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Abstract
Justifications are a very useful tool for explaining DL consequences. They highlight parts of the ontology
that are responsible for the consequence, and can serve as the basis for more detailed explanations such
as proofs. In this paper, we present an approach that can compute ABox justifications, i.e., justifications
restricted to assertions, for answers to conjunctive queries, assuming that these queries are Datalog-
rewritable over the input ontology. We implemented the approach based on the rewriting tool Clipper
and ProvSQL, which can be used to compute provenance information, including justifications, for SQL
queries. The potentially recursive nature of Datalog rewritings does not allow a direct translation
into SQL queries, but requires some additional processing steps, depending on the cyclic structure of
the Datalog program and the ABox. We show that the set of all ABox justifications can be computed
in reasonable time, and compare the performance with Soufflé, a Datalog engine that also supports
explanations.

Keywords
Query Answering, Justifications, Explanation, Provenance

1. Introduction

Despite the reputation of description logics and other logic-based formalisms of supporting
the inspection and understanding of large and complex domain knowledge, sometimes DL
entailments are far from understandable by themselves. For this reason, research on explanation
approaches for DLs already has a long history. Justifications, which point out the responsible
axioms, are the most popular tool and often enough to understand a given entailment [1, 2,
3, 4], and black-box justification techniques have long been supported in the ontology editor
Protégé [5].1 More detailed proofs of entailments have been investigated for a longer time, but
received less attention so far [6, 7, 8, 9, 10]. They are especially helpful when the justifications
are large or require unintuitive reasoning steps to reach the conclusion. However, justifications
are also useful for computing proofs since they can be used as a preprocessing step to filter
irrelevant axioms from the ontology and make proof computation more efficient [9, 11].
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Related areas of research include provenance for databases [12, 13, 14], which is more gen-
eral than justifications, but does not consider ontologies. Instead of arbitrary provenance
semirings [15], justifications correspond to the so-called why-provenance [16]. There are also
provenance formalisms that can deal with the recursive nature of Datalog programs [17, 18, 19],
but they are not necessary to compute the why-provenance. Provenance has been considered
also for DL-Lite and ℰℒ ontologies, taking the problem of recursive derivations into account
by, e.g. restricting to idempotent semirings [20, 21]. Less closely related is work on proofs for
query answering in DLs or Datalog [22, 19, 23].

In this paper, we consider a type of justifications for conjunctive query answering in Datalog-
rewritable description logics. We report on an implementation that combines the Datalog
rewritings computed by Clipper, which supports Horn-𝒮ℋℐ𝒬 ontologies [24], with ProvSQL,
a tool for computing provenance for database queries [14]. In case the Datalog rewriting is
non-recursive, it can be directly translated into SQL queries over the database, which are
then processed by ProvSQL. For recursive Datalog programs, we need to do some additional
processing based on the cyclic structures in the program and the data. For each answer to the
original query, this method computes all ABox justifications, i.e., minimal sets of ABox assertions
that (together with the TBox) yield the given answer. This can be useful for further computation
of more complex explanations, e.g. proofs [22, 19, 23], since it can reduce large ABoxes to a
handful of facts.

The runtime of this approach is substantially larger than what is required for query answering
in the first place, which is mainly due to ProvSQL computing the provenance for all query
answers at once. In practice, we expect that such explanations are usually only computed
upon request by a user, and only for single answers at a time. We compare the performance of
our approach with Soufflé, a Datalog engine that supports proofs for query atoms [19], from
which one can extract a (possibly non-minimal) set of ABox assertions responsible for the query
answer. In contrast to our approach, this only computes a single justification at a time, but still
requires significant time. The data and instructions for running the experiments can be found
at https://lat.inf.tu-dresden.de/~stefborg/abox-justifications.zip.

2. Preliminaries

We assume that the reader is familiar with the basics of DLs [25]. A concept atom is of the form
𝐴(𝑡), where 𝐴 is a concept name and the term 𝑡 is an individual name or a variable. Similarly,
a role atom is of the form 𝑟(𝑡, 𝑡′), where 𝑟 is a role name and 𝑡, 𝑡′ are terms. A Datalog atom
𝑏(𝑡1, 𝑡2, . . . , 𝑡𝑛) is a relational symbol 𝑏 along with a list of terms as arguments. A Datalog
program is a collection of Datalog rules, each of which is of the form:

ℎ :– 𝑏1, 𝑏2, . . . , 𝑏𝑛

where 𝑛 ≥ 0, ℎ, 𝑏1, . . . , 𝑏𝑛 are atoms, ℎ is the head of the rule, and the conjunction of
𝑏1, 𝑏2, . . . , 𝑏𝑛 is the body of the rule. The predicate in the rule head depends on each pred-
icate occurring in the body. A program is recursive if the transitive closure of the “depends
on”-relation is cyclic.

