
Rewriting Ontology-Mediated Navigational Queries
into Cypher
Nikola Dragovic

1
, Cem Okulmus

2
and Magdalena Ortiz

1,2

1

TU Wien, Austria

2

Umeå University, Sweden

Abstract

The ontology-based data access (OBDA) paradigm has successfully grown over the last decade as a

powerful means to access data from possibly diverse and incomplete sources, using a domain ontology

as a mediator. The ability to query generic graph-structured data is often highlighted as an advantage

of OBDA, but in practice, existing solutions do not allow to access data in popular graph database

management systems (DBMS) (e.g., Neo4j) that adopt the so-called ‘property graph’ data model and

support dedicated query languages such as Cypher.

Towards overcoming this major limitation, we propose a technique for ontology-mediated querying

(OMQ) of property graphs. We tailor a suitable query language that supports path navigation in a form

that can be naturally expressed in Cypher and other important graph query languages. It keeps the data

complexity of query evaluation tractable even under trail semantics and is sufficient for our motivating

use case in the autonomous driving domain. We address the semantic gap between the traditional path

semantics adopted by most works on graph databases, and the trail semantics used in Cypher, and

identify cases where both semantics coincide. To our knowledge, OMQs with trail semantics had not

been addressed before. We develop a rewriting algorithm for queries mediated by DL-Lite ontologies

that enables query answering using plain Cypher. The experimental evaluation of our proof-of-concept

prototype on a sample set of use case queries reveals that the approach is promising, and can be a

stepping stone to making OBDA applicable to data stored in graph DBMS.

Keywords
Ontology-based data access, Graph databases, Property graphs, Query rewriting

1. Introduction

The ontology-based data access (OBDA) paradigm, also known as virtual knowledge graphs

(VKGs), has steadily grown over the last decade to establish itself as a powerful way to access

data from possibly diverse and incomplete sources. It has been successfully exploited in various

application domains [1], and state-of-the-art systems such as Ontop [2] continue to be developed

and improved. In OBDA, a domain ontology provides a high-level vocabulary for formulating

queries, and captures domain knowledge that can be used to infer implicit answers from

incomplete data. The central problem in OBDA is answering ontology-mediated queries (OMQs),

that is, computing the answers to a given query not just from the plain data, but taking into

account also the facts that can be inferred using the ontology.

DL 2023: 36th International Workshop on Description Logics, September 2–4, 2023, Rhodes, Greece

$ okulmus@cs.umu.se (C. Okulmus); magdalena.ortiz@cs.umu.se (M. Ortiz)

� 0000-0002-7742-0439 (C. Okulmus); 0000-0002-2344-9658 (M. Ortiz)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:okulmus@cs.umu.se
mailto:magdalena.ortiz@cs.umu.se
https://orcid.org/0000-0002-7742-0439
https://orcid.org/0000-0002-2344-9658
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

The ability to integrate heterogeneous sources and query generic graph data is often high-

lighted as an advantage of the OBDA paradigm, and while it can be successfully deployed to

query RDF graphs, no solutions so far allow directly querying data stored in popular graph

DBMS (GDBMS) that adopt the so-called property graph data model. This is a major limitation

since such graph databases have gained huge popularity this century in scores of domains

and they are widely deployed in practice. GDBMS support dedicated query languages for

graph-structured data. For example, Neo4j is one of the most popular GDBMS nowadays, and

its query language is Cypher [3]. There are dozens of GDBMS in the market, some of them

supporting query languages related to Cypher. The standardisation of a query language for

graphs called GQL, intended to serve as the basis and reference point for all query languages

for GDBMS, is an ongoing project at the International Organisation for Standardisation (ISO),

and the publication of the standard is expected soon [4]. Cypher, as the most widely adopted

language for GDBMS, is included and fully supported by GQL and is likely to remain a dominant

dialect of GQL for many years.

The fundamental feature of all query languages for GDBMS is the presence of navigational

features for traversing paths flexibly [5], which allows for expressing, for example, reachability

queries. This is not present in the query languages supported in current OBDA systems, which

commonly target relational data. Even if the data is modelled as a graph, these systems cannot

navigate graph structures and their evaluation is not tuned for graph data.

Typically, OBDA systems take as input a so-called conjunctive query (CQ), which is essentially

the most widely used select-project-join fragment of relational algebra; in its logical form, it is

written as a positive existential conjunction of atoms that may share join variables [6]. The

language of choice for writing the ontology is OWL 2 QL, the profile of the Web Ontology

Language OWL standard tailored for efficient query answering [7], and the preferred approach

for OMQ answering is query rewriting. Here a query mediated by an OWL 2 QL ontology

is transformed using the ontology axioms into a new query in a standard query language,

with no mediating ontology, that provides the same answers when evaluated over the original

data sources [8]. Given a CQ and an OWL 2 QL ontology as an input, the rewriting produces

a union (or disjunction) of CQs, that is, a UCQ. UCQs can be naturally expressed in simple

fragments of SQL [6] and of SPARQL [9], the query language for RDF [10], which enables the

evaluation of OMQs using off-the-shelf DBMS and SPARQL end-points. State-of-the-art OBDA

systems implement this standard setting, supporting ontology-mediated CQs over data stored

in relational and RDF data sources.

The main goal of this paper is to provide such a rewriting approach for OMQs with OWL 2

QL ontologies, but using a graph query language that is supported by GDBMs, such as Cypher,

as both source query language, and as target for the rewriting. Navigational features have

been considered in the OMQ literature, where algorithms for rewriting navigational queries

in the presence of ontologies and tight complexity bounds for their evaluation are known

[11, 12], but the existing theory results have never made it to practice. These works consider

conjunctive 2-way regular path queries (C2RPQ), the generalisation of CQs with path navigation,

the language of choice for theoretical works on accessing graph databases. However, it is

well-known that practical graph GDBMS do not always support C2RPQs, and sometimes adopt

a different semantics. In particular, unlike C2RPQs, Cypher uses a trail semantics where no

edge of the graph can occur twice on a path, and imposes restrictions on the bidirectional

navigation of paths [3]. This gap has hindered the application of the results for C2RPQs to

enable querying GDBMS in OBDA, and until now, only impracticable algorithms intended for

showing theoretical results had been devised [11, 12].

The main contributions of this paper can be summarised as follows:

1. We propose a class of queries that allows for path navigation in property graphs which is

sufficient for our motivating use case. Our query language is closely related to C2RPQs,

but tailored to be expressible in Cypher, to support succinct query rewritings, and to have

tractable data complexity even under trail semantics.

