
Describing the Architecture of NegesAPI, an API for
Spanish Negation Processing
José Valle-Aguilera, Salud María Jiménez-Zafra*, María Teresa Martín-Valdivia and
L. Alfonso Ureña-López

Computer Science Department, SINAI, CEATIC, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain

Abstract
In this paper, we present NegesAPI, an API for negation detection in Spanish texts using Machine Learning techniques, as
well as its Web Application. We describe its architecture, the development technologies used and the integrated negation
detection system. It is a powerful tool that can assist in different Natural Language Processing tasks.

Keywords
Negation, negation processing, cue detection, scope identification, natural language processing

1. Introduction
Negation is a grammatical phenomenon present in all
languages that can change the polarity of a sentence. It
expresses the negative form of a sentence or statement
[1]. In Spanish there exist different types of negation de-
pending on the elements used to negate: syntactic nega-
tion (no, nunca, nadie,...), lexical negation (impensable,
ilegible, imposible,...) and morphological negation (en la
vida). Also, negation can be found in multiple ways, in-
cluding the use of simple markers (one negation cue: No
sé cocinar), continuous markers (two or more consecu-
tive negation cues: Casi no llego a la presentación) and
discontinuous markers (two or more non-consecutively
negation cues: No tengo nada de dinero para la comida).

Therefore, negation can be very challenging to detect
and process. In fact, the computational treatment of nega-
tion has not been solved due to its complexity. In Natural
Language Processing (NLP) negation is a phenomenon
of special interest, since it affects the polarity of texts,
such as opinions, where the opinion of a product can be
drastically altered if negation is present. It also has an
impact on information retrieval systems, where search-
ing for “Películas que no sean de fantasía” (Non-fantasy
films) is not the same as searching for “Películas que sean
de fantasía” (Fantasy films). It is also of special relevance
for entity recognition in biomedicine, where for exam-

SEPLN-PD 2023: Annual Conference of the Spanish Association for
Natural Language Processing 2023: Projects and System Demonstra-
tions
*Corresponding author.
" jvalle@ujaen.es (J. Valle-Aguilera); sjzafra@ujaen.es
(S. M. Jiménez-Zafra); maite@ujaen.es (M. T. Martín-Valdivia);
laurena@ujaen.es (L. A. Ureña-López)
� 0000-0003-3274-8825 (S. M. Jiménez-Zafra);
0000-0002-2874-0401 (M. T. Martín-Valdivia); 0000-0001-7540-4059
(L. A. Ureña-López)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

ple if a patient “no tiene cáncer” (does not have cancer)
and the entity “cáncer” is recognised, but the presence of
negation is not detected, it changes the meaning of the
sentence and the diagnosis of the patient.

There are various approaches to handle negation in
NLP, such as rule-based approaches [2, 3], and traditional
machine learning [4, 5] and deep learning approaches
[6, 7]. Rule-based approaches use a set of pre-defined
rules to detect negation cues and modify the meaning of
the sentence accordingly. Traditional machine learning
and deep learning approaches, on the other hand, use
annotated data to train models that can automatically
identify negation cues and their scope in a sentence.

In this paper we describe the architecture of NegesAPI,
an API to detect negation cues and scopes in Spanish
texts, that uses the machine learning approach of Jiménez-
Zafra et al. [5] and that is trained in the SFU Review SP-
NEG corpus [8], which consists of 9,455 sentences from
reviews on 8 domains (cars, hotels, washing machines,
books, mobile phones, music, computers and movies).
This API can analyze any text in Spanish and annotate
its negation automatically, to assist in other NLP tasks.

The rest of the paper is organized as follows: In Section
2 we provide a description of the API and its architecture.
In Section 3 we describe the components in the back-
end. The front-end components are set out in Section
4. In Section 5 we present the negation system used by
NegesAPI. Finally, Section 6 summarizes the conclusions
and future work.

