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Abstract

Circumscription is a prominent approach to bring non-monotonicity to Description Logics (DLs), but

unfortunately, it usually displays very high computational complexity of reasoning. Many works have

studied circumscribed DLs, but most of them focus on expressive DLs containing 𝒜ℒ𝒞, and the results

for low-complexity DLs are limited. This paper summarises some recent progress in characterizing the

computational complexity of reasoning in circumscribed DL-Lite. We perform a two-dimensional analysis,

considering different languages of the DL-Lite family, and varying how concepts and roles are treated. In

addition to classical circumscription, we consider the recently studied pointwise circumscription, which

shows better complexity, in some cases, and remains decidable in the presence of minimized roles.
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1. Introduction

As decidable fragments of first-order logic, Description Logics (DLs) are intrinsically monotonic

and do not allow to perform commonsense reasoning. To overcome this limitation, several

non-monotonic extensions of DLs have been proposed [1, 2, 3, 4, 5]. A prominent research line

here is given by circumscribed DLs [6, 7, 8, 9, 10].

Circumscription, as originally introduced by McCarthy to formalize commonsense reasoning

[11], extends first-order logic with the ability to minimize predicate extensions. Later it was

extended to allow fixed and varying predicates [12]; a so-called circumscription pattern specifies

how predicates are partitioned into these three types. The non-monotonic extensions of DLs

based on circumscription are very expressive, and the complexity of reasoning increases ac-

cordingly, up to undecidability (a common issue affecting many non-monotonic logics). The

computational complexity of reasoning in expressive circumscribed DLs has been largely classi-

fied in [6, 8]. Moreover, [9, 10, 8] deal with the low-complexity logics ℰℒ and DL-Lite; early

preliminary results for DL-Lite can be found in [13].

In this paper, we focus on the DL-Lite family and address three gaps that remain in the above

rich set of results. First, we provide decidability and even tractability results for circumscribed

knowledge bases with minimized and fixed roles and nonempty TBoxes. Previous decidabil-

ity results concerned: (i) 𝒜ℒ𝒞𝒬𝒪 with minimized roles but empty TBoxes (reasoning with

nonempty TBoxes is undecidable) [6], and (ii) DL-Lite
ℋ
Bool and DL-Lite

ℱ
Bool with fixed roles [8].
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Second, we extend the analysis of reasoning in the DL-Lite family by addressing concept

satisfiability, subsumption, and instance checking (with implications on conjunctive query

answering). We refine and extend the lower complexity bounds for query answering in DL-Lite

provided in [9], as well as the recent results in [10], where—unlike our results—lower complexity

bounds rely on priorities, and roles can be neither minimized nor fixed. Similarly, the results

of [7] for DL-Lite extended with defeasible inclusions do not overlap with ours. Defeasible

inclusions can be encoded in circumscription (by replacing each 𝐶 ⊑𝑛 𝐷 with 𝐶 ⊓ ¬𝐴𝑏 ⊑ 𝐷
for a minimized fresh concept name 𝐴𝑏) but this falls beyond DL-Lite and DL-LiteHorn .

Third, we consider pointwise circumscription in the DL-Lite family. Pointwise circumscribed

DLs were introduced in [14], and the complexity of reasoning has been characterized for

𝒜ℒ𝒞ℐ𝒪 [15]. If roles can be minimized or fixed and nesting of quantifiers is disallowed, then

reasoning in pointwise circumscribed 𝒜ℒ𝒞ℐ𝒪 is decidable in NExp-time. This is notable since,

under the same assumptions, reasoning under global circumscription is undecidable already

for 𝒜ℒ𝒞 [6]. In pointwise circumscription, the single global minimality check of classical

circumscription is replaced by multiple local minimality checks at all domain elements and their

immediate neighborhood. The semantics of [15] is closely related to pointwise circumscription

as introduced by Lifschitz for first-order logic [16], with some important differences: varying

predicates are not allowed to be reconfigured across the model, and the minimization at a single

tuple is replaced by multiple minimizations at one domain element and its direct neighborhood.

We perform a two-dimensional analysis considering the generality of circumscription patterns

and the expressiveness of the DL language. Our main contributions are summarized as follows:

∘ Under the assumption that no predicate is varying, concept satisfiability remains tractable

in DL-Lite
ℋ

under global and pointwise circumscription. Tractability is not preserved in

DL-LiteHorn and Σ𝑝
2-hardness holds for DL-LiteBool .

∘ Reasoning is intractable already in DL-Lite if predicates are allowed to vary. We provide a Σ𝑝
2

upper bound for concept satisfiability in DL-Lite
ℋ

under global circumscription and an NP

upper bound for DL-Lite under pointwise circumscription, under some syntactic restrictions.

∘ We show that if no restrictions on the circumscription pattern are assumed, concept satis-

fiability is undecidable in DL-Lite
ℋ
Bool under global circumscription. The undecidability is

shown via a reduction from the domino problem, and it builds a KB in which varying roles are

subsumed by minimized ones. We note that the latter falls into a fragment where pointwise

circumscription is decidable in NExp-time.