2. We consider both the traditional path semantics of C2RPQs and the trail semantics of

Cypher; to our knowledge, OMQs with trail semantics had not been considered until now.

We show that for our query language, query answers under both semantics coincide.

3. We present a rewriting algorithm for our query language in the presence of OWL 2

QL ontologies. We provide conditions that guarantee that the queries rewritten by the

algorithm can be expressed in Cypher, and evaluated directly over GDBMS.

4. We implemented a simple prototype of the approach and evaluated it on real-world

use-case data. In particular, we considered queries designed for scenario-based safety

assessment for autonomous vehicles and evaluated them over an industrial dataset. We

obtained promising results that suggest that our work may be a stepping stone towards

practicable OBDA over GDBMS.

2. Preliminaries

In this section we recall the property graph data model. We also introduce DL-LiteR, which is

the language of OWL 2 QL defined as a description logic [13].

We consider a vocabulary consisting of countably infinite and pairwise disjoint sets NI of

individual names, NC of concept names and NR of role names, NE of relationship names and K
of property keys. Moreover, we assume a fixed set of data type domains D1, . . . ,D𝑛; each D𝑖

consists of a value domain 𝐷𝑖 and a fixed set of binary predicates representing binary relations

over 𝐷𝑖. In our examples, we typically use integers and strings as data types. For integers, we

use the usual comparison predicates ≤,≥, ̸=,=, and for the strings datatype we use the binary

relations equal(𝑠1, 𝑠2), substring(𝑠1, 𝑠2), and prefix (𝑠1, 𝑠2).

Property Graphs

Our definition of property graphs follows the one given in [3]. A labelled multigraph is a

tuple ⟨𝑁,𝐸, src, tgt, 𝑐𝑟, 𝑐𝑙⟩, where 𝑁 is the set of nodes and 𝐸 is the set of edges; 𝑁 ̸= ∅ and

𝑁 ∩𝐸 = ∅. The functions src : 𝐸 ↦→ 𝑁 and tgt : 𝐸 ↦→ 𝑁 assign each edge its source and target

node, respectively. We have two total labelling functions: 𝑐𝑟 : 𝐸 ↦→ NR assigns to each edge a

role name, and 𝑐𝑙 : 𝑁 ↦→ 2NC
assigns to each node a set of concept names. A property graph

𝒢 = ⟨𝑁,𝐸, src, tgt, 𝑐𝑟, 𝑐𝑙, 𝜆⟩

extends a labelled multigraph with a partial function 𝜆 : (𝑁 ∪𝐸)×K→
⋃︀

1≤𝑖≤𝑛𝐷𝑖 that maps

pairs (𝑢, 𝑘) with 𝑢 a node or edge of 𝒢 and 𝑘 a property key, to a value in a datatype value

domain 𝐷𝑖.

Let 𝒢 = ⟨𝑁,𝐸, src, tgt, 𝑐𝑟, 𝑐𝑙, 𝜆⟩ and 𝒢′ = ⟨𝑁 ′, 𝐸′, src′, tgt′, 𝑐′𝑟, 𝑐
′
𝑙, 𝜆

′⟩ be property graphs.

A homomorphism from 𝒢 to 𝒢′ is a function ℎ that maps each 𝑣 ∈ 𝑁 to some ℎ(𝑣) ∈ 𝑁 ′
and

each 𝑢 ∈ 𝐸 to some ℎ(𝑢) ∈ 𝐸′
so that

1. for every 𝑣 ∈ 𝑁 , 𝑐𝑙(𝑣) ⊆ 𝑐′𝑙(ℎ(𝑣)) and if 𝜆(𝑣, 𝑘) is defined for some 𝑘, then 𝜆(𝑣, 𝑘) =
𝜆′(ℎ(𝑣), 𝑘); and

2. for every 𝑢 ∈ 𝐸, 𝑐𝑟(𝑢) = 𝑐′𝑟(ℎ(𝑢)), src(𝑢) = src′(ℎ(𝑢)), tgt(𝑢) = tgt′(ℎ(𝑢)), and if

𝜆(𝑢, 𝑘) is defined for some 𝑘, then 𝜆′(ℎ(𝑢), 𝑘) = 𝜆(𝑢, 𝑘).
We call 𝒢 a subgraph of 𝒢′ if 𝑁 ⊆ 𝑁 ′

, 𝐸 ⊆ 𝐸′
, and the identity on 𝑁 ∪𝐸 is a homomorphism

from 𝒢 to 𝒢′.

2.1. Ontologies

An ontology is a set of axioms that encapsulates terminological knowledge of our domain.

Here we write ontologies in the description logic called DL-LiteR [8]. We define the set of roles

N±
R = NR∪{𝑠− | 𝑠 ∈ NR}. If 𝑟 = 𝑠− for 𝑠 ∈ 𝑁±

𝑅 , then 𝑟− denotes 𝑠. For all roles 𝑟, we call role

𝑟− the inverse of 𝑟, and vice-versa. Concepts in DL-LiteR take the form 𝐴 or ∃𝑟, where 𝐴 ∈ NC

and 𝑟 ∈ N±
R . We use possibly subindexed 𝑟 and 𝐵 to denote roles and concepts, respectively.

Axioms take one of four forms:

𝐵1 ⊑ 𝐵2, 𝐵1 ⊑ ¬𝐵2, 𝑟1 ⊑ 𝑟2, 𝑟1 ⊑ ¬𝑟2.

A set of axioms 𝒯 is called an ontology or a TBox. In this paper datasets (called ABoxes in DL

jargon) are given in the form of a property graph ⟨𝑁,𝐸, src, tgt, 𝑐𝑟, 𝑐𝑙, 𝜆⟩ where 𝑁 ⊆ NI and

𝐸 ⊆ NE, and both sets are finite.

Paired with a TBox 𝒯 , a dataset 𝒜 is associated to a set of models, which intuitively are

property graphs that may extend 𝒜 and satisfy the axioms in 𝒯 .

Formally, in this paper we define an interpretation ℐ as a property graph

⟨Δℐ
𝑉 ,Δ

ℐ
𝐸 , src, tgt, 𝑐𝑟, 𝑐𝑙, 𝜆⟩

where Δℐ
𝑉 ̸= ∅ and Δℐ

𝐸 ̸= ∅. We say that ℐ is a model of dataset𝒜 if it contains𝒜 as a subgraph.

Note that we are thus making the standard name assumption.

