into a valid 𝒮ℛ𝒪ℐ𝒬 ontology without causing a violation
of these restrictions, as shown in the next example.

Example 1. Take the ontology 𝒪 = {𝑟 ∘ 𝑠 ∘ 𝑟 ⊑ 𝑡, 𝑟 ⊑ 𝑠,⊤ ⊑ ∀𝑡.⊥,∃𝑠.Self ⊑ ⊤}. Since 𝑡 is
empty in every model of this ontology, the axiom 𝑟 ⊑ 𝑠 could be weakened to 𝑡 ⊑ 𝑠 if we ignore
the additional constraints. This would result in an ontology where 𝑠 is non-simple, which is not
allowed since 𝑠 is used as part of a self constraint. Additionally, using this weakening would also
cause a non-regular RBox, because for any preorder ⪯, 𝑡 ̸⪯ 𝑠 must hold for the complex RIA and
𝑡 ⪯ 𝑠 must hold for the new axiom. Yet, this is a contradiction.

To prevent these kinds of issues, we restrict how concepts are refined and RIAs weakened.
In [6], the refinement of RIAs was not considered at all to avoid these problems. In this paper,
however, we have extended the axiom weakening operator to handle also RIAs. To achieve this,



we must ensure that only simple roles are used when weakening disjoint role axioms or refining
cardinality and Self constraints. Further, it must be guaranteed that all roles that are currently
used in such contexts remain simple when adding the weakened axioms to the ontology. Finally,
the addition of a weakened axiom must maintain the regularity of the RBox.

We now discuss which restrictions we applied in order to satisfy these requirements.

2.3. Saving Regularity

Firstly, the covers and refinement operators for roles operate only on roles that are simple.
A similar restriction has already been applied in the refinement operator suggested in [6].
Restricting the refinement to simple roles guarantees that the new axioms created by weakening
will not contain non-simple roles in axioms or concepts where they are not allowed. An
important detail that was not considered in [6] is that the roles over which the covers operate
must be simple in all ontologies that the weaker axioms are used in. It is therefore not generally
sufficient to use the roles that are simple in the reference ontology, since the reference ontology
may not contain all RBox axioms, and therefore contain simple roles that are not simple in the
full ontology. For this reason, we give to the upward and downward cover as an argument not
only the reference ontology 𝒪ref, but also the full ontology 𝒪full. Both 𝒪ref and 𝒪full share the
same vocabulary 𝑁𝐼 , 𝑁𝐶 , and 𝑁𝑅. We assume that 𝒪ref ⊆ 𝒪full. In the context of repairing
inconsistent ontologies, 𝒪full can be chosen to be the inconsistent ontology that we want to
repair.

Then, to ensure further that by adding weakened axioms we do not cause a constraint
violation in existing axioms and concepts, we choose the allowed weakening for RIAs such
that all roles that are simple in 𝒪full, are also simple after adding to it a weakening of one of its
axioms. We observe that for complex RIAs 𝑆1 ∘ · · · ∘ 𝑆𝑛 ⊑ 𝑅 we should not refine the role 𝑅.
Since all roles returned by our refinement operator are simple in 𝒪full, a replacement of 𝑅 with
a refinement 𝑅′ would create an axiom which would make a role which was simple in 𝒪full

now non-simple. A similar argument can be made for refining 𝑅 in a simple RIA 𝑆 ⊑ 𝑅 where
the role 𝑆 is non-simple in 𝒪full. So the only way to refine the super role during the weakening
of a RIA is when it is a simple RIA and additionally the sub role of the axiom is simple in 𝒪full.

When it comes to refining the left-hand side of RIAs, we do not need any special restrictions.
The main significant observation is that all roles that are returned by the refinement will be
simple. This means that in a simple RIA 𝑅 ⊑ 𝑆, even if 𝑆 is simple, replacing 𝑅 with another
simple role will not cause 𝑆 to become non-simple. For a complex RIA 𝑆1 ∘ · · · ∘ 𝑆𝑛 ⊑ 𝑅 on
the other hand, the role 𝑅 must already have been non-simple in 𝒪full, and replacing any 𝑆𝑖

with a refinement has no effect on which roles are simple.
A more interesting question is whether such a weakening may still cause a non-regular RBox.