2. Preliminaries

We recall some DLs of the DL-Lite family [17]. We consider countably infinite, pairwise disjoint

sets 𝑁𝐶 of concept names and 𝑁𝑅 of role names. Roles 𝑅 are either a role name 𝑟 ∈ 𝑁𝑅 or

its inverse 𝑟−; if 𝑅 = 𝑟− is an inverse role, then 𝑅−
denotes 𝑟. Basic concepts take the form

𝐴 or ∃𝑅, with 𝐴 ∈ 𝑁𝐶 a concept name and 𝑅 a role. In basic DL-Lite, concept inclusions

take the form 𝐵1 ⊑ 𝐵2 or 𝐵1 ⊑ ¬𝐵2 with 𝐵1 and 𝐵2 basic concepts. We consider also

the variants DL-LiteHorn and DL-LiteBool . The former allows concept inclusions of the form

𝐵1 ⊓ . . . ⊓ 𝐵𝑛 ⊑ 𝐵 and 𝐵1 ⊓ . . . ⊓ 𝐵𝑛 ⊑ ¬𝐵 where 𝐵𝑖 and 𝐵 are basic concepts, while in



the latter we may write concept inclusions 𝐶 ⊑ 𝐷, where 𝐶 and 𝐷 are arbitrary Boolean

combinations of basic concepts built using ⊓,⊔ and ¬. Let ℒ be one of DL-Lite, DL-LiteHorn or

DL-LiteBool . An ℒ TBox 𝒯 is a finite set of ℒ concept inclusions. We extend these three logics

with role inclusions of the form 𝑅 ⊑ 𝑆, where 𝑅 and 𝑆 are roles. An ℒℋ
TBox is a finite set of ℒ

concept inclusions and role inclusions. An ℒ(ℋ)
knowledge base (KB) 𝒦 is a pair consisting of

an ABox 𝒜 and an ℒ(ℋ)
TBox. The latter is defined as a finite set of assertions of the forms 𝐴(𝑐)

and 𝑟(𝑐, 𝑑), where 𝐴 ∈ 𝑁𝐶 , 𝐵 ∈ 𝑁𝑅, and 𝑐, 𝑑 are individuals from a countably infinite alphabet

𝑁𝐼 , disjoint from 𝑁𝐶 and 𝑁𝑅. The semantics of these DLs, and in particular the notion of a

model are defined as usual; please see [17]. We write ℐ |= Γ if ℐ is a model of the TBox or KB

Γ, and use 𝑀(Γ) to denote the set of models of Γ.

2.1. Circumscribed DLs

We recall the notion of circumscription for DLs. Following [6], we denote circumscription

patterns as triples 𝒫 = (𝑀,𝑉, 𝐹 ), where 𝑀,𝑉 , and 𝐹 are mutually disjoint sets partitioning

the predicates in 𝒦, respectively standing for minimized, varying, and fixed predicates
1
. If 𝒦 is a

KB and 𝒫 = (𝑀,𝑉, 𝐹 ) a circumscription pattern such that 𝑀,𝑉 and 𝐹 partition the signature

of 𝒦, we say that “𝒦 is circumscribed with the pattern 𝒫”, in symbols Circ𝒫(𝒦).

Definition 1. Let 𝒫 = (𝑀,𝑉, 𝐹 ) be a circumscription pattern, and assume a pair of interpreta-

tions ℐ,𝒥 . We write ℐ ⪯𝒫 𝒥 if the following conditions are satisfied:

(i) Δℐ = Δ𝒥
and 𝑎ℐ = 𝑎𝒥 for all individuals 𝑎,

(ii) 𝑄ℐ ⊆ 𝑄𝒥
for all 𝑄 ∈ 𝑀 , and

(iii) 𝑄ℐ = 𝑄𝒥
for all 𝑄 ∈ 𝐹 .

We write ℐ ≺𝒫 𝒥 , if ℐ ⪯𝒫 𝒥 and 𝑄ℐ ⊂𝑄𝒥
for some 𝑄∈𝑀 .

Definition 2. An interpretation ℐ is a minimal model of Circ𝒫(𝒦), in symbols ℐ |= Circ𝒫(𝒦),
if ℐ |= 𝒦 and there is no interpretation 𝒥 s.t. 𝒥 |= 𝒦 and 𝒥 ≺𝒫 ℐ . We use MM (𝒦,𝒫) to denote

the set of minimal models of Circ𝒫(𝒦).

Now we recall pointwise circumscription [15]. We can see that Definition 1 does not restrict in

any way how the extension of 𝑄 may differ in ℐ and 𝒥 . It quantifies globally over all subsets of

𝑄𝒥
. We call this semantics global circumscription. In pointwise circumscription, we use a more

cautious comparability relation ∼∙
between interpretations, which may differ only locally on

the concepts and roles satisfied by one domain element.

Definition 3. Assume a pair of interpretations ℐ,𝒥 with Δℐ = Δ𝒥
and 𝑎ℐ = 𝑎𝒥 , for all 𝑎 ∈ 𝑁𝐼 .

We write ℐ ∼∙ 𝒥 if there exists 𝑒 ∈ Δℐ
such that:

(i) 𝐴ℐ ∖ {𝑒} = 𝐴𝒥 ∖ {𝑒} for all concept names 𝐴, and

(ii) 𝑟ℐ ∩ (Δ×Δ) = 𝑟𝒥 ∩ (Δ×Δ) for all role names 𝑟, where Δ = Δℐ ∖ {𝑒}.