The interpretation function ·ℐ for concept and role names is determined by the labelling

functions 𝑐𝑙 and 𝑐𝑟. Note that for a role name 𝑟, we let 𝑟ℐ ⊆ Δℐ
𝑉 × Δℐ

𝑉 , as usually done in

description logic interpretations where Δℐ
𝐸 is not present. For each concept name 𝐴 ∈ NC and

each role name 𝑟 ∈ NR, we define

𝐴ℐ ={𝑣 ∈ Δℐ
𝑉 | 𝐴 ∈ 𝑐𝑙(𝑣)}

𝑟ℐ ={(𝑣, 𝑤) | ∃𝑢 ∈ Δℐ
𝐸 : src(𝑢) = 𝑣, tgt(𝑢) = 𝑤, 𝑐𝑟(𝑢) = 𝑟}

Then the interpretation of all concepts and roles is defined as usual:

(¬𝐵)ℐ = Δℐ
𝑉 ∖𝐵ℐ (𝑟−)ℐ = {(𝑣, 𝑤) | (𝑤, 𝑣) ∈ 𝑟ℐ}

(∃𝑟)ℐ = {𝑣 | ∃𝑤 ∈ Δℐ
𝑉 : (𝑣, 𝑤) ∈ 𝑟ℐ} (¬𝑟)ℐ = (Δℐ

𝑉 ×Δℐ
𝑉) ∖ 𝑟ℐ

An interpretation ℐ satisfies an axiom 𝛾 ⊑ 𝛿 if 𝛾ℐ ⊆ 𝛿ℐ , and we call ℐ a model of a TBox 𝒯 if ℐ
satisfies every axiom in 𝒯 . A dataset𝒜 is consistent with a TBox 𝒯 if a model of𝒜 and 𝒯 exists.

Canonical model When TBoxes are written in DL-LiteR, every consistent dataset can be

extended into a model in a canonical way using a technique called the chase; this also applies in

our setting. As usual, we start form 𝒜 and add nodes, edges and labels to satisfy all the positive

axioms of 𝒯 , i.e., those that do not have ¬ on the right-hand-side.

The canonical model ℐ𝒯 ,𝒜 of a DL-LiteR TBox 𝒯 and a dataset𝒜 is built inductively as follows.

First we set ℐ0 = 𝒜. Then the following rules are exhaustively applied:

• If 𝐵 ⊑ 𝐴 ∈ 𝒯 with 𝐴 ∈ NC, 𝑣 ∈ 𝐵ℐ𝑖
and 𝑣 ̸∈ 𝐴ℐ𝑖

, then ℐ𝑖+1 is obtained from ℐ𝑖 by

setting 𝑐𝑙(𝑣) := 𝑐𝑙(𝑣) ∪ {𝐴}.

• If 𝐵 ⊑ ∃𝑟 ∈ 𝒯 , 𝑣 ∈ 𝐵ℐ𝑖
and 𝑣 ̸∈ (∃𝑟)ℐ𝑖 , then ℐ𝑖+1 is obtained from ℐ𝑖 by adding a

fresh 𝑤 to Δℐ
𝑉 and a fresh 𝑢 to Δℐ

𝐸 . In case 𝑟 ∈ NR, we set src(𝑢) := 𝑣, tgt(𝑢) := 𝑤 and

𝑐𝑟(𝑢) = 𝑟 for ℐ𝑖+1. Otherwise, we set src(𝑢) := 𝑤, tgt(𝑢) := 𝑣 and 𝑐𝑟(𝑢) = 𝑟−.

• If 𝑟1 ⊑ 𝑟 ∈ 𝒯 with 𝑟 ∈ N±
R , (𝑣, 𝑤) ∈ 𝑟ℐ𝑖1 and (𝑣, 𝑤) ̸∈ 𝑟ℐ𝑖 , then ℐ𝑖+1 is obtained from ℐ𝑖

by adding a fresh element 𝑢 to Δℐ
𝐸 . In case 𝑟 ∈ NR, we set src(𝑢) := 𝑣, tgt(𝑢) := 𝑤 and

𝑐𝑟(𝑢) = 𝑟 for ℐ𝑖+1. Otherwise, we set src(𝑢) := 𝑤, tgt(𝑢) := 𝑣 and 𝑐𝑟(𝑢) = 𝑟−.

We assume fairness in the application of the rules i.e., every applicable rule is eventually applied.

The canonical model ℐ𝒯 ,𝒜 is defined as the limit of the sequence ℐ0, ℐ1, . . . , ℐ𝑛. Note that in

general, the canonical model can be infinite. The following result is proved in the standard way.

Lemma 1. Let 𝒯 be a DL-LiteR TBox and 𝒜 a dataset consistent with 𝒯 . Then ℐ𝒯 ,𝒜 is a model of

𝒜 and 𝒯 , and every model of 𝒜 and 𝒯 can be homomorphically embedded into ℐ𝒯 ,𝒜.

3. Navigational Queries for Property Graphs

We now introduce our query language for property graphs, which allows for path navigation in

the style of C2RPQs. For a detailed definition C2RPQs, we refer to [12]. C2RPQs are conjunctions

of unary atoms of the form 𝐴(𝑥) and binary atoms of the form 𝜌(𝑥, 𝑦), where 𝐴 is a concept

name and 𝜌 a regular expression over the alphabet of (possibly inverse) roles. Cypher also

supports regular paths, but when we restrict it to the fragment that can be written in logic as a

conjunction of atoms analogous to C2RPQs, we find some important differences. In particular,

Cypher imposes directionality constraints when matching paths that effectively mean that a

regular path that uses the Kleene star can contain either only role names, or only inverse role

names. For example, a query such as 𝑞(𝑥)← [𝑟1∪ 𝑟−2]*(𝑥, 𝑦) can not be syntactically expressed

in Cypher. Also, Cypher does not allow more than one ‘step’ in the scope of the Kleene star,

thus a query such as 𝑞(𝑥)← [𝑟1 · 𝑟2]*(𝑥, 𝑦) can not be syntactically expressed in Cypher.

Our query language restricts regular paths so that they are naturally expressible in Cypher.

We also add some useful features to CQs that are typically not present in C2RPQs, but which

are easy to support in Cypher. We extend unary atoms to take a disjunction of concepts rather

than a single concept. As we will see below, this allows for rewritings that are exponentially

more succinct in some cases. Additionally, our query language allows querying property

values by means of test atoms. Recall that each datatype has a fixed set of binary predicates

representing binary relations over the data domain. For example, the integers may come with

the usual comparison predicates ≤,≥, ̸=,=, and the strings datatype with binary relations

equal, substring, prefix, etc. Property keys and data predicates are used in Boolean tests:

x_position ≥ 450 ∨ (x_position ≥ 300 ∧ movingDirection = ‘right′).

where we check that an object has a horizontal position of at least 450, or the position is at least

300 and the object is moving in the direction right.