The important insight is that simple roles are always allowed on the left-hand side of a RIA.
While this is more directly evident in some alternative definitions of regularity (e.g., [16]) it is
not so apparent from the one presented in this paper. Intuitively, the constraints given above
for regularity disallow dependency cycles that contain complex RIAs. Simple roles cannot be
part of such a cycle, since the cycle must contain at least one complex RIA to be a violation of
the constraint, and all roles that depend in this sense on a complex RIA must be non-simple. A
more formal justification for this fact is given in Lemma 4. Since all refinements of the left-hand



side of RIAs are performed using simple roles, these cannot lead to a non-regular RBox. Further,
refinements of the super role of RIAs are only performed on simple RIAs 𝑆 ⊑ 𝑅 where 𝑆 is a
simple role. Since 𝑆 is simple in this case, all refinements of 𝑅 are allowed, potentially also if
the refinement yielded a non-simple role.

Definition 2. Let 𝒪 be a 𝒮ℛ𝒪ℐ𝒬 ontology. The set of subconcepts of 𝒪 is given by

sub(𝒪) = {⊤,⊥} ∪
⋃︁

𝐶(𝑎)∈𝒪

sub(𝐶) ∪
⋃︁

𝐶⊑𝐷∈𝒪

(sub(𝐶) ∪ sub(𝐷)) ,

where sub(𝐶) is the set of subconcepts in 𝐶 .

We will define now the upward and downward cover sets for concepts and roles. Intuitively,
for a given concept the upward cover is the set of the most specific generalizations from the
(fixed) set of subconcepts or roles, while the downward cover set contains the most general
specializations from the same set of subconcepts and roles. (Note that the related open search
for e.g. a least common subsumer is in general a harder problem [17].) We define the upward
and downward cover additionally also for non-negative integers, as they will be useful in the
refinement of cardinality constraints.

Definition 3. Let 𝒪full and 𝒪ref ⊆ 𝒪full be two 𝒮ℛ𝒪ℐ𝒬 ontologies that share the same vo-
cabulary 𝑁𝐶 , 𝑁𝑅, and 𝑁𝐼 . The upward cover and downward cover for a concept 𝐶 are given
by

UpCover𝒪ref,𝒪full(𝐶) = {𝐷 ∈ sub(𝒪full) | 𝐶 ⊑𝒪ref 𝐷 and

∄𝐷′ ∈ sub(𝒪full) with 𝐶 ⊏𝒪ref 𝐷
′ ⊏𝒪ref 𝐷} ,

DownCover𝒪ref,𝒪full(𝐶) = {𝐷 ∈ sub(𝒪full) | 𝐷 ⊑𝒪ref 𝐶 and

∄𝐷′ ∈ sub(𝒪full) with 𝐷 ⊏𝒪ref 𝐷
′ ⊏𝒪ref 𝐶} .

The upward and downward covers for a role 𝑅 are given by
UpCover𝒪ref,𝒪full(𝑅) = {𝑆 ∈ ℒ(𝑁𝑅) | 𝑅 ⊑𝒪ref 𝑆 and

∄𝑆′ ∈ ℒ(𝑁𝑅) with 𝑅 ⊏𝒪ref 𝑆
′ ⊏𝒪ref 𝑆 and

𝑆, 𝑆′ are simple in 𝒪full} ,

DownCover𝒪ref,𝒪full(𝑅) = {𝑆 ∈ ℒ(𝑁𝑅) | 𝑆 ⊑𝒪ref 𝑅 and

∄𝑆′ ∈ ℒ(𝑁𝑅) with 𝑆 ⊏𝒪ref 𝑆
′ ⊏𝒪ref 𝑅 and

𝑆, 𝑆′ are simple in 𝒪full} .

The upward and downward covers for a non-negative integer 𝑛 are given by
UpCover𝒪ref,𝒪full(𝑛) = {𝑛, 𝑛+ 1} ,

DownCover𝒪ref,𝒪full(𝑛) =

{︃
{𝑛} if n = 0

{𝑛, 𝑛− 1} if n > 0
.

Since they operate only over the subconcepts of𝒪full, on their own, the upward and downward
covers of concepts are missing some interesting refinements.