1

We do not assume priorities over the minimized predicates



Definition 4. Assume a circumscription pattern 𝒫 and a pair of interpretations ℐ,𝒥 . We write

ℐ ⪯∙
𝒫 𝒥 , if ℐ ⪯𝒫 𝒥 and ℐ ∼∙ 𝒥 . We write ℐ ≺∙

𝒫 𝒥 , if ℐ ⪯∙
𝒫 𝒥 and 𝑄ℐ ⊂𝑄𝒥

for some 𝑄∈𝑀 .

Definition 5. An interpretation ℐ is a pointwise minimal model of Circ𝒫(𝒦), in symbols

ℐ |=∙ Circ𝒫(𝒦), if ℐ |= 𝒦 and there is no interpretation 𝒥 s.t. 𝒥 |= 𝒦 and 𝒥 ≺∙
𝒫 ℐ . We use

PMM (𝒦,𝒫) to denote the set of pointwise minimal models of Circ𝒫(𝒦).

The reasoning tasks of concept satisfiability, subsumption, and instance checking are adapted

to global circumscription and pointwise circumscription. Assume a globally (resp. pointwise)

circumscribed knowledge base Circ𝒫(𝒦):

• A concept 𝐶 is satisfiable w.r.t. Circ𝒫(𝒦) if there exists ℐ ∈ MM (𝒦,𝒫) (resp.

PMM (𝒦,𝒫)) such that 𝐶ℐ ̸= ∅.

• For all concepts 𝐶 and 𝐷, 𝐶 is subsumed by 𝐷 w.r.t. Circ𝒫(𝒦) if 𝐶ℐ ⊆ 𝐷ℐ
, for all

ℐ ∈ MM (𝒦,𝒫) (resp. PMM (𝒦,𝒫)). In symbols, Circ𝒫(𝒦) |=(∙) 𝐶 ⊑ 𝐷.

• Given any individual 𝑎 and any concept 𝐶 , 𝑎 is an instance of 𝐶 w.r.t. Circ𝒫(𝒦) if

𝑎ℐ ∈ 𝐶ℐ
for all ℐ ∈ MM (𝒦,𝒫) (resp. PMM (𝒦,𝒫)). In symbols, Circ𝒫(𝒦) |=(∙) 𝐶(𝑎).

In expressive DLs the reasoning tasks above can be interreduced [6], but in DL-Lite fragments

the reductions are trickier. In [7] the authors provide reductions between reasoning tasks for

DL-Lite
ℋ

, but they rely on varying predicates and do not extend to all the settings we consider

here.

Example 1. Consider the following simple example: Students normally do not work; Ann is

a student. We expect to conclude that Ann does not work. If later it is stated that Ann works,

then the previous conclusion should be retracted without deriving any contradiction. This example

can be encoded as an instance checking problem in DL-LiteBool with both global and pointwise

circumscription, using one abnormality predicate AbStudent:

Student ⊓ ∃hasJob ⊑ AbStudent (a working student is an abnormal student)

Student(Ann) .

If AbStudent is minimized and the other predicates are allowed to vary, then the above knowl-

edge base entails ¬∃hasJob(Ann) (as expected), under both semantics. After adding the as-

sertion ∃hasJob(Ann), the resulting knowledge base is consistent under both semantics and

¬∃hasJob(Ann) is not derivable any longer.

Example 2. Circumscribed DL-Lite𝑐𝑜𝑟𝑒 allows us to do some reasoning under the closed world

assumption. For instance, given the following knowledge base where all predicates are minimized,

Student ⊑ Person Student ⊑ ∃hasStudentCard Person(Bob)

it can be concluded that ¬Student(Bob) and ¬∃hasStudentCard(Bob), under both semantics.

The next example illustrates the power of circumscription by showing that it may introduce

concept unions and functional roles (two features that in general increase complexity).



Example 3. Assume the following TBox:

Company_Owner ⊑ Has_Income Employee ⊑ Has_Income

and the pattern 𝑀 = {Has_Income} and 𝐹 = {Company_Owner,Employee}. We can derive

that Circ𝒫(𝒯 ) |= Has_Income ⊑ Company_Owner ⊔ Employee. Moreover, if we add:

Company_Owner(Bob) Company_Owner ⊑ ∃associated_VAT

where associated_VAT ∈ M, one can derive that there is a unique VAT number associated to 𝐵𝑜𝑏.

Global Circumscription vs Pointwise Circumscription. Pointwise circumscription is a

sound approximation of circumscription, as all minimal models are also pointwise minimal.

The converse is often true. In fact, we provide a sufficient condition in Proposition 1. However,

there are cases where they differ, as pointwise minimal models need not be globally minimal.

Example 4. Consider the DL-Lite𝑐𝑜𝑟𝑒 TBox 𝒯 = {𝐴 ⊑ ∃𝑅,∃𝑅− ⊑ 𝐴} and with the circum-

scription pattern 𝒫 = (𝑀, ∅, ∅) such that 𝑀 = {𝐴,𝑅}.The interpretation ℐ = {𝑒, 𝑑} with

𝐴ℐ = {𝑒, 𝑑} and 𝑅ℐ = {(𝑒, 𝑑), (𝑑, 𝑒)} is a pointwise minimal model. However, ℐ ̸∈ MM (𝒯 ,𝒫).