Definition 1 (Navigational property-graph queries (NPGQs)). Let 𝑣 be a value in a datatype

domain D, let ⊙ be a binary predicate in D, and let 𝑘 ∈ K. The expression 𝑘 ⊙ 𝑣 is called an

atomic data test, and a Boolean combination of atomic data tests (built using ∧, ∨, and ¬) is called

a data test. We define a navigational property-graph query (NPGQ) as an expression of the form

𝑞(�⃗�) = ∃𝑦.𝜑(�⃗�, �⃗�) where 𝜑 is a conjunction of atoms of the forms:

𝑇 (𝑥) 𝑇 (𝑥, 𝑦) (𝐴1 ∪ · · · ∪𝐴𝑛)(𝑥) (𝑟1 ∪ · · · ∪ 𝑟𝑛)(𝑥, 𝑦) (𝑟1 ∪ · · · ∪ 𝑟𝑛)
*(𝑥, 𝑦)

where each 𝐴𝑖 is a concept name in NC, each 𝑟𝑖 a role name in N±
R , 𝑇 is a data test, and 𝑥, 𝑦 ∈

(�⃗� ∪ �⃗� ∪ NI). The atoms of the first two forms are called test atoms, and the remaining atoms

are relational atoms. We call an atom of the last form a star atom, and say that it is pure if

it contains only role names, or only inverse role names, that is, if either {𝑟1, . . . , 𝑟𝑛} ⊆ 𝑁𝑅 or

{𝑟−1 , . . . , 𝑟−𝑛 } ⊆ 𝑁𝑅. An NPGQ 𝑞 is called pure if all its star atoms are pure.

3.1. Path and trail semantics

To define the semantics of NPGQs, we first define paths and trails.

Definition 2. Consider a property graph 𝒢 = ⟨𝑁,𝐸, src, tgt, 𝑐𝑟, 𝑐𝑙, 𝜆⟩. We let 𝐸± = 𝐸 ∪
{𝑢− | 𝑢 ∈ 𝐸}, and for every 𝑢 in 𝐸±

, we let src(𝑢−) = tgt(𝑢), tgt(𝑢−) = src(𝑢) and

𝑐𝑟(𝑢
−) is the inverse role of 𝑐𝑟(𝑢). A path from a node 𝑣 to a node 𝑤 in a property graph

𝒜 is a sequence 𝑢1𝑢2 . . . 𝑢𝑛 of edges 𝑢𝑖 ∈ 𝐸±
, where src(𝑢1) = 𝑣, tgt(𝑢𝑛) = 𝑤 and for each

1 ≤ 𝑖 < 𝑛,tgt(𝑢𝑖) = src(𝑢𝑖+1). We use 𝜖 to denote the empty path, that is, the path with

𝑛 = 0 from a node 𝑣 to itself. A trail from 𝑣 to 𝑤 is a path 𝑢1𝑢2 . . . 𝑢𝑛 from 𝑣 to 𝑤 where for

each 𝑖 ̸= 𝑗, we have that 𝑢𝑖 ̸∈ {𝑢𝑗 , 𝑢−𝑗 } i.e., no edge occurs more than once. For 𝜌 of the form

(𝑟1 ∪ · · · ∪ 𝑟𝑛)
*

or (𝑟1 ∪ · · · ∪ 𝑟𝑛), we use 𝐿(𝜌) to denote the set of paths 𝑢1𝑢2 . . . 𝑢𝑛 such that

{𝑠1, . . . , 𝑠𝑛} ⊆ {𝑟1 ∪ · · · ∪ 𝑟𝑛}, where 𝑠𝑖 = 𝑐𝑟(𝑢𝑖). Note that 𝜖 ∈ 𝐿(𝜌) for every 𝜌.

Note that every trail is a path, but not every path is a trail. Now we can define path and trail

matches for NPGQs.

Definition 3. [Path and trail matches] Consider a property graph 𝒢 = ⟨𝑁,𝐸, src, tgt, 𝑐𝑟, 𝑐𝑙, 𝜆⟩.
Let 𝑜 ∈ 𝑁 ∪ 𝐸. A test 𝑘 ⊙ 𝑣 is said to be true at 𝑜 if 𝜆(𝑜, 𝑘) is defined and belongs to the same

data domain D𝑖 as 𝑣, and the relation denoted by ⊙ holds between 𝜆(𝑜, 𝑘) and 𝑣. The truth of

data tests 𝑇 is interpreted as expected, and we write 𝑜 ∈ J𝑇 K𝒢 if 𝑇 is true at 𝑜 in graph 𝒢; we may

omit the graph 𝒢 if it is clear from the context.

Let 𝑞(�⃗�) be a query and 𝜋 a mapping from the individuals and variables occurring in 𝑞 to nodes

of 𝒢. We call 𝜋 a path match for 𝑞 in 𝒢 if 𝑁 contains all individuals occurring as terms in 𝑞 and:

1. 𝜋(𝑐) = 𝑐 for each 𝑐 ∈ NI;

2. for each atom (𝐴1 ∪ · · · ∪𝐴𝑛)(𝑥) in 𝑞, {𝐴1, . . . , 𝐴𝑛} ∩ 𝑐𝑙(𝜋(𝑥)) ̸= ∅;
3. for each atom 𝑇 (𝑥) in 𝑞, 𝜋(𝑥) ∈ J𝑇 K;

4. for each atom (𝑟1 ∪ · · · ∪ 𝑟𝑛)(𝑥, 𝑦) or (𝑟1 ∪ · · · ∪ 𝑟𝑛)
*(𝑥, 𝑦), there exists a path 𝑝 ∈ 𝐿(𝜌)

from 𝜋(𝑥) to 𝜋(𝑦), where 𝜌 = 𝑟1 ∪ · · · ∪ 𝑟𝑛 or 𝜌 = (𝑟1 ∪ · · · ∪ 𝑟𝑛)
*
, respectively; and

5. for each atom 𝑇 (𝑥, 𝑦), there exists 𝑒 ∈ 𝐸 with 𝑒 ∈ J𝑇 K, 𝑠𝑟𝑐(𝑒) = 𝜋(𝑡), 𝑡𝑔𝑡(𝑒) = 𝜋(𝑦).
If additionally the path 𝑝 in item 4 is a trail, we call 𝜋 a trail match. A tuple �⃗� ⊆ 𝑁 is a (trail)

answer to a query 𝑞(�⃗�) = ∃𝑦.𝜑(𝑥, 𝑦) in 𝒢 if there exists a (trail) match 𝜋 for �⃗� such that 𝜋(�⃗�) = �⃗�.