Example 2. Let 𝑁𝐶 = {𝐴,𝐵,𝐶}, 𝑁𝑅 = {𝑟, 𝑠}, and 𝒪 = {𝐴 ⊑ 𝐵, 𝑟 ⊑ 𝑠}. sub(𝒪) =
{⊤,⊥, 𝐴,𝐵}. The upward cover of𝐶⊔𝐴 is equal toUpCover𝒪,𝒪(𝐶⊔𝐴) = {⊤}. The potentiality
refinement to 𝐶 ⊔ 𝐵 will be missed even by iterated application of the upward cover because
𝐶 ⊔𝐵 ̸∈ sub(𝒪). Similarly, UpCover𝒪,𝒪(∀𝑟.𝐴) = {⊤}, even if ∀𝑟.𝐵 and ∀𝑠.𝐴 are reasonable
generalizations.



To also capture these omissions, we define generalization and specialization operators that ex-
ploit the recursive structure of the concept being refined to generate more complex refinements.
For convenience, we also define these operators for roles.

Definition 4. Let ↑ and ↓ be two functions with domain ℒ(𝑁𝐶 , 𝑁𝑅, 𝑁𝐼) ∪ ℒ(𝑁𝑅) ∪ N0. They
map every concept to a finite subset of ℒ(𝑁𝐶 , 𝑁𝑅, 𝑁𝐼), every role to a subset of ℒ(𝑁𝑅), and
every non-negative integer to a finite subset of N0. The abstract refinement operator is defined
recursively by induction on the structure of concepts as follows.

𝜁↑,↓(𝐴) = ↑(𝐴) , 𝐴 ∈ 𝑁𝐶 ∪ {⊤,⊥} ,

𝜁↑,↓(¬𝐶) = ↑(¬𝐶) ∪ {¬𝐶′ | 𝐶′ ∈ 𝜁↓,↑(𝐶)} ,

𝜁↑,↓(𝐶 ⊓𝐷) = ↑(𝐶 ⊓𝐷) ∪ {𝐶′ ⊓𝐷 | 𝐶′ ∈ 𝜁↑,↓(𝐶)} ∪ {𝐶 ⊓𝐷′ | 𝐷′ ∈ 𝜁↑,↓(𝐷)} ,

𝜁↑,↓(𝐶 ⊔𝐷) = ↑(𝐶 ⊔𝐷) ∪ {𝐶′ ⊔𝐷 | 𝐶′ ∈ 𝜁↑,↓(𝐶)} ∪ {𝐶 ⊔𝐷′ | 𝐷′ ∈ 𝜁↑,↓(𝐷)} ,

𝜁↑,↓(∀𝑅.𝐶) = ↑(∀𝑅.𝐶) ∪ {∀𝑅′.𝐶 | 𝑅′ ∈ ↓(𝑅)} ∪ {∀𝑅.𝐶′ | 𝐶′ ∈ 𝜁↑,↓(𝐶)} ,

𝜁↑,↓(∃𝑅.𝐶) = ↑(∃𝑅.𝐶) ∪ {∃𝑅′.𝐶 | 𝑅′ ∈ ↑(𝑅)} ∪ {∃𝑅.𝐶′ | 𝐶′ ∈ 𝜁↑,↓(𝐶)} ,

𝒮ℛ𝒪ℐ𝒬 concepts:

𝜁↑,↓({𝑎}) = ↑({𝑎}) ,

𝜁↑,↓(∃𝑅.Self ) = ↑(∃𝑅.Self ) ∪ {∃𝑅′.Self | 𝑅′ ∈ ↑(𝑅)} ,

𝜁↑,↓(≥ 𝑛 𝑅.𝐶) = ↑(≥ 𝑛 𝑅.𝐶) ∪ {≥ 𝑛 𝑅′.𝐶 | 𝑅′ ∈ ↑(𝑅)}
∪ {≥ 𝑛 𝑅.𝐶′ | 𝐶′ ∈ 𝜁↑,↓(𝐶)} ∪ {≥ 𝑛 ′𝑅.𝐶 | 𝑛′ ∈ ↓(𝑛)} ,

𝜁↑,↓(≤ 𝑛 𝑅.𝐶) = ↑(≤ 𝑛 𝑅.𝐶) ∪ {≤ 𝑛 𝑅′.𝐶 | 𝑅′ ∈ ↓(𝑅)}
∪ {≤ 𝑛 𝑅.𝐶′ | 𝐶′ ∈ 𝜁↓,↑(𝐶)} ∪ {≤ 𝑛 ′𝑅.𝐶 | 𝑛′ ∈ ↑(𝑛)} ,

𝒮ℛ𝒪ℐ𝒬 roles:

𝜁↑,↓(𝑅) = ↑(𝑅) .