3. Complexity Results

Bonatti et al. [6] provide an extensive study of the computational complexity of expressive

circumscribed DLs. Analogously to the propositional case [18, 19, 20], the complexity is signifi-

cantly affected by the choice of the circumscription patterns. We will see that this is also the

case for DL-Lite. In the following sections, we study the complexity of reasoning in three DLs

in the DL-Lite family [17] under three different forms of circumscription patterns.

Definition 6. Given a circumscription pattern 𝒫 = (𝑀,𝑉, 𝐹 ), we say that

(i) 𝒫 is a basic pattern if 𝑉 = ∅,

(ii) 𝒫 is a role-varying pattern if roles are only allowed to vary, i.e. (𝑀 ∪ 𝐹 ) ∩𝑁𝑅 = ∅,

(iii) 𝒫 is a general pattern if no restrictions are imposed.

Table 1 summarizes our complexity results. They are stated for concept satisfiability. For basic

patterns, we can transfer the lower bounds to the complement of subsumption and instance

checking (as concept unsatisfiability easily reduces to subsumption and to instance checking),

but without varying predicates, we do not have the converse reductions, thus the P-time upper

bound is given only for concept satisfiability. In contrast, both lower and upper bounds in

columns 2,3, 5 and 6 apply to the complement of subsumption and instance checking [7].

Before we delve deeper into the effect of different kinds of circumscription patters, we first

observe that we can infer some lower bounds from propositional logic. In particular, we can

rephrase in our setting some results proved in [18] for propositional logic under the extended

close world assumption (ECWA), and in [19] for circumscribed propositional formulas. This can

be done using only concept names, and does not require roles. It is not hard to see that in such

a setting global and pointwise circumscription coincide, and we get the following.



Global Circumscription Pointwise Circumscription
basic varying roles general basic varying roles general

DL-Lite(ℋ) NL-c ≥ NP and ≤ Σ𝑝
2 ? ≤ P ≥ NP and ≤ NP⋆ ≤ NExp‡

DL-Lite(ℋ)
Horn ≥ NP ≥ NP and ≤ Σ𝑝

2
◇ ? ≥ NP ≥ NP ≤ NExp‡

DL-Lite(ℋ)
Bool ≥ Σ𝑝

2 ≥ Σ𝑝
2 and ≤ NExpS undecidable† ≥ Σ𝑝

2 ≥ Σ𝑝
2 ≤ NExp‡

Table 1
Complexity of concept satisfiability in circumscribed DL-Lite. ·◇,S Follows from [10]. ·† Undecidability is
shown for DL-LiteℋBool , the remaining lower bounds hold even without role inclusions. ·‡ If varying roles
are subsumed by minimized or fixed roles, it follows from [15]. ·⋆ Under some syntactic restrictions.

Theorem 1. Concept satisfiability under both global and pointwise circumscription is:

• NP-hard for DL-LiteHorn , even with 𝑉 = ∅,

• Σ𝑝
2-hard for DL-LiteBool , even with 𝑉 = ∅.

• NP-hard for DL-Lite if 𝑉 ̸= ∅.

Subsumption and instance checking are hard for the complementary class.

All the NP and Σ𝑝
2 hardness results in Table 1 follow from this theorem. We devote the rest

of the paper to proving the remaining bounds: the membership in NL and P for basic patterns,

the membership in NP and Σ𝑝
2 for varying roles, and the undecidability for general patterns.

3.1. Basic Patterns

In this section, we show that, under the assumption that no predicate is allowed to vary, concept

satisfiability is tractable for DL-Lite
ℋ

, under both global and pointwise circumscription. This is

remarkable, especially since we allow for roles to be minimized or fixed. For expressive DLs

in 𝒜ℒ𝒞ℐ𝒪𝒬 the latter assumption easily leads to undecidability [6], while Bonatti et al. [7]

proved that reasoning in ℰℒ with defeasible inclusions is undecidable if roles are fixed.

We first observe that the satisfiability of negated concepts is classical in both globally cir-

cumscribed and pointwise circumscribed DL-Lite
ℋ

, DL-Lite
ℋ
Horn , and DL-Lite

ℋ
Bool . The latter

follows from a result in [9] (Theorem 5). This does not extend to positive concepts. However,

in DL-Lite
ℋ

we can still obtain a tractability result relying on the fact that in a minimal model

every object in the extension of a minimized predicate must be justified by an assertion in the

ABox or a fixed predicate.

In what follows we assume w.l.o.g. that the given circumscribed KB 𝒦 does not contain

inclusions of the form ⊤ ⊑ 𝐶 with 𝐶 ̸∈ 𝐹 . If such inclusions are present, then we can

remove them by introducing a fresh concept name 𝑇𝑜𝑝, adding the inclusion ⊤ ⊑ 𝑇𝑜𝑝 and

replacing any ⊤ ⊑ 𝐶 ∈ 𝒦 with 𝑇𝑜𝑝 ⊑ 𝐶 , and extending the circumscription pattern 𝒫 to

𝒫 ′ = (𝑀,𝑉, 𝐹 ∪ {𝑇𝑜𝑝}); these steps preserve both global and pointwise semantics.