Since all trails are paths, the trail answers are a subset of the path answers. For C2RPQs and

many related languages, this containment is strict [4]. However, the regular paths in NGPQs

are restricted in such a way that every path answer is also a trail answer, and hence trail and

path answers coincide.

Proposition 1. Let 𝒢 be a property graph and 𝑞 an NPGQ. The answers to 𝑞 over 𝒢 under trail

semantics are also path answers.

Proof (sketch). We show that every path match is also a trail match. Consider an arbitrary path

match 𝜋 for 𝑞 in 𝒢. To show that 𝜋 is also a trail match, we argue that for every star atom

(𝑟1 ∪ 𝑟2 ∪ · · · ∪ 𝑟𝑛)*(𝑥, 𝑦), there is a trail 𝑝′ witnessing item 4 in Definition 3, that is, 𝑝′ is a trail

from 𝜋(𝑥) to 𝜋(𝑦) and 𝑝′ ∈ 𝐿(𝜌), where 𝜌 = (𝑟1 ∪ 𝑟2 ∪ · · · ∪ 𝑟𝑛)
*
. We know that such a path

𝑝 = 𝑢1 . . . 𝑢𝑛 exists, as 𝜋 is a path match, and if 𝑝 is not a trail then we can drop any repeated

sequences in it to obtain a trail 𝑝′. Since 𝑝′ only uses edges from {𝑢1, . . . , 𝑢𝑛}, it follows from

𝑝 = 𝐿(𝜌) that 𝑝′ = 𝐿(𝜌) also holds.

Answering C2RPQs under path semantics is in NL in data complexity [14], so by Proposition 1

we have:

Proposition 2. The query answering problem for NPGQs is NL complete in data complexity, under

both path and trail semantics.

This is good news, since under trail semantics C2RPQs are intractable in general [15]. We

note that Proposition 2 can also be inferred (without Proposition 1) from the trichotomy in [15].

NPGQs and Cypher Cypher cannot express some NPGQs such as [𝑟1 ∪ 𝑟−2]
*(𝑥, 𝑦), but pure

NPGQs inherit Cypher’s restrictions on directional navigation and they can be easily expressed.

Due to space constraints, the Cypher translation is to be found in the full version of this paper.

3.2. Semantics of Ontology-Mediated NPGQs

As is usually done for OMQs, we adopt the certain answer semantics.

Definition 4 (Certain answer). Let𝒜 be a dataset, 𝒯 a TBox, and 𝑞(�⃗�) an NPGQ. A tuple �⃗� ⊆ 𝑁
is a (certain) answer to (𝑞(�⃗�), 𝒯) over 𝒜 if it is an answer in each model ℐ of 𝒜 and 𝒯 .

Note that previous works on OMQs had only considered path answers, which admit a natural

certain answer semantics. We can adopt certain answers for the trail semantics thanks to

Proposition 1, but this does not extend to other navigational query languages.

The certain answers coincide with the answers in the canonical model ℐ𝒯 ,𝒜. This follows

from Lemma 1, the preservation of path matches under homomorphisms, and Proposition 1.

Lemma 2. Let𝒜 be a dataset, 𝒯 a TBox, and 𝑞(�⃗�) an NPGQ. A tuple �⃗� ⊆ 𝑁 is a (certain) answer

to (𝑞(�⃗�), 𝒯) over 𝒜 if it is an answer in in the canonical model ℐ𝒯 ,𝒜.

4. Query Rewriting Algorithm

In this section, we a present a sound and complete rewriting algorithm for NPGQs. It transforms

an NPGQ 𝑞 mediated by a DL-LiteR ontology 𝒯 into a plain NPGQ 𝑞𝒯 that can be evaluated

over the data alone and that gives exactly the same set of answers.

The algorithm is not very different to the classical PerfectRef [8]: it applies axioms of 𝒯 in a

right-to-left fashion to take into account every way in which a query atom could be implied.

Since NPGQs allow for unions of concepts in unary atoms, we can avoid one of the most

common causes for exponential growth of the rewritten queries in PerfectRef. For instance,

in the presence of a TBox that contains 𝐴1 ⊑ 𝐴2, 𝐵1 ⊑ 𝐵2 a query that contains the atoms

𝐴2(𝑥), 𝐵2(𝑦) can be rewritten replacing them with (𝐴1 ∪𝐴2)(𝑥), (𝐵1 ∪𝐵2)(𝑦), rather than

considering all combinations of 𝐴𝑖(𝑥), 𝐵𝑗(𝑦).
For the treatment of the regular expressions, we exploit the fact that the query only needs

to navigate in the anonymous part of the canonical model in one direction. That is, for every

atom 𝜌(𝑥, 𝑦) in 𝑞 and every match 𝜋, we can safely assume that 𝜋 is a trail and no node in

the canonical model is visited more than once. This ‘unidirectionality’ of paths spares us from

needing the sophisticated techniques for treating 2-way paths that are usual for navigational

queries in the presence of ontologies (e.g., the so-called loop computation [12]). Instead, we only

introduce three novel rewriting rules, which allow us to reason about the way in which the

paths witnessing star atoms may overlap, and whose application can be a prerequisite to the

application of the usual rewriting rules to the star atoms.

Let 𝛼 be an atom. If it is of the form (𝐴1∪𝐴2∪ . . . 𝐴𝑛)(𝑥), we denote by concepts(𝛼) the set

of all concept names {𝐴1, . . . , 𝐴𝑛} that occur in it, and if it is of the form (𝑠1∪𝑠2∪ . . . 𝑠𝑛)(𝑥, 𝑦),
then roles(𝛼) ⊆ 𝑁±

𝑅 denote the roles occurring in it. For a union of roles 𝜌 = 𝑟1 ∪ · · · ∪ 𝑟𝑛,

we define 𝜌− = 𝑟−1 ∪ · · · ∪ 𝑟−𝑛 . We view queries as sets of atoms and, for convenience, we use

𝛼∈ 𝑞 to mean that either 𝛼 ∈ 𝑞, or 𝛼 = 𝜌(𝑥, 𝑦) and 𝜌−(𝑦, 𝑥) ∈ 𝑞. Recall that a query variable

is unbound if it occurs exactly once in the query and it is not an answer variable. As usual, we

denote unbound variables by ‘_’, but each occurrence is a fresh variable, and must be denoted

by a unique name if it becomes bound.

The algorithm ensures that atoms are closed under the concept and role name inclusions of 𝒯 .