From the abstract refinement operator 𝜁↑,↓, two concrete refinement operators, the generalization
operator and specialization operator are, respectively, defined as

𝛾𝒪ref,𝒪full = 𝜁UpCover𝒪ref,𝒪full ,DownCover𝒪ref,𝒪full and

𝜌𝒪ref,𝒪full = 𝜁DownCover𝒪ref,𝒪full ,UpCover𝒪ref,𝒪full .

Revisiting the case in Example 2 we observe that 𝛾𝒪,𝒪(𝐶 ⊔𝐴) = {⊤,⊤⊔𝐴,𝐶 ⊔𝐴,𝐶 ⊔𝐵}
does contain 𝐶 ⊔𝐵 as a possible refinement. Similarly, 𝛾𝒪,𝒪(∀𝑟.𝐴) = {⊤,∀𝑟.𝐴, ∀𝑠.𝐴,∀𝑟.𝐵}
contains ∀𝑟.𝐵. We will show now some basic properties of 𝛾𝒪ref,𝒪full and 𝜌𝒪ref,𝒪full that will
prove useful in the remainder of this paper.

Lemma 1. For every pair of 𝒮ℛ𝒪ℐ𝒬 ontologies 𝒪ref,𝒪full and every pair of concepts or roles
𝑋,𝑌 ∈ ℒ(𝑁𝐶 , 𝑁𝑅, 𝑁𝐼) ∪ ℒ(𝑁𝑅):

1. generalisation: if 𝑋 ∈ 𝛾𝒪ref,𝒪full(𝑌 ) then 𝑌 ⊑𝒪ref 𝑋
specialisation: if 𝑋 ∈ 𝜌𝒪ref,𝒪full(𝑌 ) then 𝑋 ⊑𝒪ref 𝑌

2. generalisation finiteness: 𝛾𝒪ref,𝒪full(𝑋) is finite
specialisation finiteness: 𝜌𝒪ref,𝒪full(𝑋) is finite

We define now the axiom weakening operator using these generalization and specialization
operators.



Definition 5. Given an axiom 𝜑, the set of weakenings with respect to the reference ontology
𝒪ref and full ontology 𝒪full, written 𝑔𝒪ref,𝒪full(𝜑) is defined such that

𝑔𝒪ref,𝒪full(𝐶 ⊑ 𝐷) = {𝐶′ ⊑ 𝐷 | 𝐶′ ∈ 𝜌𝒪ref,𝒪full(𝐶)} ∪ {𝐶 ⊑ 𝐷′ | 𝐷′ ∈ 𝛾𝒪ref,𝒪full(𝐷)} ,

𝑔𝒪ref,𝒪full(𝐶(𝑎)) = {𝐶′(𝑎) | 𝐶′ ∈ 𝛾𝒪ref,𝒪full(𝐶)} ,

𝑔𝒪ref,𝒪full(𝑅(𝑎, 𝑏)) = {𝑅′(𝑎, 𝑏) | 𝑅′ ∈ 𝛾𝒪ref,𝒪full(𝑅)} ∪ {𝑅(𝑎, 𝑏),⊥ ⊑ ⊤} ,

𝑔𝒪ref,𝒪full(¬𝑅(𝑎, 𝑏)) = {¬𝑅′(𝑎, 𝑏) | 𝑅′ ∈ 𝜌𝒪ref,𝒪full(𝑅)} ∪ {¬𝑅(𝑎, 𝑏),⊥ ⊑ ⊤} ,

𝑔𝒪ref,𝒪full(𝑎 = 𝑏) = {𝑎 = 𝑏,⊥ ⊑ ⊤} , 𝑔𝒪ref,𝒪full(𝑎 ̸= 𝑏) = {𝑎 ̸= 𝑏,⊥ ⊑ ⊤} ,

𝑔𝒪ref,𝒪full(disjoint(𝑅,𝑆)) = {disjoint(𝑅′, 𝑆) | 𝑅′ ∈ 𝜌𝒪ref,𝒪full(𝑅)}
∪ {disjoint(𝑅,𝑆′) | 𝑆′ ∈ 𝜌𝒪ref,𝒪full(𝑆)}
∪ {disjoint(𝑅,𝑆),⊥ ⊑ ⊤} ,