We define the dependency graph of a DL-Lite
ℋ

KB𝒦 = (𝒜, 𝒯 ) as the directed graph𝐷𝐺(𝒦) =
(𝑉𝒦, 𝐸𝒦) where 𝑉𝒦 is given by all concept names and role names occurring in 𝒦, and 𝐸𝒦



contains the pairs (𝑃,𝑄) for which there exists 𝛼 ∈ 𝒯 such that (1) 𝑃 occurs on the left-hand

side of 𝛼, and (2) 𝑄 occurs on the right-hand side of 𝛼 and is not under negation.

Theorem 2. Assume a DL-Lite
ℋ

KB 𝒦 = (𝒜, 𝒯 ) and a basic pattern 𝒫 . A concept 𝐵 is satisfiable

w.r.t Circ𝒫(𝒦) iff 𝒦 has a classical model ℐ with 𝑄ℐ ̸= ∅ for some predicate 𝑄 such that:

(a) there exists a path in 𝐷𝐺(𝒦) from 𝑄 to 𝐵 if 𝐵 ∈ 𝑁𝐶 , and to 𝑅 if 𝐵 is of the form ∃𝑅, and

(b) 𝑄 is a fixed predicate or occurs in 𝒜.

Since consistency checking in DL-Lite
ℋ

is complete forNL [17], and the conditions of Theorem

2 can be checked non-deterministically in logarithmic space, we get:

Theorem 3. In DL-Lite
ℋ

concept satisfiability w.r.t. circumscribed KBs where 𝑉 = ∅ is NL-

complete.

The hardness follows from classical reasoning in DL-Lite
ℋ

, which corresponds to circum-

scribed DL-Lite
ℋ

with all predicates fixed. Under pointwise circumscription, the (if) direction

of Theorem 2 holds too, but the (only if) may fail. Recall Example 4. Given the dependency

graph of 𝒯 and the concept 𝐴, one can easily observe that neither (a) nor (b) in Theorem 2 is

satisfied. Intuitively, 𝐴 is self-supported, using a cycle involving 𝐴 in the dependency graph of

𝒯 . A characterization very similar to Theorem 2 for pointwise circumscription can be achieved

by accommodating such cycles. To do this, we use a more sophisticated dependency graph.

Definition 7 (Dependency graph revisited). (Re)define the dependency graph 𝐷𝐺(𝒦) =
(𝑉𝒦, 𝐸𝒦) of a DL-Lite

ℋ
KB 𝒦 = (𝒜, 𝒯 ) as follows. The set of vertices 𝑉𝒦 is the least set containing:

• all positive concepts 𝐶 such that for some 𝐷, either (𝐶 ⊑ 𝐷) ∈ 𝒯 or (𝐷 ⊑ 𝐶) ∈ 𝒯 ;

• all the concepts 𝑃 such that for some 𝑎 𝑃 (𝑎) ∈ 𝒜
• all the concept ∃𝑃 and ∃𝑃−

such that for some 𝑎, 𝑏, 𝑃 (𝑎, 𝑏) ∈ 𝒜.

• all nominals {𝑎} such that 𝑎 occurs in 𝒦.

The set of edges 𝐸𝒦, labelled with the symbols in {𝑖, 𝑐}, is the least set containing:

• all (𝐶, 𝑖,𝐷) such that there exists (𝐶 ⊑ 𝐷) ∈ 𝒯 ;

• all ({𝑎}, 𝑖, 𝐶) such that 𝐶(𝑎) ∈ 𝒜;

• all ({𝑎}, 𝑖,∃𝑅) such that for some 𝑏, 𝑅(𝑎, 𝑏) ∈ 𝒜;

• all ({𝑎}, 𝑖,∃𝑅−) such that for some 𝑏, 𝑅(𝑏, 𝑎) ∈ 𝒜;

• all (∃𝑅, 𝑖, ∃𝑆) and (∃𝑅−, 𝑖,∃𝑆−) such that for 𝑅 ⊑ 𝑆 ∈ 𝒯 ;

• all (∃𝑅, 𝑐, ∃𝑅−) such that for some 𝐷, (𝐷 ⊑ ∃𝑅) ∈ 𝒯 .

Edges labelled with 𝑐 are called cross edges, while the rest (labelled by 𝑖) are inner edges.

Definition 8 (Good paths, Cycles). A path in 𝐷𝐺(𝒦) is a sequence 𝜋 of edges in 𝐸𝒦:

(𝐶0, ℓ1, 𝐶1)(𝐶1, ℓ2, 𝐶2) · · · (𝐶𝑛−1, ℓ𝑛, 𝐶𝑛) .

We say that 𝜋 is a path from 𝐶0 to 𝐶𝑛. If 𝐶𝑛 = 𝐶0 then the path is called a cycle. A path is good

if ℓ𝑖 = 𝑐 implies ℓ𝑖+1 ̸= 𝑐 (1 ≤ 𝑖 ≤ 𝑛− 1), and a cycle is good if ℓ𝑖 = 𝑐 implies ℓ(𝑖mod𝑛)+1 ̸= 𝑐.



