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Abstract

Automation of malware characterization has become increasingly important for early malware detec-

tion over the past decades. Since it is crucial to be able to perform malware detection transparently,

explainable machine-learning methods may be considered particularly suitable for this application. In

our previous work, we thus employed algorithms for learning description-logics concept expressions to

obtain structured characterizations of malicious software. The results of our initial experiments, however,

lead us to several inconsistencies in the behaviour of the studied algorithms included in DL-Learner, a

widely adopted framework for concept learning. Hence, in this work, we make a couple of corrections to

DL-Learner, along with a few further enhancements, and repeat the experiments to empirically assess

the effects of our changes. The outcomes show that the modified algorithms can mark an improvement

in terms of the predictability of their behaviour as well as evaluation metrics.
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1. Introduction

Malware detection is an active research area of great significance within cybersecurity. Over

the years, many different approaches to this problem have been devised, some of which, mainly

those relying on analyses performed by malware experts, are currently used in practice [1].

The traditional methods requiring extensive human input are, however, gradually being phased

out by techniques based on machine learning due to the ever-increasing amounts of new

malware [2, 3, 4]. Despite the impressive progress in this direction, the malware community still

recognizes a few weaknesses of these approaches, with one of the most severe being the lack of

interpretability. Much of the recent research thus focused on harnessing various methods that

are inherently explainable [5, 6, 7, 8, 9], including the use of concept learning in description
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logics we proposed in [10].

Concept learning allows us to induce malware characterizations in the form of concept

expressions over the vocabulary of a suitable ontology only from input expressions describing

a selected sample of software. Our previous work [10], in which we applied DL-Learner [11]

(widely considered a state-of-the-art concept learning tool) on data from the EMBER dataset

[12] supplemented by a specifically designed ontology [13], showed that the resulting concepts

exhibit decent levels of readability and interpretability from an expert’s point of view.

However, the initial experiments revealed several flaws both in the theoretical bases and

in the implementation of the employed learning algorithms, impacting their correctness and

completeness. Apart from that, we also identified a few opportunities to improve the efficiency

of the studied DL-Learner algorithms.

In this work, we present the detected shortcomings and modify the official distribution of

DL-Learner to address them. We then assess the effects of our changes by comparing the results

from the modified algorithms to those obtained with the original implementation. The outcomes

indicate that the altered algorithms achieve more predictable results in terms of learned concept

descriptions and even slightly outperform the original implementation in the evaluation metrics

on average.

2. Concept Learning and DL-Learner

2.1. Concept-Learning Problem

Recall that the languages of description logics [14, 15] are defined over vocabularies 𝑁 = (𝑁I,
𝑁C, 𝑁R) consisting, respectively, of mutually disjoint sets of individual, concept, and role names.
A description logic (DL) ℒ defines the sets of role expressions R and concepts (descriptions, concept
expressions) C over 𝑁 as certain subsets of expressions generated, respectively, by grammars

𝑅 ::= 𝑟 | 𝑟−

𝐶 ::= 𝐴 | {𝑎} | ⊤ | ⊥ | ¬𝐶 | 𝐶1 ⊓ 𝐶2 | 𝐶1 ⊔ 𝐶2 | ∃𝑅.𝐶 | ∀𝑅.𝐶 | ⩾𝑛𝑅.𝐶 | ⩽𝑛𝑅.𝐶

for 𝑟 ∈ 𝑁R, 𝐴 ∈ 𝑁C, 𝑎 ∈ 𝑁I, and positive integers 𝑛. A knowledge base (KB) 𝒦 in ℒ over 𝑁 is

a finite set of role and concept inclusion axioms (𝑅1 ⊑ 𝑅2, 𝐶1 ⊑ 𝐶2), and individual and role
assertions (𝐶(𝑎), 𝑅(𝑎1, 𝑎2)), subject to the syntactical restrictions of ℒ. We assume the usual

DL semantics [14, 15], in particular the entailment 𝒦 ⊨ 𝑋 of an axiom or assertion 𝑋 from a

KB 𝒦. A concept 𝐶 subsumes a concept 𝐷 (𝐶 ⊑ 𝐷) if ∅ ⊨ 𝐶 ⊑ 𝐷.