𝑔𝒪ref,𝒪full(𝑆1 ∘ · · · ∘ 𝑆𝑛 ⊑ 𝑅) = {𝑆1 ∘ · · · ∘ 𝑆′
𝑖 ∘ · · · ∘ 𝑆𝑛 ⊑ 𝑅 | 𝑆′

𝑖 ∈ 𝜌𝒪ref,𝒪full(𝑆𝑖) for 𝑖 = 1, . . . , 𝑛}

∪ {𝑆1 ⊑ 𝑅′ | 𝑅′ ∈ 𝛾𝒪ref,𝒪full and 𝑛 = 1 and 𝑆1 is simple in 𝒪full}
∪ {𝑆1 ∘ · · · ∘ 𝑆𝑛 ⊑ 𝑅,⊥ ⊑ ⊤} .

The axioms in the set 𝑔𝒪ref,𝒪full(𝜑) are indeed weaker than 𝜑 for every axiom 𝜑, in the sense
that, given the reference ontology 𝒪ref, 𝜑 entails them and the opposite in not necessarily true.

Lemma 2. For every 𝒮ℛ𝒪ℐ𝒬 axiom 𝜑, if 𝜑′ ∈ 𝑔𝒪ref,𝒪full(𝜑), then 𝜑 |=𝒪ref 𝜑′

Clearly, replacing an axiom in the full ontology with a weakening cannot reduce the number
of models of the ontology. However, for the weakening to be useful in practice, we must show
additionally that by adding the weakened axioms to the ontology will not violate any of the
constraints that ensure the decidability of 𝒮ℛ𝒪ℐ𝒬. To do this, we show first that all roles that
are simple in 𝒪full are also simple in the ontology obtained by adding the weakening of any
axiom.

Lemma 3. Let 𝒪 be an ontology such that all simple roles of 𝒪full are also simple in 𝒪. For every
axiom 𝜑 ∈ 𝒪 and role 𝑅, if 𝜑′ ∈ 𝑔𝒪ref,𝒪full(𝜑) and 𝑅 simple in 𝒪, then 𝑅 is simple in 𝒪 ∪ {𝜑′}.

Note that removal of axioms will never cause a role that was previously simple to become
non-simple, so all roles simple in 𝒪 are also simple in 𝒪∖{𝜑}∪{𝜑′}. Further, it should be noted
that repeated replacement of axioms with weakened axioms keeps simple roles simple. This
is an important observation, since repeated weakening is required for the proposed ontology
repair algorithm.

Lemma 4. Let 𝒪 be an ontology such that all simple roles of 𝒪full are also simple in 𝒪. For every
axiom 𝜑 ∈ 𝒪, if 𝜑′ ∈ 𝑔𝒪ref,𝒪full(𝜑) and the RBox of 𝒪 is regular, then the RBox of 𝒪 ∪ {𝜑′} is also
regular.

Like for the invariant on simple roles, also regularity is maintained by repeated replacement
of axioms with weakenings. With the help of Lemma 3 and Lemma 4 we can now show that
adding weakened axioms to a 𝒮ℛ𝒪ℐ𝒬 ontology will yield another valid 𝒮ℛ𝒪ℐ𝒬 ontology.

Theorem 1. Given that 𝒪ref and 𝒪full are valid 𝒮ℛ𝒪ℐ𝒬 ontologies. For every axiom 𝜑 ∈ 𝒪full,
if 𝜑′ ∈ 𝑔𝒪ref,𝒪full(𝜑), then 𝒪full ∪ {𝜑′} is a valid 𝒮ℛ𝒪ℐ𝒬 ontology.



3. Implementing and Evaluating Axiom Weakening for 𝒮ℛ𝒪ℐ𝒬
The refinement operators and axiom weakening have previously been implemented for 𝒜ℒ𝒞 in
[5]. Based on this, we have extended the implementation to cover the full range of 𝒮ℛ𝒪ℐ𝒬
axioms and concepts.1 The concept refinement and axiom weakening operators for 𝒮ℛ𝒪ℐ𝒬
have been implemented as discussed above. Further, we implemented a repair algorithm using
the axiom weakening operator based on the procedures already proposed in [5] and [6]. The
implementation performs weakening in OWL 2 DL [13] and is implemented in Java using the
OWL API [14]. A plug-in for the ontology development tool Protégé has also been implemented,
but will not be discussed in detail in this paper.2 The plug-in allows for manually weakening
axioms and executing the automatic repair algorithm.