For a TBox 𝒯 , we call 𝑆 ⊆ 𝑁±
𝑅 𝒯 -saturated if 𝑟1 ∈ 𝑆 whenever 𝑟2 ∈ 𝑆 and either 𝑟1 ⊑ 𝑟2 ∈ 𝒯

or 𝑟−1 ⊑ 𝑟−2 ∈ 𝒯 . The 𝒯 -saturation of 𝑆, sat𝒯 (𝑆), is the smallest 𝒯 -saturated set containing 𝑆.

Similarly, a set 𝑀 of concept names 𝒯 -saturated if 𝐴 ∈𝑀 and 𝐴′ ⊑ 𝐴 ∈ 𝒯 imply 𝐴′ ∈ 𝒯 , and

the 𝒯 -saturation of 𝑀 , denoted sat𝒯 (𝑀), is the smallest 𝒯 -saturated set containing 𝑀 . We

Table 1
Axiom application rules to obtain apply(𝑞, 𝛾) (where 𝑖 ∈ {1, . . . , , 𝑛}).

If 𝛾 = ∃𝑟 ⊑ 𝐴𝑖 and there is 𝛼 = (𝐴1 ∪ · · · ∪𝐴𝑛)(𝑥) ∈ 𝑞 replace 𝛼 in 𝑞 by [sat𝒯 ({𝑟})](𝑥, _).
If 𝛾 = ∃𝑟 ⊑ ∃𝑟𝑖 and there is 𝛼 = (𝑟1 ∪ · · · ∪ 𝑟𝑛)(𝑥, _)∈ 𝑞 replace 𝛼 in 𝑞 by [sat𝒯 ({𝑟})](𝑥, _).
If 𝛾 = 𝐴 ⊑ ∃𝑟𝑖 and there is 𝛼 = (𝑟1 ∪ · · · ∪ 𝑟𝑛)(𝑥, _)∈ 𝑞 replace 𝛼 in 𝑞 by [sat𝒯 ({𝐴})](𝑥).

call an atom 𝛼 𝒯 -saturated if concepts(𝛼) or roles(𝛼) (for unary or binary 𝛼, respectively) is

𝒯 -saturated. If it is clear from the context, we may omit 𝒯 and just talk about saturated atoms.

Our novel query rewriting algorithm, applies exhaustively the following transformations.

Definition 5. Consider a DL-LiteR TBox 𝒯 and an NPGQ 𝑞. We define the following rules:

1. Saturation: saturate(𝑞, 𝒯) denotes the result of replacing each atom in 𝑞 by its 𝒯 -saturation.

2. Axiom application: By apply(𝑞, 𝛾) we denote the result of applying an axiom 𝛾 to 𝑞 using

the rules in Table 1. Note that this may add an unbound variable to the query.

3. Reduction: reduce(𝑞, 𝛼1, 𝛼2) is the result of applying the most general unifier of 𝛼1 and 𝛼2.

4. Concatenation: Let 𝛽1 ∈ 𝑞 and 𝛽2 ∈ 𝑞 be atoms such that roles(𝛽2) ⊆ roles(𝛽1), 𝛽1 is a star

atom, and 𝛽1, 𝛽2 share a common term. Then we obtain concatenate(𝑞, 𝛽1, 𝛽2) as follows: If 𝛽1
has terms (𝑥, 𝑦) and 𝛽2 has terms (𝑥, 𝑧), then the terms of 𝛽1 in 𝑞 are replaced by (𝑧, 𝑦). This

amounts to placing the atom 𝛽2 right before 𝛽1. If 𝛽1 has terms (𝑥, 𝑦) and 𝛽2 has terms (𝑧, 𝑦),
then the terms of 𝛽1 in 𝑞 are replaced by (𝑥, 𝑧). This amounts to placing the atom 𝛽2 right after 𝛽1.

5. Merging: Let 𝛽1 ∈ 𝑞 and 𝛽2 ∈ 𝑞 be atoms with roles(𝛽1) ∩ roles(𝛽2) ̸= ∅ and such that both

atoms have terms (𝑥, 𝑦) (in that order). Then merge(𝑞, 𝛽1, 𝛽2) is obtained by replacing in 𝑞 both

atoms by

• [roles(𝛽1) ∩ roles(𝛽2)
*](𝑥, 𝑦) if both 𝛽1 and 𝛽2 are star atoms, and

• [roles(𝛽1) ∩ roles(𝛽2)](𝑥, 𝑦) otherwise.

6. Dropping: Let 𝛽 ∈ 𝑞 be of the form (𝑟1 ∪ · · · ∪ 𝑟𝑛)
*(𝑥, _) or (𝑟1 ∪ · · · ∪ 𝑟𝑛)

*(_, 𝑥) and such

that 𝑥 occurs in another atom in case it is an answer variable. Then drop(𝑞, 𝛼) = 𝑞 ∖ 𝛼.

We use Rewrite(𝑞, 𝒯) to describe the set of queries that are produced by applying all of the above

rules exhaustively, and accumulating all transformed new queries.

Example 1. Suppose we are given a TBox 𝒯 = {∃𝑡− ⊑ ∃𝑝} and also a query 𝑞1, defined as

𝑞1(𝑥) ← (𝑟 ∪ 𝑠 ∪ 𝑡)*(𝑥, 𝑦), 𝑝(𝑧, 𝑥), 𝑠−(𝑦, 𝑧). To illustrate the query transformations, we state

three example queries, produced via successive application of these transformations.

𝑞2(𝑥)← (𝑟 ∪ 𝑠 ∪ 𝑡)*(𝑥, 𝑦), 𝑡−(𝑧, 𝑥), 𝑠−(𝑦, 𝑧) from apply(𝑞1,∃𝑡− ⊑ ∃𝑝)
𝑞3(𝑥)← (𝑟 ∪ 𝑠 ∪ 𝑡)*(𝑧, 𝑦), 𝑡(𝑥, 𝑧), 𝑠−(𝑦, 𝑧) from concatenate(𝑞2, (𝑟 ∪ 𝑠 ∪ 𝑡)*(𝑥, 𝑦), 𝑡(𝑥, 𝑧))

𝑞4(𝑥)← 𝑠(𝑧, 𝑦), 𝑡(𝑥, 𝑧) from merge(𝑞3, 𝑠(𝑧, 𝑦), (𝑟 ∪ 𝑠 ∪ 𝑡)*(𝑧, 𝑦))

Note that in the creation of 𝑞3 we make use of the fact that 𝑡(𝑥, 𝑧)∈ 𝑞2, which follows from

𝑡−(𝑧, 𝑥) ∈ 𝑞2, and analogously we have that 𝑠(𝑧, 𝑦)∈ 𝑞3, which follows from 𝑠−(𝑦, 𝑧) ∈ 𝑞3.