2. System Description
NegesAPI has two main modules, the API itself, and a
Web Application, built on top of the API. Additionally,
these two modules rely on different components, each
one responsible of an specific task:

• Data model: NegesAPI uses a relational database

mailto:jvalle@ujaen.es
mailto:sjzafra@ujaen.es
mailto:maite@ujaen.es
mailto:laurena@ujaen.es
https://orcid.org/0000-0003-3274-8825
https://orcid.org/0000-0002-2874-0401
https://orcid.org/0000-0001-7540-4059
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


system that stores the user list and information
about them, in order to implement a login/reg-
ister system. It should be noted that it does not
store any information about the processed and
analyzed texts. It is built in MariaDB as it is open
source and it is the default database system in
most Linux distributions.

• Views: The views contains all the information
that is presented in the client side of the web ap-
plication, as well as the design and functionalities.
The information is written in HTML, the design
is defined with CSS and minor functionalities exe-
cuted in the client are implemented in JavaScript.

• Controller and routing: As routing for the web ap-
plication we use Flask, a powerful Python frame-
work with which we have created the different
endpoints. Flask uses a routes file, where data
validation is implemented and forms are created
or retrieved. This routes file serves as controller,
communicating with all other components when-
ever it is necessary. The API is also written in
Flask, but it has been previously generated using
Swagger Documentation.

• Negation system: The negation system is imple-
mented in the API /analyze route. It uses the Ma-
chine Learning approach of Jiménez-Zafra et al.
[5], with an updated version of the corpus SFU
Review SP-NEG [1].

• Request management: Flask already implements
a WSGI server, the toolset of Werkzeug. Although
it is more than enough for a development envi-
ronment, it falls short in production, and it is
necessary to apply several technologies and tools
for a better user experience and system scalabil-
ity. To achieve that, NegesAPI uses the Gunicorn
WSGI HTTP server to replicate our Flask applica-
tion and NGINX as reverse proxy and application
gateway.

These components are classified into Back-end and
Front-end, the former being in charge of logic, routing
and security, and the latter in charge of presenting infor-
mation, design and functionality on the client side.

3. Back-end
The back-end is composed by all the server-side code,
frameworks, tools and database management systems
that are running in the server where the web applica-
tion is allocated. It receives requests from the front-end,
processes the data, and sends responses back to the front-
end.

3.1. Request Management
The general request management architecture is pre-
sented in Figure 1 . First, when any request is sent, it is
received by NGINX, serving as reverse proxy. Then, NG-
INX sends the request to an specified port of the machine,
where Gunicorn is listening. Gunicorn is a Python WSGI
HTTP Server for UNIX, and it can replicate instances of
our flask application, named as workers. The requests are
forwarded to an specific instance of the Flask application,
where the request is resolved.

3.1.1. NGINX web server

NGINX is a web server and reverse proxy that is fast, re-
liable, and secure. It can manage HTTP connections and
traffic by using various web acceleration techniques like
load balancing, SSL termination, connection and request
policing, static content offload, and content caching. NG-
INX can also act as a secure application gateway that
passes traffic from users to applications using built-in
interfaces.

The reason to use NGINX as an application gateway
is that it provides an all-in-one solution for HTTP con-
nection management, load balancing, content caching,
and traffic security. This makes it easier to manage and
secure the application backend, improve scalability and
performance, and build highly available applications by
clustering application instances behind NGINX.

3.1.2. Gunicorn WSGI server

Gunicorn (short for “Green Unicorn”) is a popular open-
source Python Web Server Gateway Interface (WSGI)
HTTP server. It allows Python web applications to be
served by communicating with web servers like NGINX
or Apache. Gunicorn is designed to be a lightweight and
simple HTTP server that can handle multiple requests
concurrently. Gunicorn is commonly used in combina-
tion with popular web frameworks like Flask, Django,
Pyramid, and others to serve web applications with high
performance and reliability.

We will use Gunicorn to replicate our Flask application,
improving our API reliability by providing redundancy
in case of server failures. Also, Gunicorn can improve
the performance of a web application by using multiple
worker processes to handle requests concurrently. This
allows the application to handle a larger number of re-
quests without slowing down or crashing. Scalability of
the system must be taken into account, with Gunicorn
we can easily adjust the number of workers, allowing
more instances of the application to run concurrently.