Algorithm 1 RepairOntologyWeaken(𝒪)
𝒪full ← 𝒪
𝒪ref ← FindMaximalConsistentSubset(𝒪)
while 𝒪 is inconsistent do

𝜑bad ← FindBadAxiom(𝒪)
Φweaker ← 𝑔𝒪ref,𝒪full(𝜑bad)
𝜑weaker ← SelectWeakerAxiom(Φweaker)
𝒪 ← (𝒪 ∖ {𝜑bad}) ∪ {𝜑weaker}

end while
Return 𝒪

Algorithm 2 RepairOntologyRemove(𝒪)
while 𝒪 is inconsistent do

𝜑bad ← FindBadAxiom(𝒪)
𝒪 ← 𝒪 ∖ {𝜑bad}

end while
Return 𝒪

The automatic repair by weakening is implemented as shown in Algorithm 1. The reference
ontology is selected by choosing a maximal consistent subset of the inconsistent ontology. In
our implementation used for the evaluation in this paper, the reference ontology was selected
by randomly sampling a maximal consistent subset. The procedure FindBadAxiom(𝒪) may be
implemented in a number of ways. Here we consider an implementation that samples some (or
all) of the minimal inconsistent subsets of 𝒪 and selects as the bad axiom the one occurring most
frequently. Then, SelectWeakerAxiom(Φweaker) has been chosen such that is selects an axiom
uniformly at random from Φweaker. Regarding termination, we showed that the corresponding
algorithm for weakening for the 𝒜ℒ𝒞 fragment almost certainly terminates (the event in which
it does not terminate has probability 0) [18], and we expect a similar result to hold for the
extended weakening procedure for 𝒮ℛ𝒪ℐ𝒬, however, we here must leave the verification of
the details to future work. For all experiments presented in this paper, the FaCT++ reasoner
[19] was used to compute all entailment and consistency checks.

To experimentally evaluate the proposed axiom weakening operator in the context of its use
in automatic repair of ontologies, we need some way to compare the quality of repair. As has
already been discussed in [5], the problem of deciding which of two possible repaired ontologies
𝒪1 or 𝒪2 is preferable is not generally well-defined. Similar to what has been proposed in [5]
we will base the evaluation of the repairs on the size of the inferred class hierarchy. To compare
two possible repairs, we use the inferable information content (IIC) as defined in [5]. The IIC

1The source code for the implementation is available at https://github.com/rolandbernard/ontologyutils.
2The Protégé plugin is available at https://github.com/rolandbernard/protege-weakening.

https://github.com/rolandbernard/ontologyutils
https://github.com/rolandbernard/protege-weakening


Abbreviation Name Expressivity Axioms Concepts Roles Subconcepts
admin Nurse Administrator 𝒜ℒ𝒞ℋ𝒪ℐℱ 229 42 29 144
ahso Animal Health Surveillance Ontology 𝒜ℒ𝒞ℛℐℱ 166 38 31 104
cdao Comparative Data Analysis Ontology 𝒜ℒ𝒞ℛ𝒪ℐ𝒬 437 132 68 375
cdpeo Chronic Disease Patient Education 𝒜ℒ𝒞ℋℱ 422 41 31 170
covid19-ibo Covid19 Impact on Banking Ontology 𝒜ℒ𝒞ℋ 288 160 33 227
ecp Electronic Care Plan 𝒜ℒ𝒞ℛ𝒬 127 33 17 99
emo Enzyme Mechanism Ontology 𝒜ℒ𝒞ℋ𝒬 368 157 24 255
evi Evidence Graph Ontology 𝒜ℒ𝒞ℛℐ 143 30 38 69
falls Falls Prevention 𝒜ℒ𝒞ℋ 79 30 20 35
fo Fern Ontology 𝒜ℒ𝒞ℋℐ 59 31 4 46
gbm Glioblastoma 𝒜ℒ𝒞ℐℱ 603 108 28 227
gfvo Genomic Feature and Variation Ontology 𝒜ℒ𝒞ℋ 332 102 30 170
koro Knowledge Object Reference Ontology 𝒜ℒ𝒞ℋℐ 262 110 19 194
lico Liver Case Ontology 𝒜ℒ𝒞ℋ𝒬 366 93 36 230
mamo Mathematical Modelling Ontology 𝒜ℒ𝒞ℛ 229 107 3 154
mpio Minimum PDDI Information Ontology 𝒜ℒ𝒞ℋ 38 30 14 45
provo Provenance Ontology 𝒜ℒ𝒞ℛℐ𝒩 170 31 42 128
qudt Quantities, Units, Dimensions, and Types 𝒮ℋ𝒪ℐ𝒬 293 74 73 177
trans Nurse Transitional 𝒜ℒ𝒞ℛ𝒪ℐℱ 244 44 22 123
triage Nurse triage 𝒜ℒ𝒞ℋℱ 132 33 29 129
vio Vaccine Investigation Ontology 𝒜ℒ𝒞ℛℐ 249 81 44 235
pizza Pizza Ontology 𝒮ℋ𝒪ℐ𝒩 1131 100 8 376