Definition 9 (Inner segments). An inner segment of a path 𝜋 = 𝑒1 . . . 𝑒𝑛 in 𝐷𝐺(𝒦) (where

𝑒𝑖 ∈ 𝐸𝒦, for 𝑖 = 1, . . . , 𝑛) is a subpath 𝑒𝑘𝑒𝑘+1 . . . 𝑒𝑘+𝑚 of 𝜋 (1 ≤ 𝑘 ≤ 𝑘 +𝑚 ≤ 𝑛) such that

for all 𝑖 = 𝑘, . . . , 𝑘 +𝑚, 𝑒𝑖 is an inner edge of 𝐷𝐺(𝒦). Such an inner segment of 𝜋 is maximal

iff it is not a strict subpath of any inner segment of 𝜋. An inner segment 𝑒𝑘 . . . 𝑒𝑘+𝑚 of 𝜋 is

satisfiable (w.r.t. 𝒦) iff there exists ℐ ∈ M (𝒦) such that 𝐶ℐ
𝑘 ̸= ∅, with 𝑒𝑘 = (𝐶𝑘, ℓ𝑘+1, 𝐶𝑘+1).

This refined notion of dependency graph allows us to distinguish cycles in the interpretation

from other cycles in the dependency graph. The notion of good cycles ensures that we only

consider cycles that pass over more than one object in the interpretation, i.e., passing at least one

cross edge, but excluding consecutive symmetric cross edges. The inner segments correspond

to sequences of concept implications that may need to hold at one domain element.

Theorem 4. Assume a DL-Lite
ℋ

KB 𝒦 = (𝒜, 𝒯 ) and a basic pattern 𝒫 . Under pointwise

circumscription, a concept 𝐵 is satisfiable w.r.t Circ𝒫(𝒦) iff at least one of the following hold:

(a) there exists a path from {𝑎} to 𝐵 in 𝐷𝐺(𝒦) and 𝒦 is satisfiable,

(b) there exists 𝑄 ∈ 𝑉𝒦 with 𝑄 ∈ 𝐹 , or 𝑅 ∈ 𝐹 if 𝑄 is of the form ∃𝑅(−)
, such that

(1) there exists a path from 𝑄 to 𝐵 in 𝐷𝐺(𝒦), and

(2) there exists ℐ ∈ 𝑀(𝒦) such that 𝑄ℐ ̸= ∅;

(c) there exists a path 𝜋 in 𝐷𝐺𝒦 to 𝐵 from a good cycle involving at least one cross edge, and

such that all the maximal inner segments in 𝜋 in the cycle are satisfiable w.r.t. 𝒦.

Conditions (a) and (b) together check exactly the same conditions as in Theorem 2 (organized

and formulated differently due to the modified definition of 𝐷𝐺(𝒦)). The new condition is

(c), which identifies when a concept is satisfiable in a pointwise minimal model but not under

global circumscription. Example 4 falls into this category: 𝐴 satisfies condition (c). Checking

the conditions of Theorem 4 is tractable, but we leave its precise complexity open.

Theorem 5. Concept satisfiability in pointwise circumscribed DL-Lite
ℋ

with 𝑉 = ∅ is in P.

Theorem 2 and Theorem 4 differ only on condition (c), and thus concept satisfiability coincides

when 𝐷𝐺(𝒦) is acyclic. In fact, both semantics coincide for any reasoning task.

Proposition 1. Given a KB 𝒦 = (𝒜, 𝒯 ) in DL-Lite
ℋ

and a basic pattern 𝒫 , if 𝐷𝐺(𝒦) is acyclic

then PMM (𝒦,𝒫) = MM (𝒦,𝒫).

3.2. Role-varying Patterns

In this section, we extend circumscription patterns with varying predicates. In particular, we

study the complexity under the assumption that all roles are varying. In [6] circumscription

patterns were restricted in this way to obtain decidability and a NExp
NP

upper bound in 𝒜ℒ𝒞ℐ𝒪.

We obtain upper bounds that are significantly lower: Σ𝑝
2 for global circumscription in DL-Lite

ℋ
,

and NP for pointwise circumscription in plain DL-Lite (under some syntactic restrictions on the

axioms). The latter is tight by Theorem 1, and we believe that the former may also be so.



Recall the following result from [7, Theorem 4.4], which allows us to eliminate varying

concepts: for each concept name 𝐴 ∈ 𝑉 , we introduce a fresh varying role 𝑅𝐴 and each

occurrence of 𝐴 in 𝒯 is replaced with ∃𝑅𝐴.

Theorem 6. If ℒ is a DL supporting unqualified existentials, then reasoning w.r.t. (pointwise)

circumscribed KBs in ℒ such that 𝑉 ∩ 𝑁𝐶 ̸= ∅ can be reduced to reasoning w.r.t. (pointwise)

circumscribed KBs in ℒ such that 𝑉 ⊆ 𝑁𝑅.

We assume w.l.o.g. that all concepts are minimized or fixed, while roles are only varying.

We show that circumscribed DL-Lite
ℋ

has the small model property, following the model

construction for DL-Lite
ℋ

with defeasible inclusions used in [7].