Note that the rewriting focuses on the atoms without data tests. Since DL-LiteR ontologies

cannot assert property key values for existentially quantified objects, atoms with data tests can

only be matched in the canonical model to nodes and edges that exist already in the input dataset.

Hence these atoms remain untouched in the rewritten query, except for possible applications of

the reduce step, which could bind variables shared with test atoms.

The rewriting algorithm we have presented is sound and complete.

Theorem 1. Let 𝑞 be an NPGQ, 𝒯 a DL-LiteR TBox and 𝒜 a property graph. Then �⃗� is a certain

answer to 𝑞 over (𝒯 ,𝒜) iff �⃗� is an answer to 𝑞′ in 𝒜 for some 𝑞′ ∈ Rewrite(𝑞, 𝒯).

The pseudo-code of the query rewriting algorithm will be in the full version of this paper.

Termination and Complexity The query rewriting procedure terminates. In a nutshell, all

transformations make the query smaller except for the axiom application, which can introduce

fresh variables, but a bound on the latter can be shown using essentially the same arguments as

for the standard PerfectRef. The rewriting does not depend on the data and hence it only needs

constant time for any given 𝒯 and 𝑞. From this and Proposition 2, we get:

Theorem 2. The query answering problem for NPGQs mediated by DL-LiteR ontologies is NL

complete in data complexity, under both path and trail semantics.

Evaluating OMQs in Cypher Even if the original input query is pure, the rewriting can

add (non)-inverse roles to star atoms and result in a NPGQ that is not pure. We introduce a

sufficient condition for the purity to be preserved during the rewriting, which guarantees that

we can evaluate ontology-mediated NPGQs using Cypher.

Definition 6 (NPGQ compliance). Let 𝑞 be an NPGQ. A TBox 𝒯 is 𝑞-compliant if there is no star

atom whose saturation contains both role names and inverse role names. That is, for every atom of

the form 𝑆*(𝑡, 𝑡′) ∈ 𝑞, either sat𝒯 (𝑆) ⊆ 𝑁𝑅, or {𝑟− | 𝑟 ∈ sat𝒯 (𝑆)} ⊆ 𝑁𝑅.

Proposition 3. If 𝑞 is a pure NPGQ and it is 𝒯 -compliant, then every 𝑞′ ∈ Rewrite(𝑞, 𝒯) is a

pure NPGQ.

5. NPGQ Rewriting in a Use Case

This work was largely motivated by a use case from the automated driving industry, specifically

scenario-based safety assessment models for autonomous vehicles, where driving scenarios for

safety testing are retrieved from real-world data. There are two large open datasets used for

such purposes: the nuScenes [16] and Lyft [17] datasets. A company in the autonomous driving

industry stores both datasets in the same Neo4j graph database. The data is organized in scenes,

which contain a number of samples that are temporally ordered, and the state of objects in a

scene can change within an unknown time frame. Hence, we need to navigate the temporal

graph of a scene to answer queries about objects that change in time. The two datasets are

similar, but use different vocabularies. For example, one dataset labels instances with Bus, while

the other labels them either RigidBus or BendyBus. We used a DL-LiteR ontology to define a

unified vocabulary for querying. It contains, for example, axioms such as BendyBus ⊑ Bus and

RigidBus ⊑ Bus. In collaboration with a company expert, we developed by hand a test set of

five representative queries. All but one of them needed navigation along paths of unbounded

Table 2
The results of our experiments on the nuScenes and Lyft dataset. To show the effectiveness of our novel
‘union rewriting’, we compare it with a simpler one, called ‘PerfectRef*’ below. All times in seconds.

Query Union Rewr. Rewr. Output Exec. time for
size time size Union Rewr.

Q1 1 0.003 234 0.039
Q2 33 1.112 751 0.705
Q3 33 0.922 264 0.538
Q4 11 1.152 10 0.195
Q5 11 1.168 8 0.222

PerfectRef* Exec. time for
rewr. size PerfectRef*

8 0.001
880 111.071
880 109.209

1056 136.767
1056 143.516

length, but could be easily expressed as NPGQs. The navigation used only temporal relations in

the data such as NEXT, and the compliance between queries and TBox was trivial. The queries

vary from a simple query with only one atom (Q1) to queries which contain binary atoms with

Kleene star (Q2-Q4). As an example, we provide one of the queries, Q5, here in full:

𝑄5(𝑥)← pedestrian(𝑥),OF(𝑦, 𝑥),HAS(𝑦, 𝑧), pedestrian_stationary(𝑧),NEXT(𝑦, 𝑤),

NEXT*(𝑤, 𝑦𝑝),HAS(𝑦𝑝, 𝑧𝑝), pedestrian_moving(𝑧𝑝)

We developed a prototype implementation of our rewriting technique and tested it on a

sample dataset provided by the mentioned company, as a Neo4j database with metadata of the

nuScenes and Lyft datasets. The source code for our implementation has been made publicly

available
1
. The dataset consists of 91,891 nodes and 254,555 distinct relations. In order to test

the potential feasibility of our approach, we rewrote the five queries and evaluated them over

the data as Cypher queries. The results of the evaluation are seen in Table 2, on the right.

We were also curious about the impact of atoms with concept unions (such as [𝐴 ∪𝐵](𝑥))
for handling the subclass hierarchy. We compared our rewriting, which uses this union, with a

naive version that just extends the classical PerfectRef with the additional rules for navigational

atoms (called PerfectRef*
in the table). The sizes of the rewritings produced by both approaches

and their evaluation time are shown in Table 2. The very significant improvements suggest that

some features of Cypher may be useful for query rewriting even for plain CQs, and they could

be leveraged for more efficient OMQ evaluation with less optimisation effort.

6. Conclusion

Ontologies are useful for querying incomplete data. We have extended the ontology-mediated

querying paradigm to property graphs, using as both input query language and as target of

the rewritings a navigational query language which is expressible in Cypher. For answering

queries, we have developed a novel rewriting algorithm based on PerfectRef. Finally, we have

demonstrated the usefulness of exploiting Cypher for compact rewritings on a concrete use

case. We plan to continue working on rewriting techniques for more expressive graph query

languages, helping pave the way to enabling OBDA to support real graph databases.

1

https://github.com/nikdra/omq-pg

https://github.com/nikdra/omq-pg

Acknowledgments

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software

Program (WASP) funded by the Knut and Alice Wallenberg Foundation. It was also partially

supported by the Austrian Science Fund (FWF) project P30360 and P30873.