Figure 1: General API Architecture

3.2. Flask Application
Finally, the main Flask application will have all the end-
points and user management, it will be in charge of load-
ing the models and the negation system, as well as con-
necting the database with the application and displaying
the different views that will be available in the web.

Regarding the security aspect of our application, with
Flask we can make use of different libraries to implement
forms, data validators, session data, login, logout and
CSRF protection:

• Flask-Login: Flask-Login is a Python library for
Flask web applications that enables user authen-
tication and authorization. This library helps in
managing user sessions, securing user data, and
restricting access to specific parts of the appli-
cation for authenticated users only. Flask-Login
allows defining a User model that represents the
users in the application and implementing login
and registration views to handle user authenti-
cation. It also enables protecting views and end-
points by requiring users to log in before access-
ing them.

• Flask-WTF: Flask-WTF is a Python library that
simplifies the process of creating and validating
web forms in Flask applications. With Flask-WTF,
forms can be created using Python classes and
rendered in HTML templates. It includes various
form fields such as text fields, checkboxes, radio
buttons, and dropdown menus, among others,
and supports form validation that helps prevent
common errors like missing required fields and
invalid data types. Flask-WTF’s built-in security
features protect against CSRF attacks and enable
secure file uploads.

3.3. Database system and database model
As database management system we will use MariaDB.
MariaDB Server is a widely used open source relational

database system that was created by the original develop-
ers of MySQL. It is designed to be high-performing, stable,
and open-source, and is included as the default database
system in most Linux distributions and many cloud ser-
vices. To be able to communicate between the database
and the Flask application, we will create a component
called Database Model.

The Database Model is a class written in Python that
implements all the necessary functions to communicate
with the database. It builds the SQL statements needed
to create, read, update and delete any element in the
database. This way the connection and communication
with the database is abstracted from the other compo-
nents, leaving a cleaner and more maintainable code.

3.4. API security
To ensure the API security, we need to implement an
authentication system in the web application and link
it to the API requests, so that every call is identified. In
each call to an endpoint where you need identification, a
JSON Web Token must be added in the request header.

3.4.1. JSONWeb Tokens

A JSON Web Token (JWT) is a secure method of transmit-
ting information a JSON object between parties in web
applications. It is a compact and self-contained format
consisting of three parts: header, payload, and signature.
The header includes information about the type of token
and algorithm used to sign it, while the payload contains
the claims or information that the token carries, such as
user ID or role. The signature is a cryptographic signa-
ture that verifies the token’s integrity and ensures it has
not been tampered with. The stateless nature of JWTs
means that NegesAPI do not need to track user sessions
or login credentials and can rely on JWTs to validate a
user’s identity for each request.

NegesAPI implements JWTs as an API Key, provided
in the /profile page of each user, with an expiration date



Figure 2: NegesAPI Documentation Page. On the Left, main documentation page. On the right, analyzer demo.

of 24 hours and the option to regenerate a new one. This
can easily be implemented with the jwt Python module,
and starting each authorized request with the header
“Authorization: Bearer userJwt”, being userJwt the user’s
token.

4. Front-end
The code executed in the client-side, normally interpreted
by web navigators, is called front-end. It is the respon-
sible to provide an interface with which the user can
interact. NegesAPI offers a simple and intuitive inter-
face, with OpenAPI 3.0.0 documentation standards. In
addition, it includes a test environment for the negation
analyzer, a user profile tab and a tutorial on how to use
the tool.

4.1. API documentation and test
The Documentation page (Figure 2 ) provides a easy to
use test environment to try the different endpoints, the
mandatory data, formats and response codes, without
writing any code or command. This page is perfect to try
the different output formats and it also provides a cURL
example of how to create this request.