Lemma 1. Assume a KB 𝒦 in DL-Lite
ℋ

circumscribed with 𝒫 = (𝑀,𝑉, 𝐹 ), with 𝑁𝑅 ⊆ 𝑉 , and

a concept 𝐶 . If there exists ℐ ∈ MM (𝒦,𝒫) such that 𝐶ℐ ̸= ∅, then there exists 𝒥 ∈ MM (𝒦)
such that (i) |Δ𝒥 | is polynomial in the size of 𝒦, and (ii) 𝐶𝒥 ̸= ∅.

Theorem 7. Concept satisfiability in circumscribed DL-Lite
ℋ

with only varying roles is in Σ2
𝑝.

Subsumption and instance checking are in Π𝑝
2.

Proof. Assume a concept 𝐶0 and a circumscribed KB Circ𝒫(𝒦) in DL-Lite
ℋ

. From Lemma 1, for

checking satisfiability of 𝐶0 w.r.t. Circ𝒫(𝒦) if suffices to guess an interpretation whose domain

is polynomial in the size of 𝒦 and use an NP oracle to check that it is a model of Circ𝒫(𝒦).

NP upper bound for DL-Lite We provide in the full version of the paper an NP algorithm

for concept satisfiability in pointwise circumscribed DL-Lite restricted to axioms of the forms

𝐴 ⊑ (¬)𝐶 and 𝐶 ⊑ (¬)𝐴 with 𝐴 concept name and 𝐶 a basic concept. That is, we do not allow

existentials on both sides of the same axiom. In classical DL-Lite this assumption can be done

w.l.o.g., but in pointwise circumscribed DL-Lite traditional normalization cannot be taken for

granted [15]. We use the mosaic technique. First, we define so-called tile types that intuitively

are small model fragments. Similarly to [15], additionally to the local minimality conditions on

the tile types, we use special labelings to verify that minimality is preserved when a full model

is assembled from tiles. Then we generate a system of extended inequalities that has one variable

𝑥𝑡 for each tile type 𝑡 [21]. The solutions to this system of inequalities are functions 𝑁 assigning

to each variable 𝑥𝑡 a nonnegative integer number or 𝜔. The inequalities guarantee that, from

each solution 𝑁 , if we take 𝑁(𝑥𝑡) copies of each tile type 𝑡 we assemble correctly a pointwise

minimal model. This is very similar to the technique used for obtaining the NExpTime upper

bound in [15]. The key difference here is that, even if the number of variables 𝑥𝑡 is exponential

in 𝒦, the number of inequalities is only polynomial in it. Therefore, one only needs to focus

on those solutions where only polynomially many variables are nonzero [22]. This allows us

to check that a solution exists in nondeterministic polynomial time in the size of the system

[21, 23]. Provided that we can check the minimality of a tile type in polynomial time, which is

feasible for DL-Lite
ℋ

[18], we obtain the desired upper bound.

Theorem 8. Concept satisfiability in pointwise circumscribed DL-Lite is NP-complete if 𝑁𝑅 ⊆ 𝑉
and no axiom of the form ∃𝑅 ⊑ ∃𝑆 is allowed.

We belive that the upper bound above holds for pointwise circumscribed DL-Lite
ℋ

without

this restriction on the axioms, but leave it open for future work.



3.3. General Patterns

In this section, we impose no restriction on the circumscription patterns: concepts and roles

may freely participate in the minimized, fixed, and varying predicates. However, we show that

already allowing roles to be minimized leads to undecidability in circumscribed DL-Lite
ℋ
Bool .

We reduce the domino problem to the complement of instance checking, relying heavily

on minimized and varying roles. We simulate the TBox constructed in [6] (see Lemma 27)

for showing the undecidability of circumscribed 𝒜ℒ𝒞 with minimized roles. Due to space

constraints, we focus on explaining how to simulate the axioms that are not expressible in

DL-Lite
ℋ
Bool , and provide the detailed proof in the full version of the paper.

As usual, the key challenge is to enforce a grid. We use the roles𝐻 and𝑉 for the horizontal and

vertical successor relations. In [6] the authors use an axiom ⊤ ⊑ 𝑁 ⊔ (∃𝐻.∃𝑉.𝐵 ⊓∃𝑉.∃𝐻.¬𝐵)
to state that a domain element is either in 𝑁 or it does not participate in a correct cell of the

grid. We can simulate qualified existentials using auxiliary roles in the usual way.

⊤ ⊑ 𝑁 ⊔ (𝐵ℎ𝑣 ⊓𝐵𝑣ℎ) 𝐵ℎ𝑣 ⊑ ∃𝐻 ′ 𝐵𝑣ℎ ⊑ ∃𝑉 ′ 𝐻 ′ ⊑ 𝐻

∃𝐻 ′− ⊑ 𝐵ℎ′ ∃𝑉 ′− ⊑ 𝐵𝑣′ 𝐻 ′′ ⊑ 𝐻
𝐵ℎ′ ⊑ ∃𝑉 ′′ 𝐵𝑣′ ⊑ ∃𝐻 ′′ 𝑉 ′ ⊑ 𝑉

∃𝑉 ′′− ⊑ 𝐵 ∃𝐻 ′′− ⊑ ¬𝐵 𝑉 ′′ ⊑ 𝑉

where 𝑁,𝐻 and 𝑉 are minimized, while 𝐵,𝐵ℎ𝑣, 𝐵𝑣ℎ, 𝐵ℎ′ , 𝐵𝑣′ , 𝐻
′, 𝐻 ′′, 𝑉 ′

and 𝑉 ′′
are varying.