https://lat.inf.tu-dresden.de/~stefborg/abox-justifications.zip


A conjunctive query (CQ) is a first-order formula of the form 𝑞(�⃗�) = ∃�⃗�.𝜑(�⃗�, �⃗�), where 𝜑 is a
conjunction of concept and role atoms using the variables in �⃗� and �⃗�. The variables in �⃗� are the
answer variables of 𝑞. An answer to 𝑞 over an ontology (𝒜, 𝒯 ) with ABox 𝒜 and TBox 𝒯 is a
|�⃗�|-tuple �⃗� of individual names from𝒜 such that every model of (𝒜, 𝒯 ) satisfies 𝑞(�⃗�) under the
usual semantics of first-order logic (written 𝒜, 𝒯 |= 𝑞(�⃗�)). A Datalog rewriting of 𝑞 w.r.t. 𝒯 is a
tuple (𝑃𝑞,𝒯 , 𝑄), where 𝑃𝑞,𝒯 is a Datalog program with the |�⃗�|-ary query predicate 𝑄, such that,
for all ABoxes 𝒜 over the signature of 𝑞 and 𝒯 , it holds that 𝒜, 𝒯 |= 𝑞(�⃗�) iff 𝒜∪ 𝑃𝑞,𝒯 |= 𝑄(�⃗�).
Clipper is a tool that can compute Datalog rewritings for arbitrary CQs and TBoxes formulated
in Horn-𝒮ℋℐ𝒬 [24].

Example 1. In a scenario where a human operator oversees a collection of drones, each drone
can be connected to an individual describing its surroundings via the role environment. Since
sensor readings are often imperfect, the description can contain additional confidence information.
Consider a CQ 𝑞(𝑥) = ∃𝑦. environment(𝑥, 𝑦)∧LowVisiblity(𝑦)∧HighConfidence(𝑦) over a TBox

WetDrone ⊑ ∃environment.(Rain ⊓ HighConfidence)

Rain ⊑ LowVisibility

The query returns a set of individuals (drones) that are likely in a low-visibility environment. The
ontology additionally specifies that rain decreases visibility and, if a drone is wet, it is likely raining.
A Datalog rewriting of the query and ontology could look as follows.

LowVisibility(𝑥) :–Rain(𝑥)

Q(𝑥) :– environment(𝑥, 𝑦), LowVisibility(𝑦),HighConfidence(𝑦)

Q(𝑥) :–WetDrone(𝑥)

An ABox justification for a query answer 𝒜, 𝒯 |= 𝑞(�⃗�) is a minimal subset 𝒥 ⊆ 𝒜 for
which 𝒥 , 𝒯 |= 𝑞(�⃗�) holds. Using a Datalog rewriting (𝑃𝑞,𝒯 , 𝑄), this can be reformulated to
𝒥 ∪ 𝑃𝑞,𝒯 |= 𝑄(�⃗�). The latter problem can be solved in the closed-world setting of databases,
and therefore we will apply database provenance computation to solve it. The why-provenance
for a database query answer 𝒜 |= 𝑞(�⃗�) is the set of all minimal subsets of 𝒜 that yield the same
answer. ProvSQL is a plugin for the Postgres relational database system [14] that can compute
different kinds of provenance database queries, supporting most features of the SQL standard.
Any CQ 𝑞 over a database can be seen as an SQL query of the form SELECT (DISTINCT)
. . . FROM . . . WHERE . . . .

In the setting of ontology-based data access, databases often come equipped with so-called
mappings that associate data from the data sources with concepts in the ontology. In particular,
they can define unary and binary relations in terms of SQL queries over an input database that
may contain tables with more than two attributes. This type of mappings is usually referred to
as global-as-view [26]. Formally, a mapping 𝑚 has the form 𝑚 : q(�⃗�)⇝ 𝑁(�⃗�), where q is an
SQL query over the data sources, and 𝑁 is a DL concept or role name. Intuitively, q returns
(pairs of) constants from the data sources and instantiates 𝑁 with them.

In this paper, we assume these mappings to be pre-materialized into unary and binary tables
that correspond to DL concepts and roles, respectively. In some cases, splitting a large table
into smaller ones also allows for more fine-grained justifications.



Example 2. Using mappings, a database entry of a (ProvSQL-enabled) SensorData table

id drone sensor environment time confidence provsql
123 d2 camera rain 15:43 0.8 a0eebc99-9c0b-4ef8

can be transformed into separate facts sensor(123, camera), Rain(123), time(123, 15:43),
HighConfidence(123), environment(d2, 123). Consider the query

𝑞′(𝑥) = ∃𝑦. environment(𝑥, 𝑦) ∧ Rain(𝑦) ∧ HighConfidence(𝑦)

that has the answer 𝑥 = d2 w.r.t. the TBox from Example 1. The only justification for this
answer is {environment(d2, 123), Rain(123), HighConfidence(123)}, which allows pinpointing
the reasons for the query answer more precisely than by just returning the full original tuple
SensorData(123, d2, camera, rain, 15:43, 0.8).

3. Implementation

In this section, we describe the building blocks of our approach for computing ABox justifications
for CQ answers.

3.1. ProvSQL

ProvSQL2 [14] is an open-source module for the PostgreSQL database management system that
adds support for computation of provenance of (SQL) query results. The module computes
the provenance circuit associated with a query that represents the operations performed to
obtain a query answer, such as join ⊗, union ⊕, etc. It adds a separate column, provsql, that
contains provenance tokens, to all ProvSQL-enabled tables of the database. Provenance tokens
are fresh universally unique identifiers (UUIDs) and correspond to input gates of the circuits.
ProvSQL generates new provenance tokens for results of queries on ProvSQL-aware tables,
which identify inner gates of the provenance circuits.

Example 3. Returning back to Example 2 above, using ProvSQL, we can trace the DL-ified tuples
back to the original SensorData table, since the facts such as environment(d2, 123) can be obtained
by an SQL query over the materialized environment table:

drone id provsql
d2 123 6bb9bd38-4ef8-bb6d

where the UUID ’6bb9bd38-4ef8-bb6d’ refers to a circuit that encodes the projection operation over
the original entry ’a0eebc99-9c0b-4ef8’.