The problem of learning concept expressions, which we aim to use to characterize malware,

is defined as follows [16]:

Definition 1 (Concept-Learning Problem). Let ℒ be a DL and 𝒦 be a knowledge base in ℒ over
a vocabulary (𝑁I, 𝑁C, 𝑁R). Let 𝐸+ ⊆ 𝑁I be a set of positive examples and 𝐸− ⊆ 𝑁I be a set of
negative examples, with 𝐸+ ̸= ∅ and 𝐸+ ∩ 𝐸− = ∅.

Given 𝒦, 𝐸+, and 𝐸−, find a description 𝐶 ∈ C satisfying both of the following conditions:

𝒦 ⊨ 𝐶(𝑎) for all 𝑎 ∈ 𝐸+, (1)

𝒦 ⊭ 𝐶(𝑎) for all 𝑎 ∈ 𝐸−. (2)



For any 𝑎 ∈ 𝐸+ ∪ 𝐸− and 𝐶 ∈ C, we say that 𝐶 covers 𝑎 if 𝒦 ⊨ 𝐶(𝑎) holds.

The goal of concept learning is thus to find a description of a target class (in our case, malware)

given some examples of individuals belonging to this class, as well as some counterexamples.

Note that Definition 1 is adjusted to the closed-world assumption (CWA), under which we

decided to work since all the DL-Learner algorithms we examine here were designed primarily

for CWA scenarios.

2.2. Learning Concepts with Refinement Operators

As a concept-learning problem is considered to be solved once an appropriate description

is found, one may cast this problem as a search problem where we search the space of all

valid concept expressions ordered by the standard DL relation of subsumption [16]. Functions

producing sets of successors of concept expressions w.r.t. subsumption are called refinement
operators.

Definition 2 (Refinement Operator). Let C be the set of all descriptions in a DL ℒ over some
vocabulary. A mapping 𝜌 : C → 2C is a downward (upward) refinement operator in the
quasi-ordered space (C,⊑) if 𝐷 ∈ 𝜌(𝐶) implies 𝐷 ⊑ 𝐶 (𝐶 ⊑ 𝐷) for all 𝐶 ∈ C. If 𝐷 ∈ 𝜌(𝐶),
the concept 𝐷 is a refinement of 𝐶 , more specifically, a specialization (generalization) of 𝐶 .

For example, if we let⇝ denote a single refinement operation, one branch of a search tree

(refinement chain) induced by a downward refinement operator may have the following form:

⊤⇝ ∀𝑟.⊤⇝ ∀𝑟.𝐶 ⇝ (∀𝑟.𝐶) ⊓𝐷. (3)

Usually, the process of downward refinement starts from the top concept.

2.3. Examined DL-Learner Algorithms

In our experiments, we evaluate the performance of four concept-learning algorithms imple-

mented in DL-Learner [11], namely, OCEL [17], CELOE [18], PARCEL [19], and SPACEL [20].

All of them use the downward refinement operator called simply 𝜌1
[17] in combination with

additional heuristics to guide the search. As the set of refinements is not finite for most con-

cepts in the case of 𝜌, these algorithms limit the length of refinements and proceed iteratively,

revisiting any of the already searched concepts whenever they find it promising based on its

heuristic score and gradually asking for longer refinements.

OCEL was the first concept-learning algorithm based on a refinement operator. CELOE was

later introduced as a variation of OCEL attracted to shorter concepts following the principle of

Occam’s razor, i.e., that simpler descriptions may generalize better since they fit the training

conditions more loosely. Both OCEL and CELOE search for the final description as a whole.