Table 1
The ontologies used for evaluation. The number of axioms, concept names, role names, and subconcepts
are taken after preprocessing.

of an ontology 𝒪1 with respect to a second ontology 𝒪2, written IIC(𝒪1,𝒪2), is a number
between 0 and 1. A value closer to 1 indicates that 𝒪1 contains more “information” than 𝒪2,
while a value towards 0 indicates the opposite. Some weaknesses of this measure when it comes
to evaluating repairs, like the fact that only atomic concepts are considered, have already been
discussed in [5]. For the case of repairing 𝒮ℛ𝒪ℐ𝒬 ontologies this is even more relevant, since
the role hierarchy is entirely ignored.

Definition 6. The inferred class hierarchy of an ontology 𝒪 is given by

Inf(𝒪) = {𝐴 ⊑ 𝐵 | 𝐴,𝐵 ∈ 𝑁𝐶 and 𝒪 |= 𝐴 ⊑ 𝐵} .

The inferable information content of an ontology 𝒪1 with respect to another ontology 𝒪2 is
given by

IIC(𝒪1,𝒪2) =
card(Inf(𝒪1) ∖ Inf(𝒪2))

card(Inf(𝒪1) ∖ Inf(𝒪2)) + card(Inf(𝒪2) ∖ Inf(𝒪1))
,

where card(𝑋) is the cardinality of the set 𝑋 .

For the experimental evaluation we have selected ontologies of varying size and expressivity
from BioPortal3 [20]. Additionally, the pizza ontology4 was included in the testing. Some
characteristics of the used ontologies are shown in Table 1. On average, they contain about 289
axioms, 73 concept names, 29 role names, and 168 subconcepts.

Since the ontologies use OWL 2, the axioms and concepts do not map directly to 𝒮ℛ𝒪ℐ𝒬.
In order to follow the definitions laid out in this paper, the OWL ontologies axioms were
3https://bioportal.bioontology.org/
4Available from Protégé at https://protege.stanford.edu/ontologies/pizza/pizza.owl.

https://bioportal.bioontology.org/
https://protege.stanford.edu/ontologies/pizza/pizza.owl