To obtain the set of all justifications J = {𝒥1, . . . ,𝒥𝑛} for a specific output tuple, we then
need to suitably evaluate its provenance circuit. Each UUID corresponding to an input fact 𝑓
gets replaced by {{𝑓}} (the set containing only the trivial justification for 𝑓 ), and the operators
⊗, ⊕ are translated into element-wise set union and simple set union, respectively, which
corresponds to a step-wise combination of the sets of justifications for intermediate query
results [13, 16]. Afterwards, we still need to remove non-minimal elements from the set J, but
this was mostly unnecessary in our experiments.
2https://github.com/PierreSenellart/provsql
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3.2. Clipper

Clipper3 is DL reasoner for conjunctive query answering over Horn-𝒮ℋℐ𝒬 ontologies via
Datalog rewriting that is implemented in Java. It accepts an ontology 𝒪 = (𝒯 ,𝒜) and a CQ 𝑞
in the SPARQL syntax as input and produces a Datalog program which can be evaluated over
the facts in 𝒜. In the original paper [24], the authors use DLV4 [27] or Clingo5 [28] for the
final Datalog evaluation. The program comprises rewriting steps of the query 𝑞 as well as the
completion rules over the TBox 𝒯 . In general, the resulting Datalog program can be recursive.

Example 4. The axiom ∃near.∃environment.Rain ⊑ ∃environment.Rain, expressing that, if rain
was detected at a nearby location, then it is also raining at the current location, will be rewritten as

environmentSomeRain(𝑥) :– near(𝑥, 𝑦), environmentSomeRain(𝑦)

environmentSomeRain(𝑥) :– environment(𝑥, 𝑦),Rain(𝑦)

In the next section, we explain how we can transform a possibly recursive Datalog program
into a series of SQL statements, whose provenance can be traced using ProvSQL.

3.3. Compiling Datalog Rules Into SQL Statements

The algorithm proceeds as follows. First, the “depends on”-relation of the Datalog program is
represented as a graph, denoted by 𝐺 = (𝑉,𝐸), where each node 𝑛𝑝 in 𝑉 corresponds to a
predicate 𝑝 that occurs in the ontology. The edge relation 𝐸 is defined using the body and the
head of each rule: for each rule ℎ :– 𝑏1, . . . , 𝑏𝑛, there exist edges (𝑛ℎ, 𝑛𝑏1), . . . , (𝑛ℎ, 𝑛𝑏𝑛) in 𝐸.
Furthermore, each node 𝑛𝑝 is associated with the set of all rules in the Datalog program that
have 𝑝 in their head. In Datalog rewritings produced by Clipper, no other predicate depends
on the query predicate 𝑄, and thus for most of the following descriptions we will ignore the
node 𝑛𝑄 and process it separately at the end.

If 𝐺 is acyclic, its nodes can be partitioned into levels according to the length of the longest
path to any leaf node (a node without outgoing edges). The algorithm processes all nodes on
the same level one after the other, starting from the lowest level, i.e., the leafs. Processing a
node 𝑛 translates all rules associated with 𝑛 (which all have the same head predicate) into SQL
statements.

Example 5. For example, the rules ℎ(𝑥1) :– 𝑏1(𝑥1, 𝑥2), 𝑏2(𝑥2), ℎ(𝑥1) :– 𝑏3(𝑥1) would be trans-
lated into the query

CREATE TABLE ℎ AS

((SELECT 𝑏1.𝑥1 FROM 𝑏1 JOIN 𝑏2 ON 𝑏1.𝑥2 = 𝑏2.𝑥1) UNION (SELECT 𝑥1 FROM 𝑏3)).

In case a table for a predicate ℎ already exists and has to be updated with new tuples, in order
for ProvSQL to recognize a change in the data, first a dummy table needs to be created that
holds the union of the data contained in the old table and the new query results:

CREATE TABLE dummy AS (. . . UNION SELECT * FROM ℎ)

3https://github.com/ghxiao/clipper
4https://www.dlvsystem.it/dlvsite/
5https://github.com/potassco/clingo
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Afterwards, the old table is deleted and re-created with the content of the dummy table:

DROP TABLE ℎ

CREATE TABLE ℎ AS SELECT * FROM dummy

However, the dependency graph of the rules created by Clipper from a Horn-𝒮ℋℐ𝒬 ontology
can actually be cyclic (see Example 4). To handle cyclic dependency graphs, all strongly
connected components (SCCs) are first identified using Kosaraju-Sharir’s algorithm [30], which
is implemented in the jgraph6 library. All nodes in a given SCC are then replaced by a new cycle
node in the dependency graph.

For an SCC 𝑆 and a new cycle node 𝑛, the dependency graph 𝐺 = (𝑉,𝐸) is updated to
𝐺′ = (𝑉 ′, 𝐸′) with 𝑉 ′ = (𝑉 ∖ 𝑆) ∪ {𝑛} and

𝐸′ = {(𝑎, 𝑏) | (𝑎, 𝑏) ∈ 𝐸, 𝑎, 𝑏 ∈ 𝑉 ′} ∪
{(𝑎, 𝑛) | (𝑎, 𝑏) ∈ 𝐸, 𝑎 ∈ 𝑉 ′, 𝑏 ∈ 𝑆} ∪ (1)

{(𝑛, 𝑏) | (𝑎, 𝑏) ∈ 𝐸, 𝑎 ∈ 𝑆, 𝑏 ∈ 𝑉 ′}.