PARCEL and SPACEL parallelize the learning process by constructing descriptions in the form

of a disjunction and searching for the disjuncts (partial definitions) in parallel. While PARCEL

infers the partial definitions only from the characteristics of positive examples, SPACEL works

also with the found partial descriptions of negative examples by combining their negations

with otherwise mediocre expressions to create partial definitions.

1

For brevity, we do not include the definition of 𝜌, albeit we refer to it in Section 4.3.1.
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Figure 1: Core classes of the PE malware ontology and their properties

3. Ontology and Dataset

3.1. EMBER Dataset

Elastic Malware Benchmark for Empowering Researchers (EMBER) [12] is a dataset for training

static malware detection models. It contains structured data entries of 1.1 million Windows

portable executable files (PE files). Out of them, 800,000 entries are labelled as either malicious

or benign (400,000 each), and 300,000 entries are left unlabeled.

Each data entry is a JSON object with properties such as: the corresponding file’s size; the

number of imported and exported functions; the target architecture; information about the file’s

sections, e.g., section names, content type, access rights; a list of imported functions per DLL; a

list of exported functions; various histograms and statistics, and more.

3.2. PE Malware Ontology

In order to use EMBER and similar data sources in concept learning, we need to capture them

semantically via an ontology. To this end, we designed the PE Malware Ontology„ which is

a light-weight OWL 2 ontology expressed within DL-Litecore(𝐷), i.e., the OWL 2 QL profile. In

total, the ontology comprises 195 classes, 6 object properties, and 10 data properties. We are

giving a brief overview of the ontology here and refer the reader interested in more details to

our technical report [13].

Focusing on interpretability, the ontology represents the PE file structure and mostly quali-

tative features that make sense from a malware expert’s point of view. The core classes and

properties of the ontology are shown in Figure 1. Each dataset sample is described by an

instance of the PEFile class, and structurally consists of sections expressed by the Section
class. PEFiles and Sections are further classified by their content using subclasses.

A few selected, easily interpretable quantitative features are assigned to PEFiles and

Sections via data properties (e.g., imports_count or section_entropy). Section names

are also included since they are often unusual in malware samples. We disregarded many

quantitative features such as file sizes, byte histograms, or linker versions. Although some

of them are statistically useful in ML-based malware detection [21], they are also difficult to

interpret and could potentially lead to the trained classifier’s susceptibility to rather trivial

adversarial attacks [22].



A total of 15 relevant qualitative features of PE files and 3 features of sections are represented

by subclasses of FileFeature and SectionFeature, respectively, and linked to PEFile
and Section instances by object properties. Instances of SectionFlag represent the section

in-memory permission flags, which may indicate, e.g., self-modifying code.

Important clues about the possible behaviour of a running PE file are provided by the functions

it imports from standard system libraries. We abstracted these functions into possible actions

expressed by the Action class and linked to PEFiles. Its subclasses represent particular actions

from the MAEC Vocabulary of malware actions [23] with minor adjustments detailed in the

technical report [13]. In order to aid generalization, we included additional 17 abstract action

classes.

3.3. Fractional Datasets

To facilitate reproduction of experimental results, we created a collection of RDF datasets based

on the PE Malware Ontology and EMBER data. The ontology and the datasets are available in

our GitHub repository
2
. The complete dataset (named dataset_1_800000.owl) contains all

800k of labelled samples from the EMBER dataset. Since concept learning is computationally

expensive, we generated fractional datasets of 1k, 10k, and 100k of randomly selected samples.

Ten variants were produced for each size (dataset_N_size.owl, N ∈ {1, . . . , 10}) to help

researchers compensate for selection bias. The 1k datasets contain 500 malicious (positive) and

500 benign (negative) samples, which amounts to 5.8k individuals and 63k axioms (of which

5.8k are class, 34k object-property, and 16k data-property assertions, 1.5k are ontology axioms,

and 5.8k are non-logical axioms) on average.