Abbreviation IIC w.r.t. repair by removal IIC w.r.t. maximal consistent subset
admin 0.53 [0.47; 0.59] 0.39 [0.31; 0.47]
ahso 0.56 [0.50; 0.62] 0.51 [0.44; 0.57]
cdao 0.53 [0.44; 0.61] 0.53 [0.45; 0.61]
cdpeo 0.50 [0.45; 0.55] 0.22 [0.16; 0.28]
covid19-ibo 0.70 [0.65; 0.75] 0.63 [0.57; 0.69]
ecp 0.74 [0.67; 0.81] 0.36 [0.28; 0.44]
emo 0.69 [0.63; 0.75] 0.60 [0.53; 0.66]
evi 0.49 [0.43; 0.55] 0.59 [0.53; 0.66]
falls 0.78 [0.71; 0.85] 0.49 [0.41; 0.58]
fo 0.50 [0.44; 0.57] 0.70 [0.62; 0.76]
gbm 0.59 [0.52; 0.66] 0.52 [0.44; 0.59]
gfvo 0.56 [0.49; 0.62] 0.54 [0.49; 0.60]
koro 0.51 [0.45; 0.57] 0.37 [0.29; 0.45]
lico 0.55 [0.48; 0.62] 0.53 [0.46; 0.60]
mamo 0.52 [0.44; 0.60] 0.68 [0.61; 0.74]
mpio 0.70 [0.63; 0.76] 0.73 [0.67; 0.78]
provo 0.50 [0.43; 0.56] 0.55 [0.49; 0.62]
qudt 0.96 [0.93; 0.99] 0.44 [0.35; 0.55]
trans 0.58 [0.52; 0.64] 0.43 [0.35; 0.52]
triage 0.53 [0.46; 0.60] 0.53 [0.46; 0.60]
vio 0.46 [0.37; 0.55] 0.49 [0.40; 0.57]
pizza 0.56 [0.49; 0.64] 0.61 [0.53; 0.68]
Overall 0.59 [0.57; 0.61] 0.52 [0.50; 0.54]

Table 2
Results of the evaluation. IIC is given as mean and 95% confidence interval in brackets.

normalized to conform with 𝒮ℛ𝒪ℐ𝒬. During the preprocessing, we further removed axioms
related to data properties and any axiom that caused any OWL 2 DL profile violation, as our
weakening does not handle them.

The evaluation proceeds by first making the ontologies inconsistent. This was achieved by
repeatedly adding axioms to the ontology until they became inconsistent. The newly added
axioms were generated by strengthening randomly selected axioms of the original ontology.
It was ensured that the added axioms on their own were not inconsistent. After making the
ontology inconsistent, it was repaired once with the repair algorithm using the axiom weakening
operator presented in Algorithm 1 and once using Algorithm 2. Additionally, the repair was also
performed by selecting a randomly sampled maximal consistent subset. Note that Algorithm 2 is
not guaranteed to produce a maximal consistent subset. This process, both making the ontology
inconsistent and then repairing it, was repeated one hundred times for each ontology, and the
IIC was computed between the repairs generated using the different approaches. The evaluation
was performed using a randomly selected maximal consistent subset as the reference ontology
and by sampling 16 minimal inconsistent subsets during the selection of bad axioms.

Unfortunately, even though the utilized reasoners are generally very fast to evaluate queries
on the selected ontologies, they exhibit undesirable performance in some edge cases. When
performance pitfalls are encountered, they make the computations required for weakening
unreasonably slow. For this reason a timeout of 5 minutes was placed on the repairs execution
and the outputs of these runs were discarded and replaced by new runs. The results of these
experiments are listed in Table 2 and shown in Figure 1 and Figure 2.

The results of the evaluation suggest that the repair by weakening is on average about as good
or better than the repair by removal of axioms. While this supports the conclusion in [5] that



Figure 1: Mean IIC with respect to repair via removal per ontology. The error bars show the 95%
confidence interval.

Figure 2: Mean IIC with respect to a random maximal consistent subset per ontology. The error bars
show the 95% confidence interval.

weakening is able to retain more information than removal, the observed advantage was worse
than what has been observed in [5]. In contrast, it can be seen that the repair using weakening
is not in general better than choosing a random maximal consistent subset. There are ontologies
for which the repairs by weakening are on average significantly worse when comparing using
IIC. This is however a somewhat unequal comparison. An alternative repair algorithm could
start with a maximal consistent subset and use weakening to add in more information from the
remaining axioms. Still, this result suggests that the heuristic used for selecting bad axioms is
not reliable for preserving information, at least with respect to the chosen measure.

4. Conclusions and Outlook

We have proposed refinement operators and an axiom weakening operator for all aspects
of 𝒮ℛ𝒪ℐ𝒬 and shown that for repairs of inconsistent ontologies weakening can, in some
cases, significantly outperform removal. Further additions to the refinement operators may be
studied, e.g., using non-simple roles in the upward and downward covers in certain contexts.
Relaxing the allowed weakening for RIAs may also be considered, and to cover also extensions to
regularity conditions such as those studied in [21]. We have also seen that the repair algorithm
likely needs better heuristics to steer the selection of bad and weakened axioms in order to
result in better repairs. Future work could further focus on finding more robust measures for
comparing the quality of repairs.
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