The rules previously associated to the nodes in 𝑆 are thereafter associated to 𝑛. The algorithm
then proceeds as in the non-recursive case, but processes cycle nodes differently, depending on
the associated rules. Due to the shape of the Datalog programs produced by Clipper, all rules
involved in a cycle either have only unary predicates in the head (e.g. as in Example 4), or they
have only binary predicates in the head [24]. In the former case, to process the cycle node, first
the length ℓ of the longest acyclic path of the SCC is determined. Then, all SQL statements of
the rules associated with the cycle node are executed ℓ times to ensure that all individuals are
propagated to all involved predicates.

By Horn-𝒮ℋℐ𝒬 syntax, when binary head atoms are involved, all rules must be of one of
the following shapes:

𝑟(𝑥, 𝑦) :– 𝑠(𝑥, 𝑦) (2)

𝑟(𝑥, 𝑦) :– 𝑠(𝑦, 𝑥) (3)

𝑟(𝑥, 𝑧) :– 𝑟(𝑥, 𝑦), 𝑟(𝑦, 𝑧) (4)

If all rules in the cycle are of the form (2), they can be processed as in the case of unary head
atoms. If rules of shape (3) are involved, we need to double the number of executions of the
SQL statements since it may require 2ℓ iterations to propagate all involved pairs of individuals
(𝑎, 𝑏) and their inverses (𝑏, 𝑎) to all involved binary predicates.

Finally, transitivity rules of the form (4) need to be processed differently, since their application
involves a potentially unbounded number of individuals, and thus the necessary number of
iterated SQL statements now depends on the length of the longest (undirected) path in the
current database that involves only the roles from the cycle node. Therefore, every transitivity
rule (potentially as part of a larger cycle node) increases the number of iterated applications of
SQL statements for the whole cycle node by log2 𝑘, where 𝑘 is the length of this path.

At the very end of the algorithm, the query predicate 𝑄 is populated using the same approach
as in Example 5, since we do not have to worry about cycles at this stage.



Algorithm 1: Generating SQL updates w.r.t. a Datalog program 𝑃 for ABox tables 𝒜.

1 𝐺 = (𝑉,𝐸) is the “depends-on” relation graph of 𝑃
2 foreach 𝑛𝑝 ∈ 𝑉 do
3 rule(𝑛𝑝) = {𝜌 ∈ 𝑃 | 𝑝 is in the head of 𝜌}
4 𝐺′ = 𝐺
5 while 𝐺′ has a SCC 𝑆 do
6 create a new cycle node 𝑛𝑆

7 rule(𝑛𝑆) = {𝜌 ∈ 𝑃 | 𝜌 ∈ rule(𝑣) for some 𝑣 ∈ 𝑆}
8 update 𝐺′ according to (1) for 𝑛𝑆

9 𝒜′ = 𝒜
10 repeat
11 𝑁 = leaf(𝐺′) = {𝑣 ∈ 𝑉 ′ | there is no 𝑛 ∈ 𝑉 ′ such that (𝑣, 𝑛) ∈ 𝐸′}
12 foreach 𝑣 ∈ 𝑁 do
13 if 𝑣 = 𝑛𝑆 for some SCC 𝑆 in 𝐺′ then
14 ℓ = length of the longest acyclic path in 𝑆
15 if there is 𝜌 ∈ rule(𝑛𝑆) of the form (3) then
16 ℓ = 2ℓ
17 if there is 𝜌 ∈ rule(𝑛𝑆) of the form (4) then
18 𝒫 = {𝑝 | 𝑝 occurs in the body of some 𝜌 ∈ rule(𝑛𝑆)}
19 𝑘 = length of the longest path in 𝒜′ involving only predicates from 𝒫
20 ℓ = ℓ+ log2 𝑘

21 else
22 ℓ = 1
23 𝑈 = set of SQL statements for rule(𝑣) (e.g. see Example 5)
24 apply 𝑈 to 𝒜′ ℓ times
25 remove 𝑣 from 𝐺′

26 until 𝐺′ is empty
27 return 𝒜′

The above-described procedure is summarized in Algorithm 1.

Theorem 1. Let𝒪 = (𝒯 ,𝒜) be a Horn-𝒮ℋℐ𝒬 ontology, 𝑞 a CQ with Datalog rewriting (𝑃𝑞,𝒯 , 𝑄)
w.r.t. 𝒯 , and 𝒜′ the set of facts resulting from Algorithm 1 w.r.t. the Datalog program 𝑃𝑞,𝒯 and 𝒜.
Then 𝒪 |= 𝑞(�⃗�) iff 𝑄(�⃗�) ∈ 𝒜′.

Proof. For soundness, it suffices to observe that the algorithm faithfully applies the rules in the
rewriting, which is correct for query answering over𝒪. To show completeness, we have to show
that 𝒜 ∪ 𝑃𝑞,𝒯 |= 𝑄(�⃗�) implies 𝑄(�⃗�) ∈ 𝒜′. If 𝒜 ∪ 𝑃𝑞,𝒯 |= 𝑄(�⃗�), there exists a derivation D
(i.e., a tree of rule applications) deriving 𝑄(�⃗�) from the facts in𝒜 using the rules in 𝑃𝑞,𝒯 . In the
following, we assume that D is minimal, and in particular that no fact is derived twice and only
facts that are required to derive 𝑄(�⃗�) are derived. For every fact 𝑃 (�⃗�) derived in D, we prove

6https://github.com/jgraph



that 𝑃 (�⃗�) ∈ 𝒜′ by induction over the order in which the node 𝑛 representing 𝑃 is processed by
the main loop in Lines 11–25. Hence, we assume that the claim is satisfied for all predicates
represented by the nodes reachable from 𝑛 in the original graph 𝐺′ (after the introduction of
the cycle nodes in Lines 5–8). We distinguish two cases.