4. Applying DL-Learner

4.1. Methodology and Experiments

Due to the computational complexity of concept learning algorithms, we only carried out our

experiments on the 1k datasets from our suite but in two phases. In the first phase, we calibrated

several hyper-parameters (see below) on the dataset dataset_8_1000.owl selected at random.

In the second phase, the best configurations were validated on the 1k datasets 1-5.

The calibrated parameters were noise, the use of hasValue and negation constructors, the

some-only rule, and a cardinality limit. Noise is a common parameter in concept-learning

algorithms that can be used as a termination criterion (specifying the minimum acceptable

accuracy), as a part of heuristics, or as an instrument for discarding weak concepts during

learning. The hasValue constructor allows the refinement operator to generate descriptions of

the form ∃𝑟.{𝑎}, with 𝑟 an object property and 𝑎 an individual. The negation constructor enables

the generation of class expressions of the form ¬𝐶 , for any atomic concept 𝐶 . If activated, the

some-only option ensures that universal restrictions on any object property 𝑟 are used only in

conjunction with a minimum-cardinality or existential restriction on 𝑟. The cardinality limit

represents the maximum cardinality 𝑛 with which the qualified number restrictions ⩽𝑛 𝑟.𝐶 ,

2
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Table 1
Calibration results on test folds (𝑎𝑣𝑔 ± 𝑠𝑡𝑑).

Algorithm Accuracy Precision Recall FP Rate F1

PARCEL 0.76 ± 0.04 0.76 ± 0.07 0.76 ± 0.04 0.24 ± 0.09 0.76 ± 0.03
PARCEL fixed 0.79 ± 0.01 0.82 ± 0.02 0.73 ± 0.05 0.15 ± 0.03 0.77 ± 0.02

SPACEL 0.77 ± 0.03 0.76 ± 0.03 0.79 ± 0.02 0.24 ± 0.04 0.77 ± 0.02
SPACEL fixed 0.76 ± 0.03 0.76 ± 0.03 0.77 ± 0.04 0.24 ± 0.04 0.76 ± 0.03

OCEL 0.72 ± 0.02 0.80 ± 0.03 0.59 ± 0.03 0.14 ± 0.02 0.68 ± 0.03
OCEL fixed 0.75 ± 0.02 0.77 ± 0.03 0.72 ± 0.04 0.22 ± 0.05 0.74 ± 0.02

CELOE 0.71 ± 0.03 0.70 ± 0.03 0.74 ± 0.03 0.30 ± 0.04 0.72 ± 0.03
CELOE fixed 0.70 ± 0.02 0.71 ± 0.05 0.68 ± 0.10 0.27 ± 0.11 0.69 ± 0.03

Table 2
Validation results averaged across the five validation datasets (𝑎𝑣𝑔 ± 𝑠𝑡𝑑).

Algorithm Accuracy Precision Recall FP Rate F1

PARCEL 0.72 ± 0.01 0.71 ± 0.01 0.72 ± 0.02 0.28 ± 0.01 0.72 ± 0.01
PARCEL fixed 0.73 ± 0.02 0.76 ± 0.02 0.66 ± 0.03 0.20 ± 0.01 0.71 ± 0.03

SPACEL 0.72 ± 0.01 0.72 ± 0.00 0.73 ± 0.02 0.27 ± 0.00 0.72 ± 0.01
SPACEL fixed 0.72 ± 0.03 0.72 ± 0.02 0.73 ± 0.04 0.28 ± 0.02 0.72 ± 0.03

OCEL 0.69 ± 0.01 0.68 ± 0.05 0.74 ± 0.10 0.35 ± 0.12 0.70 ± 0.02
OCEL fixed 0.73 ± 0.01 0.72 ± 0.01 0.74 ± 0.04 0.27 ± 0.02 0.73 ± 0.02