This documentation page has been generated using
a Swagger tool, named Swagger Editor. Swagger is an
open-source set of tools that provides a standardized way
of documenting RESTful APIs. It comes with tools that
can generate API documentation, perform API testing

and debugging, and create client code in various pro-
gramming languages. Swagger uses a machine-readable
format called OpenAPI Specification, which describes the
structure of the API, including endpoints, parameters, re-
quest/response formats, and authentication mechanisms.

4.2. Profile tab
The profile tab (Figure 3) contains all user information,
such as name, email, password and API key. Here we
can display, copy and regenerate our API key, change the
user’s password and delete the account.

The API Key is the JWT generated in the back-end,
necessary to make API requests that needs identification.

4.3. Tutorial tab
NegesAPI also offers a step-by-step guide on how to use
the API, either from the browser if you want to test it
or if you want to implement it a programming language
using the cURL tool.

It also adds code snippets, output examples and de-
scriptions of the different analyzer options, negation an-
notations and output formats.

5. Negation system
NegesAPI uses an updated version of the corpus SFU
Review SP-NEG [8] and the negation detection model of
Jiménez-Zafra et al. [5].



Figure 3: NegesAPI Profile page

The corpus SFU Review SP-NEG has been updated to
match the latest improvements in FreeLing 4.2, since we
use this tool as a feature extraction method. This corpus
used a deprecated tag set generated with FreeLing 4.0
[9, 10], which needed to be updated in order to make the
negation system work.

The negation detection system models the negation
processing as a sequence labelling task, for that reason,
it makes use of a CRF algorithm [11], as it has shown its
effectiveness in this task [12, 13, 14]. This is because CRF
makes predictions based on the elements in the sequence,
not only in the current one, and negation cues and scopes
behaves the same way. The results of its effectiveness
using 10-fold cross validation are: i) Negation cues detec-
tion (Precision=92.70, Recall=82.09, F1-score=87.07), ii)
Scope identification (Precision=90.77, Recall=63.64, F1-
score=74.79).

More information on the corpus and the system devel-

opment can be found in [15].

6. Conclusion and future works
NegesAPI is a powerful API that can assist different tasks
in NLP and can be easily implemented in multiples sce-
narios, providing a fast and precise prediction of the
negation cues and scopes in any Spanish text. In future
works, we can improve NegesAPI so that it will add the
negation cues in the scope, prefixing the negator to the
negation word. It is also important that NegesAPI can be
used in any type of algorithm and technology, therefore
a future work would be to adapt the output suitable for
Deep Learning algorithms. In addition, we plan to test
its accuracy in different types of texts (reviews, posts,
tweets, clinical texts, etc.). NegesAPI can provide a lot
of relevant information to information retrieval systems,
to detect negation in the searches that can be made, for



better effectiveness. This knowledge could be used, for
example, to distinguish "Películas que sean de fantasía"
from "Películas que no sean de fantasía", or any other
search with negation.

Acknowledgements
This work has been partially supported by Project
CONSENSO (PID2021-122263OB-C21), Project
MODERATES (TED2021-130145B-I00) and Project
SocialTox (PDC2022-133146-C21) funded by
MCIN/AEI/10.13039/501100011033 and by the Eu-
ropean Union NextGenerationEU/PRTR, Project
PRECOM (SUBV-00016) funded by the Ministry of
Consumer Affairs of the Spanish Government, Project
FedDAP (PID2020-116118GA-I00) supported by MICIN-
N/AEI/10.13039/501100011033 and WeLee project
(1380939, FEDER Andalucía 2014-2020) funded by
the Andalusian Regional Government. Salud María
Jiménez-Zafra has been partially supported by a grant
from Fondo Social Europeo and the Administration of
the Junta de Andalucía (DOC_01073).

References
[1] S. M. Jiménez-Zafra, R. Morante, M. T. Martín-

Valdivia, L. A. U. Lopez, Corpora annotated with
negation: An overview, Computational Linguistics
46 (2020) 1–52.