• If 𝑛 is an ordinary node 𝑛𝑃 or a cycle node associated with only unary or only binary
head predicates (including 𝑃 ), but rules of the form (3) or (4), then we consider the last
rule applications in D involving the predicates in 𝑛. For any premises 𝑃 ′(�⃗�′) of these
rules involving predicates from previous stages, we know by induction that 𝑃 ′(�⃗�′) ∈ 𝒜′

has already been derived previously by Line 24. The remaining premises must be of the
form 𝑃 ′(�⃗�) with 𝑃 ′ represented by the current cycle node 𝑛. Assume that the depth of
these last rule applications is larger than the length ℓ of the longest acyclic path in the
SCC represented by 𝑛. Then the rule applications contain a cycle, i.e., at least one fact
𝑃 ′(�⃗�) is derived twice, which contradicts our assumption on the derivation D. Thus, since
the depth of the last rule applications to derive 𝑃 (�⃗�) is bounded by ℓ, we have 𝑃 (�⃗�) ∈ 𝒜′

by our construction.
• If 𝑛 involves binary predicates and at least one rule of the form (3), but no rule of the

form (4), then we can apply the same arguments as above, but have to consider all facts
of the form 𝑃 ′(𝑐, 𝑑) and 𝑃 ′(𝑑, 𝑐) that are involved in the derivation of 𝑃 (�⃗�) = 𝑃 (𝑐, 𝑑),
which means that the length of the derivation could be doubled in the worst case (see
Line 16).

• If 𝑛 is a cycle node involving a transitive binary predicate 𝑟 (cf. Lines 17–20), then
𝑃 (�⃗�) = 𝑃 (𝑐, 𝑑) and we consider all applications of the rule 𝑟(𝑥, 𝑧)← 𝑟(𝑥, 𝑦), 𝑟(𝑦, 𝑧) up
to the derivation of 𝑟(𝑐, 𝑑) (or 𝑟(𝑑, 𝑐)). Since D is non-redundant, the original 𝑟-facts
(not derived by the transitivity rule) must form an 𝑟-path 𝑟(𝑐, 𝑐1), 𝑟(𝑐1, 𝑐2), . . . , 𝑟(𝑐𝑛, 𝑑)
from 𝑐 to 𝑑 without repeating constants. If this path is of length 𝑘, then the fact 𝑟(𝑐, 𝑑) is
derived after at most log2 𝑘 nested applications of 𝑟(𝑥, 𝑧)← 𝑟(𝑥, 𝑦), 𝑟(𝑦, 𝑧). By similar
arguments as above, each of the 𝑟-facts 𝑟(𝑐𝑖, 𝑐𝑖+1) must have been derived after 2ℓ rule
applications from other binary facts (or their inverses) whose predicates are involved in
the cycle. This shows that 𝑟(𝑐, 𝑑) ∈ 𝒜′ and 𝑃 (𝑐, 𝑑) ∈ 𝒜′.

Note that Algorithm 1 does consider the query predicate 𝑄: the ABox tables are updated until no
more facts are derived. In the implementation, this procedure is optimized by terminating once
the node 𝑛𝑄 has been processed by the loop in Lines 12–25. Further iterations are redundant,
since they cannot create new facts for 𝑄.

4. Evaluation

In order to evaluate our approach, we compare our implementation with Soufflé, a state-of-
the-art tool for Datalog reasoning that can also compute proofs [19], on the Lehigh University
Benchmark (LUBM).7 All experiments were run on a computer with an Intel Core i5-7200U
CPU @ 2.50GHz processor, and runtime and memory cutoffs of 14400 seconds and 2 GB. The
experiment results are shown in Table 1.
7http://swat.cse.lehigh.edu/projects/lubm/



Table 1
Comparing Soufflé (S) and our approach (O) with and without (-) provenance over the LUBM queries.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
#ans 4 0 6 34 719 7790 67 7790 208 4 224 15 1 5916

Query Time (s)
S 1.6 2.2 3.0 - - 3.1 5.4 2.8 4.5 2.3 0 2.2 0 2.2
S- 0.7 0.5 0.3 1.8 1.3 1.1 2.3 1.7 2.1 1.1 0 1.3 0 1.3
O 25 19 83 102 326 343 935 87 1251 4968 18 43 80 80
O- 17 15 17 14 16 13 16 16 16 17 17 35 12 17

Explanation Time (s)
S 0.03 - 244 - - 0.1 326 51 0.002 1381 0.2 0.08 0.01 0.01
O 0.1 - 0.05 0.2 237 318 908 65 1226 4939 0.05 0.05 0.06 0.08

Total Time (s)
S 1.6 - 247 - - 3.2 331 54 4.5 1383 0.2 2.2 0 2.2
O 25 - 83 102 563 661 1843 152 2477 9907 18 43 80 80

We also wanted to compare the performance of a recent approach for computing provenance
for Datalog programs based on Rulewerk and Vlog [31], but we could not achieve reasonable
runtimes with it. We also did not compare with OntoProv [20], which also uses ProvSQL, but
only supports DL-Lite ontologies. Using Clipper, the benchmark’s University ontology was
translated into a Datalog program, for which we ran the two tools together with a dataset
containing the data of one university. We recorded how long it took to answer each of the 14
benchmark queries (Query Time), as well as the time needed for computing justifications for a
single (randomly chosen) query answer (Explanation Time). Query 2 has no answers, which is
why we cannot compute any justifications for it. For Queries 4 and 5, Soufflé did not produce a
result in the limited time. Additionally, we provide the Query Time without the provenance
computation in the lines marked by S- and O-.