CELOE 0.68 ± 0.01 0.65 ± 0.03 0.77 ± 0.05 0.40 ± 0.07 0.70 ± 0.01
CELOE fixed 0.70 ± 0.01 0.68 ± 0.02 0.79 ± 0.06 0.38 ± 0.06 0.72 ± 0.02

1

⩾𝑛 𝑟.𝐶 , and =𝑛 𝑟.𝐶 (i.e.,⩽𝑛 𝑟.𝐶 ⊓⩾𝑛 𝑟.𝐶) can be produced, where 𝑟 is an object property and

𝐶 is a class expression.

For evaluation, we used the 𝑘-fold cross-validation technique, with 𝑘 = 5, as it works quite

well with smaller and limited datasets [24]. The performance itself was assessed via standard

metrics – accuracy, precision, recall, F1 score, and false-positive (FP) rate [25]. We experimented

on a machine with an 18-core Intel Core i9-10980XE CPU, 256 GB of RAM and Debian 5.10-140-1.

The maximum training time in each iteration of the 5-fold cross-validation was limited to 24

and 2 hours of user time (the time the CPU spends executing user-space code) for the parallel

(PARCEL and SPACEL) and the non-parallel (OCEL and CELOE) algorithms, respectively. Since

we configured the parallel algorithms to use 12 working threads and the non-parallel algorithms

run in a single execution thread, these limits correspond to approx. 2 hours of real-world time.

4.2. Out-of-the-Box Results

The results from the calibration phase for the best hyper-parameter settings are provided in

Table 1 in rows without the “fixed” suffix. As we can see, the most promising descriptions were

obtained using PARCEL and SPACEL, which achieved an F1 score of 0.76 and 0.77, respectively.

During the calibration phase, we also noticed the following interesting phenomenon. While

disabling the hasValue constructor should reduce the search space and help the algorithms

to find solutions more efficiently due to the nature of our ontology (because for any valuable



concept ∃𝑟.{𝑎}, there always exists such a concept ∃𝑟.𝐶 , where 𝐶 is not a nominal, that is

equivalent with ∃𝑟.{𝑎} under the CWA in our scenario), it merely substantially degraded the

performance of both parallel algorithms w.r.t. the studied metrics (e.g., the F1 score dropped

from 0.71 to 0.60 for some PARCEL configurations). In the case of the non-parallel algorithms,

disabling the hasValue constructor caused no changes in terms of the metrics at all.

The validation results, shown in Table 2, generally confirmed the quality of the configurations

selected in the calibration phase, although the accuracy and the F1 score were mostly lower. An

indicative class expression generated by OCEL, with a test accuracy of 0.75, is given in (4).

ExecutableFile ⊓ ∃has_section.∃has_section_feature.NonstandardSectionName

⊓ ∃has_section.∃has_section_flag.{writable}
(4)

4.3. Issues, Corrections, and Enhancements

After performing the initial tests, we detected a couple of flaws in the behaviour of the employed

learning algorithms. To resolve these issues and further improve the performance of the

learners, we slightly modified the theoretical definition of the 𝜌 refinement operator, as well as

its implementation and the implementation of the examined learning algorithms in the official

distribution of DL-Learner [26]. The updated version of DL-Learner is available in our GitHub

repository
3
. In this section, we discuss the most pivotal changes.

4.3.1. Refinement Operator 𝜌

At-Most Restrictions. After noticing some inexplicable differences in the accuracy of two

logically equivalent descriptions reported by OCEL, we found out that the 𝜌 refinement operator

was handling at-most restrictions inappropriately. More specifically, we realized that the

operation

⩽𝑛 𝑟.𝐷 ⇝ ⩽𝑛 𝑟.𝐸, (5)

for any concept 𝐷, any simple role 𝑟, 𝑛 ∈ N, and 𝐸 ∈ 𝜌
ar(𝑟)(𝐷), from the extended definition

of 𝜌 (see Section 5.4 in [17]) actually generates upward refinements if we assume that 𝐸 ⊑ 𝐷,

what we can expect to be satisfied for a downward refinement operator like 𝜌.