[2] J. C. de Albornoz, L. Plaza, A. Díaz, M. Ballesteros,
Ucm-i: A rule-based syntactic approach for resolv-
ing the scope of negation, in: * SEM 2012: The First
Joint Conference on Lexical and Computational
Semantics–Volume 1: Proceedings of the main con-
ference and the shared task, and Volume 2: Pro-
ceedings of the Sixth International Workshop on
Semantic Evaluation (SemEval 2012), 2012, pp. 282–
287.

[3] Y. Peng, X. Wang, L. Lu, M. Bagheri, R. Summers,
Z. Lu, Negbio: a high-performance tool for nega-
tion and uncertainty detection in radiology reports,
AMIA Summits on Translational Science Proceed-
ings 2018 (2018) 188.

[4] N. P. Cruz, M. Taboada, R. Mitkov, A machine-
learning approach to negation and speculation de-
tection for sentiment analysis, Journal of the Asso-
ciation for Information Science and Technology 67
(2016) 2118–2136.

[5] S. M. Jiménez-Zafra, R. Morante, E. Blanco, M.-T.
Martín-Valdivia, L. A. U. López, Detecting negation
cues and scopes in spanish, in: Proceedings of
the Twelfth Language Resources and Evaluation
Conference, 2020, pp. 6902–6911.

[6] F. Fancellu, A. Lopez, B. Webber, Neural networks
for negation scope detection, in: Proceedings of the
54th annual meeting of the Association for Compu-
tational Linguistics (volume 1: long papers), 2016,
pp. 495–504.

[7] O. S. Pabón, O. Montenegro, M. Torrente, A. R.
González, M. Provencio, E. Menasalvas, Negation
and uncertainty detection in clinical texts written
in spanish: a deep learning-based approach, PeerJ
Computer Science 8 (2022) e913.

[8] S. M. Jiménez-Zafra, M. Taulé, M. T. Martín-Valdivia,
L. A. Urena-López, M. A. Martí, Sfu review sp-
neg: a spanish corpus annotated with negation for
sentiment analysis. a typology of negation patterns,
Language Resources and Evaluation 52 (2018) 533–
569.

[9] L. Padró, E. Stanilovsky, Freeling 3.0: Towards
wider multilinguality, in: LREC2012, 2012.

[10] M. Marimon, L. Padró, J. Turmo Borras, Coreference
resolution in freeling 4.0, in: LREC 2018: 11th
International Conference on Language, Resources
and Evaluation: Miyazaki, Japan: May 7-12, 2018:
proceedings book, 2018, pp. 376–381.

[11] J. Lafferty, A. McCallum, F. C. Pereira, Conditional
random fields: Probabilistic models for segmenting
and labeling sequence data (2001).

[12] I. Councill, R. McDonald, L. Velikovich, What’s
great and what’s not: learning to classify the scope
of negation for improved sentiment analysis (2010).

[13] H. Loharja, L. Padró, J. Turmo Borras, Negation
cues detection using crf on spanish product review
texts, in: NEGES 2018: Workshop on Negation
in Spanish: Seville, Spain: September 19-21, 2018:
proceedings book, 2018, pp. 49–54.

[14] L. Domınguez-Mas, F. Ronzano, L. I. Furlong, Super-
vised learning approaches to detect negation cues
in spanish reviews, in: Proceedings of the Iberian
Languages Evaluation Forum (IberLEF 2019), CEUR
Workshop Proceedings, Bilbao, Spain. CEURWS,
2019.

[15] J. Valle-Aguilera, S. M. Jiménez-Zafra, M. T. Martín-
Valdivia, L. A. Ureña-López, NegesAPI: An API for
Negation Cue Detection and Scope Identification
in Spanish, Procesamiento del Lenguaje Natural 71
(2023).


	1 Introduction
	2 System Description
	3 Back-end
	3.1 Request Management
	3.1.1 NGINX web server
	3.1.2 Gunicorn WSGI server

	3.2 Flask Application
	3.3 Database system and database model
	3.4 API security
	3.4.1 JSON Web Tokens


	4 Front-end
	4.1 API documentation and test
	4.2 Profile tab
	4.3 Tutorial tab

	5 Negation system
	6 Conclusion and future works