The Query Time for our approach already includes the time taken by ProvSQL to compute
the provenance circuits for each intermediate answer, which could also be seen as part of the
Explanation Time, which is why we also report the Total Time for each tool. Nevertheless, the
comparison is still biased since ProvSQL always computes the full provenance, i.e., we obtain
all possible justifications for a query answer, whereas Soufflé outputs only a single proof, from
which we can extract one (possibly non-minimal) set of input facts responsible for the answer.
By construction, our approach cannot compute the provenance of just a single query answer on
demand without pre-computing the provenance for all answers. Similarly, ProvSQL does not
support computing only a single ABox justification.

We can see that with the provenance components our algorithm mostly compares favorably
to Soufflé, except for queries that have a lot of answers (which requires ProvSQL to compute
many provenance circuits) and for answers whose provenance is very large due to the cycles in
the Datalog program. Since we only want to compute justifications, these provenance circuits
contain a lot of redundancies that could be eliminated at intermediate steps by a more dedicated
algorithm in the future.



5. Conclusion

We presented a possible approach for computing ABox justifications, or why-provenance, for
relatively expressive ontology-mediated queries that have Datalog rewritings. This can be useful
to compute further, more detailed explanations of query answers by restricting the set of facts
needed for computing them [22, 19, 32]. Similarly, to compute more detailed proofs, it would be
interesting to directly explain the rewriting steps used by Clipper [22, 23].

Acknowledgments

We thank Islam Hamada for his contributions to the implementation. This work was supported
by the DFG grant 389792660 as part of TRR 248 (https://perspicuous-computing.science).

References

[1] S. Schlobach, R. Cornet, Non-standard reasoning services for the debugging of description
logic terminologies, in: G. Gottlob, T. Walsh (Eds.), IJCAI-03, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Morgan Kaufmann, 2003, pp. 355–
362. URL: http://ijcai.org/Proceedings/03/Papers/053.pdf.

[2] F. Baader, R. Peñaloza, B. Suntisrivaraporn, Pinpointing in the description logic EL+, in:
J. Hertzberg, M. Beetz, R. Englert (Eds.), KI 2007: Advances in Artificial Intelligence, 30th
Annual German Conference on AI, volume 4667 of Lecture Notes in Computer Science,
Springer, 2007, pp. 52–67. doi:10.1007/978-3-540-74565-5_7.

[3] M. Horridge, Justification Based Explanation in Ontologies, Ph.D. thesis, University of
Manchester, UK, 2011. URL: https://www.research.manchester.ac.uk/portal/files/54511395/
FULL_TEXT.PDF.

[4] N. Manthey, R. Peñaloza, S. Rudolph, SATPin: Axiom pinpointing for lightweight
description logics through incremental SAT, Künstliche Intell. 34 (2020) 389–394.
doi:10.1007/s13218-020-00669-4.

[5] M. Horridge, B. Parsia, U. Sattler, Explaining inconsistencies in OWL ontologies, in:
L. Godo, A. Pugliese (Eds.), Scalable Uncertainty Management, Third International Confer-
ence, SUM, Proceedings, volume 5785 of Lecture Notes in Computer Science, Springer, 2009,
pp. 124–137. doi:10.1007/978-3-642-04388-8_11.

[6] A. Borgida, E. Franconi, I. Horrocks, Explaining ALC subsumption, in: W. Horn (Ed.),
ECAI 2000, Proceedings of the 14th European Conference on Artificial Intelligence, IOS
Press, 2000, pp. 209–213. URL: http://www.frontiersinai.com/ecai/ecai2000/pdf/p0209.pdf.

[7] D. L. McGuinness, Explaining Reasoning in Description Logics, Ph.D. thesis, Rutgers
University, NJ, USA, 1996. doi:10.7282/t3-q0c6-5305.

[8] M. Horridge, B. Parsia, U. Sattler, Justification oriented proofs in OWL, in: P. F. Patel-
Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang, J. Z. Pan, I. Horrocks, B. Glimm (Eds.),
The Semantic Web - ISWC 2010 - 9th International Semantic Web Conference, Revised
Selected Papers, Part I, volume 6496 of Lecture Notes in Computer Science, Springer, 2010,
pp. 354–369. doi:10.1007/978-3-642-17746-0_23.

https://perspicuous-computing.science
http://ijcai.org/Proceedings/03/Papers/053.pdf
http://dx.doi.org/10.1007/978-3-540-74565-5_7
https://www.research.manchester.ac.uk/portal/files/54511395/FULL_TEXT.PDF
https://www.research.manchester.ac.uk/portal/files/54511395/FULL_TEXT.PDF
http://dx.doi.org/10.1007/s13218-020-00669-4
http://dx.doi.org/10.1007/978-3-642-04388-8_11
http://www.frontiersinai.com/ecai/ecai2000/pdf/p0209.pdf
http://dx.doi.org/10.7282/t3-q0c6-5305
http://dx.doi.org/10.1007/978-3-642-17746-0_23


[9] C. Alrabbaa, F. Baader, S. Borgwardt, P. Koopmann, A. Kovtunova, Finding small proofs for
description logic entailments: Theory and practice, in: E. Albert, L. Kovács (Eds.), LPAR
2020: 23rd International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, volume 73 of EPiC Series in Computing, EasyChair, 2020, pp. 32–67. doi:10.
29007/nhpp.