To cope with this problem, we redefined this operation as follows
4
:

⩽𝑛 𝑟.𝐷 ⇝ ⩽𝑛 𝑟.𝐸, (6)

where 𝐸 ∈ 𝜌
ar(𝑟)(𝐷), i.e., we inverted the direction in which the constrained concept is refined

(from downwards to upwards). It can be easily shown by the principle of structural induction

for a selected DL ℒ that when we change (5) to (6) in the definition of 𝜌, the 𝜌 operator becomes

a downward refinement operator (not considering the refinement of universally quantified roles

and double concrete roles, see the note below). The key is to leverage the facts that the inverse

of (5) is an operation of specialization and that if 𝐸 ⊑ 𝐷 (which is a consequence of the premise

that 𝐸 ∈ 𝜌
ar(𝑟)(𝐷)), then 𝐷 ⊑ 𝐸.

3
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We use 𝐶 to denote the negation of a concept 𝐶 in the negation normal form [14, 15].
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Of course, this modification also requires the refinement process of at-most restrictions to

start from the concept ⩽𝑛 𝑟.⊥ instead of ⩽𝑛 𝑟.⊤ as in the original definition of 𝜌 [17].

Note that there are similar issues with the refinement of roles inside universal quantifications,

but we decided not to address them since all object properties in the PE Malware Ontology

are direct subproperties of owl:topObjectProperty. Double concrete roles are also refined

in the opposite direction in [17], nonetheless, the most recent version of DL-Learner already

implements the corrected definition of these refinement operations.

Negations and Universal Quantification. Studying the definition of the 𝜌 refinement

operator more carefully, we later detected at least two other places for potential improvement.

Firstly, we prevented the operator from generating refinements of the form ¬𝐶 , where 𝐶 ∈ C
is a superconcept of the domain in which the refinement is performed, e.g., the range of a role.

Clearly, this does not decrease the expressive power of the operator, but it helps to reduce the

number of nodes in the search tree.

Secondly, we decided to shorten the refinement path from the top concept to the universal

quantification concepts of the following kind: ∀𝑟.⊥. Originally, a concept ∀𝑟.𝐶 , with a most

specific concept name 𝐶 ∈ 𝑁𝐶 , i.e., one for which no 𝐷 ∈ 𝑁𝐶 exists such that 𝐷 ⊑ 𝐶 , had to be

reached in order to produce ∀𝑟.⊥. However, if such universal quantifications are not promising

enough, ∀𝑟.⊥ is never introduced during refinement, even though it bears a slightly different

meaning than other universal quantifications, e.g., in our context, ∀has_section_feature.⊥
represents all sections with none of the special features. Contrarily, when a concept of the

form ∀𝑟.⊥ is a refinement of each concept ∀𝑟.𝐶 , where 𝐶 is most specific, it could also quite

unnecessarily appear multiple times in the search tree. To address these issues, we redefined

the 𝜌 operator in a way that makes ∀𝑟.⊥ exclusively a direct refinement of ∀𝑟.⊤.

4.3.2. Cardinality Constraints in Closed-World Reasoner

Even after redefining the 𝜌 operator as suggested in Section 4.3.1, OCEL and CELOE could not

agree on the accuracy of concepts containing at-most restrictions. We discovered that this issue

was caused by DL-Learner’s default closed-world reasoner, which we employed, since it did not

always correctly perform instance checking for concepts with cardinality constraints.

As this faulty behaviour stemmed purely from programming errors, the problem was simply

fixed by their rectification.