References

[1] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, M. Zakharyaschev,

Ontology-based data access: A survey, in: IJCAI, ijcai.org, 2018, pp. 5511–5519.

[2] G. Xiao, D. Lanti, R. Kontchakov, S. Komla-Ebri, E. G. Kalayci, L. Ding, J. Corman, B. Cogrel,

D. Calvanese, E. Botoeva, The virtual knowledge graph system ontop, in: J. Z. Pan, V. A. M.

Tamma, C. d’Amato, K. Janowicz, B. Fu, A. Polleres, O. Seneviratne, L. Kagal (Eds.), The

Semantic Web - ISWC 2020 - 19th International Semantic Web Conference, Athens, Greece,

November 2-6, 2020, Proceedings, Part II, volume 12507 of Lecture Notes in Computer

Science, Springer, 2020, pp. 259–277. URL: https://doi.org/10.1007/978-3-030-62466-8_17.

doi:10.1007/978-3-030-62466-8_17.

[3] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow,

M. Rydberg, P. Selmer, A. Taylor, Cypher: An evolving query language for property graphs,

in: G. Das, C. M. Jermaine, P. A. Bernstein (Eds.), Proceedings of the 2018 International

Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June

10-15, 2018, ACM, 2018, pp. 1433–1445. URL: https://doi.org/10.1145/3183713.3190657.

doi:10.1145/3183713.3190657.

[4] N. Francis, A. Gheerbrant, P. Guagliardo, L. Libkin, V. Marsault, W. Martens, F. Murlak,

L. Peterfreund, A. Rogova, D. Vrgoc, A researcher’s digest of GQL (invited talk), in:

ICDT, volume 255 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, pp.

1:1–1:22.

[5] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, D. Vrgoc, Foundations of modern

query languages for graph databases, ACM Comput. Surv. 50 (2017) 68:1–68:40. URL:

https://doi.org/10.1145/3104031. doi:10.1145/3104031.

[6] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, 1995. URL:

http://webdam.inria.fr/Alice/.

[7] D. Calvanese, J. Carroll, G. D. Giacomo, J. Hendler, I. Herman, B. Parsia, P. F. Patel-Schneider,

A. Ruttenberg, U. Sattler, M. Schneider, OWL 2 Web Ontology Language Profiles, World

Wide Web Consortium (W3C), 2009. URL: https://www.w3.org/TR/owl2-profiles/.

[8] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning

and efficient query answering in description logics: The DL-Lite family, J. Autom. Rea-

son. 39 (2007) 385–429. URL: https://doi.org/10.1007/s10817-007-9078-x. doi:10.1007/
s10817-007-9078-x.

[9] World Wide Web Consortium, Sparql 1.1 query language, 2013. URL: https://www.w3.org/

TR/sparql11-query/.

[10] World Wide Web Consortium, RDF 1.1 Primer, World Wide Web Consortium (W3C), 2014.

URL: https://www.w3.org/TR/rdf11-primer/.

https://doi.org/10.1007/978-3-030-62466-8_17
http://dx.doi.org/10.1007/978-3-030-62466-8_17
https://doi.org/10.1145/3183713.3190657
http://dx.doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3104031
http://dx.doi.org/10.1145/3104031
http://webdam.inria.fr/Alice/
https://www.w3.org/TR/owl2-profiles/
https://doi.org/10.1007/s10817-007-9078-x
http://dx.doi.org/10.1007/s10817-007-9078-x
http://dx.doi.org/10.1007/s10817-007-9078-x
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/rdf11-primer/

[11] M. Bienvenu, D. Calvanese, M. Ortiz, M. Simkus, Nested regular path queries in description

logics, in: KR, AAAI Press, 2014.

[12] M. Bienvenu, M. Ortiz, M. Simkus, Regular path queries in lightweight description logics:

Complexity and algorithms, J. Artif. Intell. Res. 53 (2015) 315–374.

[13] F. Baader, I. Horrocks, C. Lutz, U. Sattler, An Introduction to Description Logic, Cambridge

University Press, 2017.

[14] M. P. Consens, A. O. Mendelzon, Graphlog: a visual formalism for real life recursion, in:

PODS, ACM Press, 1990, pp. 404–416.

[15] W. Martens, M. Niewerth, T. Trautner, A Trichotomy for Regular Trail Queries, in: C. Paul,

M. Bläser (Eds.), 37th International Symposium on Theoretical Aspects of Computer

Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 7:1–7:16. URL: https://doi.org/10.

4230/LIPIcs.STACS.2020.7. doi:10.4230/LIPIcs.STACS.2020.7.

[16] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan,

G. Baldan, O. Beijbom, nuscenes: A multimodal dataset for autonomous driving, in:

2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020,

Seattle, WA, USA, June 13-19, 2020, Computer Vision Foundation / IEEE, 2020, pp.

11618–11628. URL: https://openaccess.thecvf.com/content_CVPR_2020/html/Caesar_

nuScenes_A_Multimodal_Dataset_for_Autonomous_Driving_CVPR_2020_paper.html.

doi:10.1109/CVPR42600.2020.01164.

[17] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, L. Chen, A. Jain, S. Omari, V. Iglovikov,

P. Ondruska, One thousand and one hours: Self-driving motion prediction dataset, in:

J. Kober, F. Ramos, C. J. Tomlin (Eds.), 4th Conference on Robot Learning, CoRL 2020,

16-18 November 2020, Virtual Event / Cambridge, MA, USA, volume 155 of Proceedings of

Machine Learning Research, PMLR, 2020, pp. 409–418. URL: https://proceedings.mlr.press/

v155/houston21a.html.

https://doi.org/10.4230/LIPIcs.STACS.2020.7
https://doi.org/10.4230/LIPIcs.STACS.2020.7
http://dx.doi.org/10.4230/LIPIcs.STACS.2020.7
https://openaccess.thecvf.com/content_CVPR_2020/html/Caesar_nuScenes_A_Multimodal_Dataset_for_Autonomous_Driving_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Caesar_nuScenes_A_Multimodal_Dataset_for_Autonomous_Driving_CVPR_2020_paper.html
http://dx.doi.org/10.1109/CVPR42600.2020.01164
https://proceedings.mlr.press/v155/houston21a.html
https://proceedings.mlr.press/v155/houston21a.html

	1 Introduction
	2 Preliminaries
	2.1 Ontologies

	3 Navigational Queries for Property Graphs
	3.1 Path and trail semantics
	3.2 Semantics of Ontology-Mediated NPGQs

	4 Query Rewriting Algorithm
	5 NPGQ Rewriting in a Use Case
	6 Conclusion