[10] C. Alrabbaa, F. Baader, S. Borgwardt, P. Koopmann, A. Kovtunova, Finding good proofs for
description logic entailments using recursive quality measures, in: A. Platzer, G. Sutcliffe
(Eds.), Automated Deduction - CADE 28 - 28th International Conference on Automated
Deduction, volume 12699 of Lecture Notes in Computer Science, Springer, 2021, pp. 291–308.
doi:10.1007/978-3-030-79876-5_17.

[11] C. Alrabbaa, F. Baader, S. Borgwardt, R. Dachselt, P. Koopmann, J. Méndez, Evonne:
Interactive proof visualization for description logics (system description), in: J. Blanchette,
L. Kovács, D. Pattinson (Eds.), Automated Reasoning - 11th International Joint Conference,
IJCAR 2022, Proceedings, volume 13385 of Lecture Notes in Computer Science, Springer,
2022, pp. 271–280. doi:10.1007/978-3-031-10769-6_16.

[12] J. Cheney, L. Chiticariu, W. C. Tan, Provenance in databases: Why, how, and where, Found.
Trends Databases 1 (2009) 379–474. doi:10.1561/1900000006.

[13] P. Senellart, Provenance in databases: Principles and applications, in: M. Krötzsch,
D. Stepanova (Eds.), Reasoning Web. Explainable Artificial Intelligence - 15th International
Summer School 2019, Tutorial Lectures, volume 11810 of Lecture Notes in Computer Science,
Springer, 2019, pp. 104–109. doi:10.1007/978-3-030-31423-1_3.

[14] P. Senellart, L. Jachiet, S. Maniu, Y. Ramusat, ProvSQL: Provenance and probability
management in PostgreSQL, Proc. VLDB Endow. 11 (2018) 2034–2037. doi:10.14778/
3229863.3236253.

[15] T. J. Green, G. Karvounarakis, V. Tannen, Provenance semirings, in: L. Libkin (Ed.),
Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, June 11-13, 2007, Beijing, China, ACM, 2007, pp. 31–40.
doi:10.1145/1265530.1265535.

[16] P. Buneman, S. Khanna, W. C. Tan, Why and where: A characterization of data provenance,
in: J. V. den Bussche, V. Vianu (Eds.), Database Theory - ICDT 2001, 8th International
Conference, London, UK, January 4-6, 2001, Proceedings, volume 1973 of Lecture Notes in
Computer Science, Springer, 2001, pp. 316–330. doi:10.1007/3-540-44503-X_20.

[17] Y. Ramusat, S. Maniu, P. Senellart, Efficient provenance-aware querying of graph databases
with Datalog, in: V. Kalavri, S. Salihoglu (Eds.), GRADES-NDA ’22: Proceedings of the 5th
ACM SIGMOD Joint International Workshop on Graph Data Management Experiences &
Systems (GRADES) and Network Data Analytics (NDA), ACM, 2022, pp. 4:1–4:9. doi:10.
1145/3534540.3534689.

[18] C. Bourgaux, P. Bourhis, L. Peterfreund, M. Thomazo, Revisiting semiring provenance
for datalog, in: G. Kern-Isberner, G. Lakemeyer, T. Meyer (Eds.), Proceedings of the 19th
International Conference on Principles of Knowledge Representation and Reasoning, KR,
2022. URL: https://proceedings.kr.org/2022/10/.

[19] D. Zhao, P. Subotic, B. Scholz, Debugging large-scale Datalog: A scalable provenance
evaluation strategy, ACM Trans. Program. Lang. Syst. 42 (2020) 7:1–7:35. doi:10.1145/
3379446.

http://dx.doi.org/10.29007/nhpp
http://dx.doi.org/10.29007/nhpp
http://dx.doi.org/10.1007/978-3-030-79876-5_17
http://dx.doi.org/10.1007/978-3-031-10769-6_16
http://dx.doi.org/10.1561/1900000006
http://dx.doi.org/10.1007/978-3-030-31423-1_3
http://dx.doi.org/10.14778/3229863.3236253
http://dx.doi.org/10.14778/3229863.3236253
http://dx.doi.org/10.1145/1265530.1265535
http://dx.doi.org/10.1007/3-540-44503-X_20
http://dx.doi.org/10.1145/3534540.3534689
http://dx.doi.org/10.1145/3534540.3534689
https://proceedings.kr.org/2022/10/
http://dx.doi.org/10.1145/3379446
http://dx.doi.org/10.1145/3379446


[20] D. Calvanese, D. Lanti, A. Ozaki, R. Peñaloza, G. Xiao, Enriching ontology-based data
access with provenance, in: S. Kraus (Ed.), Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI, ijcai.org, 2019, pp. 1616–1623. doi:10.
24963/ijcai.2019/224.