4.3.3. Heuristic in OCEL

One undocumented component of OCEL’s heuristic function was originally designed to motivate

the refinement of concepts containing ∀𝑟.⊤ or ⩽𝑛 𝑟.⊤ by adding a bonus to their heuristic

score. The main reason behind this step was that ∀𝑟.⊤ and ⩽𝑛 𝑟.⊤ provide no or just a

little information, respectively. Furthermore, the former is also the only way to all universal

restrictions on the role 𝑟 and the latter had to be generated to obtain any at-most restriction on

𝑟 before.

The implementation of the calculation of this bonus was, however, non-deterministic and

the adjustment to the heuristic score did not reflect how many times any of the above two



expressions appeared in the evaluated concept. Moreover, after the changes to the refinement

rule for at-most-restrictions, we should favour ⩽𝑛 𝑟.⊥ rather than ⩽𝑛 𝑟.⊤, as a path to any

at-most restriction on 𝑟 now leads through ⩽𝑛 𝑟.⊥.

Hence, we modified this heuristic in order to ensure its determinism and that the score

correction grows linearly with the increasing number of occurrences of the expressions in

question. We replaced the preference for the refinement of concepts containing ⩽𝑛 𝑟.⊥ with

the support of those with ⩽𝑛 𝑟.⊤ as well.

4.3.4. PARCEL and SPACEL

Same-Length Refinements. Investigating the implementation of the learning process, we

noticed that neither of the parallel algorithms was able to reach refinements whose length was

equal to the length of their direct predecessor, such as ∀𝑟.𝐶 , with 𝐶 ∈ 𝑁𝐶 .

We resolved this issue by allowing PARCEL and SPACEL to accept the direct refinements

which are of the same length as the refined concept.

Accuracy and Coverage Computation in PARCEL. When determining the accuracy of a

concept expression and its coverage of positive examples for the purposes of heuristics, PARCEL

considered solely the positive examples that were not yet covered by the hitherto learned

partial definitions as the universe of all positive examples. We assume that the rationale behind

this exclusion of the already covered positive examples was to guide the search towards the

expressions that can expand the overall coverage of positive examples the most.

A downside of such a biased definition of accuracy/coverage is that it takes into account not

only the global quality of a concept but also when it is evaluated. To eliminate the effects of the

second aspect on a later choice of concepts for refinement (based on accuracy and coverage),

we would have to update the measurements for all previously searched concepts whenever a

new partial definition is found. Nevertheless, PARCEL computes a concept’s accuracy/coverage

merely upon its discovery as this operation requires time-demanding instance checking.

We therefore re-implemented PARCEL so that it utilizes the standard definitions of accuracy

and coverage, while introducing the following two rules to draw the algorithm’s attention

to more promising concepts. Firstly, only the concepts that still cover at least one of the yet

uncovered positive examples may be further refined. Secondly, a description can be marked as a

partial definition only if it covers strictly more of the uncovered positive than of the uncovered

negative examples.

Acceleration of Accuracy and Coverage Computation. Since 𝜌 is a downward refinement

operator, and thus generates subconcepts, we know that to evaluate the accuracy and the

coverage of a given concept’s refinement, it is enough to find out which of the positive and the

negative examples covered by the original concept are also covered by that particular refinement.

We leveraged this fact to speed up the computation of accuracy and coverage in PARCEL and

SPACEL by storing the information on what sets of positive and negative examples each concept

expression covers in the corresponding node of the search tree. To cope with the induced

increase in the size of the search tree, we were also forced to compress the representation of the

sets of covered examples by mapping individuals to integers.



We have to note that this modification was inspired by the implementation of OCEL, which

uses a similar technique out of the box.

Search Tree Organization. The last change we discuss is more technical than those men-

tioned above, yet we decided to present it due to its immense impact despite its simplicity.

Both PARCEL and SPACEL use Java’s ConcurrentSkipListSet to keep all the nodes of

the search tree in the order determined by the heuristic scores assigned to the concepts they

embody. Originally, the nodes with the best concepts according to the heuristic were located

at the end of this ordered set, so PARCEL and SPACEL were always polling its last element to

obtain the most appropriate concept for refinement.