The key challenge now is to propagate a varying ‘error’ concept 𝐷 when an element does not

participate in a correct cell of the grid. This is achieved in [6] with the following 𝒜ℒ𝒞 axioms:

¬𝑁 ⊑ 𝐷 𝐷 ⊑ ∀𝐻.𝐷 𝐷 ⊑ ∀𝑉.𝐷 ∃𝐻.𝐷 ⊑ 𝐷 ∃𝑉.𝐷 ⊑ 𝐷

We instead simulate the following weaker axioms

¬𝑁 ⊑ 𝐷 𝐷 ⊑ ∃𝐻.𝐷 𝐷 ⊑ ∃𝑉.𝐷 ¬𝐷 ⊑ ∃𝐻.¬𝐷 ¬𝐷 ⊑ ∃𝑉.¬𝐷

using the following set of axioms, and letting all the fresh roles vary:

¬𝑁 ⊑ 𝐷 𝐷 ⊑ ∃𝐸ℎ ⊓ ∃𝐸𝑣 ¬𝐷 ⊑ ∃�̄� ⊓ ∃𝑉
∃𝐸ℎ

− ⊑ 𝐷 𝐸ℎ ⊑ 𝐻 ∃�̄�− ⊑ ¬𝐷 �̄� ⊑ 𝐻

∃𝐸𝑣
− ⊑ 𝐷 𝐸𝑣 ⊑ 𝑉 ∃𝑉 − ⊑ ¬𝐷 𝑉 ⊑ 𝑉

Using the fact that all the varying roles introduced above are subroles of 𝐻 or 𝑉 , and that 𝐻
and 𝑉 are minimized, we can show that, in a minimal model the following claim holds.

Claim 1. The roles 𝐻 and 𝑉 are functional at every domain element 𝑑 such that 𝑑 ∈ ¬𝐷ℐ
.

This allows us to obtain a grid and to lift the undecidability in [6] to DL-Lite
ℋ
Bool .

Theorem 9. Concept satisfiability in circumscribed DL-Lite
ℋ
Bool is undecidable.

We underline that the reduction does not carry over to pointwise circumscribed DL-Lite
ℋ
Bool

as it heavily relies on the fact that in the absence of a proper cell the varying concept 𝐷 is

propagated over possibly infinitely many domain elements.

Observe that the TBox above is such that each varying role is subsumed by a minimized one.

Under the same assumption, we get a decidability result for pointwise circumscription:



Theorem 10. Concept satisfiability in pointwise circumscribed DL-Lite
ℋ
Bool is in NExp-time under

the assumption that varying roles are subsumed by minimized or fixed ones.

The result above follows from the more general result for pointwise circumscribed 𝒜ℒ𝒞ℐ𝒪
with no nested quantifiers [15], extended with the assumption that varying roles are subsumed

by minimized ones. With the latter assumption, the mosaic technique used in [15] can be tuned

to accommodate varying roles. (Intuitively, this relies on the fact that varying roles cannot be

used for generating new connections).

4. Conclusion

In this paper, we have established several new results for circumscribed logics of the DL-

Lite family. Remarkably, we have established decidability with minimized and fixed roles and

nonempty TBoxes, which had only been considered recently in [15] for more expressive logics

under pointwise circumscription, and with significantly higher complexity bounds. Several

questions remain for further investigation. For instance, the precise complexity of subsumption

for DL-Lite
ℋ

with basic patterns is not yet determined, and we believe that it may be harder

than concept satisfiability. For the other patterns with variable predicates we already have

NP-hardness results that carry over to subsumption, but we lack matching upper bounds. The

lower bounds for role-varying patterns for DL-LiteHorn and DL-LiteBool are inherited from the

first column of Table 1, so it is not unlikely that they will not be tight. Table 1 shows that we

do not know much about DL-Lite and general patterns under global circumscription. These

settings could very well be undecidable, but it is far from obvious how to prove it.

Reducing the complexity of classical circumscription was a key motivation for its pointwise

variant, but it seems that it does not always lead to better complexity in the DL-Lite family. It

does seem to make things more manageable for DL-Lite
ℋ

and varying roles, where we think that

global circumscription is likely to be hard for the second level of the polynomial hierarchy. We

want to understand what happens in this case to DL-LiteHorn and DL-LiteBool . Interestingly, for

basic patterns in DL-Lite
ℋ

, pointwise circumscription seems to make things more challenging,

and may even cause higher complexity.

In this work, we disallowed role disjointness axioms, usually allowed in classical DL-Lite: the

latter affects the complexity under circumscription with priorities [10]. It is open whether this

happens also in our settings. We plan to extend circumscription patterns by allowing priorities

over minimized predicates, a key ingredient for defeasible DLs. Under the latter assumptions,

there are no results for pointwise circumscribed DLs, while for global circumscription some

very recent results can be found in [10]. The data complexity of circumscribed DL-Lite family

is also a future research direction worth investigating. Lastly, another interesting direction is to

look at ℰℒ and extensions, especially under pointwise circumscription.
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