[21] C. Bourgaux, A. Ozaki, R. Peñaloza, L. Predoiu, Provenance for the description logic ELHr,
in: C. Bessiere (Ed.), Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, ijcai.org, 2020, pp. 1862–1869. doi:10.24963/ijcai.
2020/258.

[22] A. Borgida, D. Calvanese, M. Rodriguez-Muro, Explanation in the DL-Lite family of
description logics, in: R. Meersman, Z. Tari (Eds.), On the Move to Meaningful Internet
Systems: OTM 2008 Confederated International Conferences, CoopIS, DOA, GADA, IS,
and ODBASE 2008, Proceedings, Part II, volume 5332 of Lecture Notes in Computer Science,
Springer, 2008, pp. 1440–1457. doi:10.1007/978-3-540-88873-4_35.

[23] C. Alrabbaa, S. Borgwardt, P. Koopmann, A. Kovtunova, Explaining ontology-mediated
query answers using proofs over universal models, in: G. Governatori, A. Turhan
(Eds.), Rules and Reasoning - 6th International Joint Conference on Rules and Reason-
ing, RuleML+RR 2022, Proceedings, volume 13752 of Lecture Notes in Computer Science,
Springer, 2022, pp. 167–182. doi:10.1007/978-3-031-21541-4_11.

[24] T. Eiter, M. Ortiz, M. Simkus, T. Tran, G. Xiao, Query rewriting for Horn-SHIQ plus rules,
in: J. Hoffmann, B. Selman (Eds.), Proceedings of the Twenty-Sixth AAAI Conference
on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada, AAAI Press, 2012.
doi:10.1609/aaai.v26i1.8219.

[25] F. Baader, I. Horrocks, C. Lutz, U. Sattler, An Introduction to Description Logic, Cambridge
University Press, 2017. doi:10.1017/9781139025355.

[26] M. Lenzerini, Data integration: A theoretical perspective, in: L. Popa, S. Abiteboul,
P. G. Kolaitis (Eds.), Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 3-5, Madison, Wisconsin, USA, ACM,
2002, pp. 233–246. doi:10.1145/543613.543644.

[27] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F. Scarcello, The DLV system
for knowledge representation and reasoning, ACM Trans. Comput. Log. 7 (2006) 499–562.
doi:10.1145/1149114.1149117.

[28] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, M. Schneider, Potassco:
The potsdam answer set solving collection, AI Commun. 24 (2011) 107–124. doi:10.3233/
AIC-2011-0491.

[29] C. Lutz, D. Toman, F. Wolter, Conjunctive query answering in the description logic EL
using a relational database system, in: C. Boutilier (Ed.), IJCAI 2009, Proceedings of the
21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA,
July 11-17, 2009, 2009, pp. 2070–2075. URL: http://ijcai.org/Proceedings/09/Papers/341.pdf.

[30] M. Sharir, A strong-connectivity algorithm and its applications in data flow analysis,
Computers & Mathematics with Applications 7 (1981) 67–72. doi:https://doi.org/10.
1016/0898-1221(81)90008-0.

[31] A. Elhalawati, M. Krötzsch, S. Mennicke, An existential rule framework for computing
why-provenance on-demand for Datalog, in: G. Governatori, A. Turhan (Eds.), Rules
and Reasoning - 6th International Joint Conference on Rules and Reasoning, RuleML+RR,

http://dx.doi.org/10.24963/ijcai.2019/224
http://dx.doi.org/10.24963/ijcai.2019/224
http://dx.doi.org/10.24963/ijcai.2020/258
http://dx.doi.org/10.24963/ijcai.2020/258
http://dx.doi.org/10.1007/978-3-540-88873-4_35
http://dx.doi.org/10.1007/978-3-031-21541-4_11
http://dx.doi.org/10.1609/aaai.v26i1.8219
http://dx.doi.org/10.1017/9781139025355
http://dx.doi.org/10.1145/543613.543644
http://dx.doi.org/10.1145/1149114.1149117
http://dx.doi.org/10.3233/AIC-2011-0491
http://dx.doi.org/10.3233/AIC-2011-0491
http://ijcai.org/Proceedings/09/Papers/341.pdf
http://dx.doi.org/https://doi.org/10.1016/0898-1221(81)90008-0
http://dx.doi.org/https://doi.org/10.1016/0898-1221(81)90008-0


Proceedings, volume 13752 of Lecture Notes in Computer Science, Springer, 2022, pp. 146–163.
doi:10.1007/978-3-031-21541-4_10.

[32] C. Alrabbaa, S. Borgwardt, A. Hirsch, N. Knieriemen, A. Kovtunova, A. M. Rothermel,
F. Wiehr, In the head of the beholder: Comparing different proof representations, in:
G. Governatori, A. Turhan (Eds.), Rules and Reasoning - 6th International Joint Conference
on Rules and Reasoning, RuleML+RR 2022, Berlin, Germany, September 26-28, 2022,
Proceedings, volume 13752 of Lecture Notes in Computer Science, Springer, 2022, pp. 211–
226. doi:10.1007/978-3-031-21541-4_14.

http://dx.doi.org/10.1007/978-3-031-21541-4_10
http://dx.doi.org/10.1007/978-3-031-21541-4_14

	1 Introduction
	2 Preliminaries
	3 Implementation
	3.1 ProvSQL
	3.2 Clipper
	3.3 Compiling Datalog Rules Into SQL Statements

	4 Evaluation
	5 Conclusion