However, the official documentation for ConcurrentSkipListSet [27] stresses that the

constituent parts of the objects of this type can be accessed faster via ascending iterators than

via descending ones, indicating that polling the first element may take less time than removing

the last. We confirmed this hypothesis through dedicated testing, during which retrieving the

first element proved to be almost two times faster. Consequently, we reversed the order of nodes

in the search tree and reprogrammed the algorithms to poll the first element in place of the last.

It is also important to state that the order of elements does not affect the insertion time.

4.4. Improved Results

After implementing the corrections and enhancements mentioned in Section 4.3, we repeated

the experimentation process described in Section 4.1 with the updated DL-Learner. The results

from the calibration and the validation phase are displayed in Tables 1 and 2, respectively (the

rows labelled as “fixed”).

As these tables indicate, PARCEL now reached a noticeably lower FP rate than in the out-of-

the-box experiments with roughly the same value of F1 score. CELOE marked an improvement

in the FP rate as well, while OCEL achieved a higher F1 score. Unlike in the previous experiments,

the corrected algorithms performed better when we disabled the hasValue constructor as

expected. For instance, the F1 score for SPACEL increased from 0.69 to 0.76 purely due to this

configuration change. Regardless of the hyper-parameter settings, the parallel algorithms were

also able to search larger portions of the space. Specifically, PARCEL produced around 8 million

descriptions in 24 hours of user time, which is approx. two times more than before. Similarly,

the number of descriptions generated by SPACEL increased from 1.5 million to 7 million. The

amount of class expressions discovered by the non-parallel algorithms either remained identical

or slightly lowered. Nonetheless, these algorithms traversed the search space more efficiently

here than in the first set of experiments, as the quality of their descriptions increased in various

respects, e.g., the below-discussed level of detail.

To compare the algorithms w.r.t. the learned descriptions, we also share the expression (7)

generated by OCEL on the same fold as (4) and during the same training period, although with

a bit different hyper-parameter settings, e.g., for hasValue. Reaching a test accuracy of 0.77,

the expression (7) demonstrates that OCEL was able to dive deeper into the search tree to learn

more detailed and accurate descriptions after our modifications.



ExecutableFile ⊓ ∃has_file_feature.(MultipleExecutableSections ⊔ NonstandardMZ)

⊓ ∃has_section.∃has_section_flag.Writable

⊓⩽1 has_action.(AcceptSocketConnection ⊔ DirectoryHandling

⊔ EnumerateThreads ⊔ GetProcessCurrentDirectory ⊔ OpenMutex)

(7)

5. Conclusions

In this study, we applied DL-Learner on a dataset from a malware-detection use case with the

aim to learn concept descriptions that can be used as interpretable characterizations of the

malware samples present in the dataset. We discovered and corrected a number of issues in the

implementation of DL-Learner, which lead to an improvement in the obtained results, as our

evaluation demonstrated.

Nevertheless, our case studies are only preliminary, since we have been able to process just

a tiny fraction of the available data so far. Learning from our larger fractional datasets may

potentially increase the quality of the found concepts and their evaluation metrics. As this is

computationally expensive, we need to search for more sophisticated strategies for breaking

down the data (e.g., based on particular malware families) and then combining the results.

We would also like to explore and compare other concept-learning systems in the context of

malware characterization in the future [28, 29, 30], including those capable of learning fuzzy

concept descriptions [31, 32, 33]. In addition, while the obtained concepts proved to be fairly

interpretable, we would like to conduct a more rigorous study of their usefulness with malware

experts.

Last but not least, the malware detection area offers an interesting application domain with

its own specifics, and above all, with vast quantities of real-world data that may be readily

explored as a new use case [34] not just for concept-learning but also for the broader area of

structured machine learning [35].
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