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Abstract
Deep learning has emerged as a very important area of research and has shown immense potential
in solving different kinds of problem, including in the medical field. For tasks like undersampled MRI
reconstruction - the process of speeding up MRI acquisition with the help of undersampling, deep
learning has shown its dominance over the years. But one of the major problems with deep learning
is trust: Complex reasonings done by these models appear black-box to the users. Therefore, to build
trust and better acceptability, it is important to open up this black-box nature of these models. For
classification models, several approaches have been proposed. Nevertheless, for models dealing with
inverse problems, like the reconstruction of the undersampled MRIs, it is more challenging as the output
of the model has the same number of output pixels as the input, making the interpretability of such
models more complex. This research explores different methods to understand the working mechanism
of a deep learning model for the task of undersampled MRI reconstruction.
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1. Introduction

Deep learning models have been proven very successful for a wide variety of tasks. And
nowadays, it is applied in various fields ranging from the study of energy, consumer, and social-
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cultural linguistics to critical domains such as autonomous driving, medical image analysis,
and many more. The decisions made by these models directly or indirectly affect human life.
The main reason for the success of these deep learning models is the availability of digitised
data and their power to find complex patterns from it - to learn to perform the trained task. For
computer vision-related tasks, which are often very complex, deep models with hundreds of
thousands of parameters are employed. Models can be understood as a parameterised complex
function estimator that maps input domain data to decision domains of classification [1, 2],
segmentation [3], regression, Image-reconstruction [4], de-noising [5], and many more. But
from an external perspective, a deep learning model, making decisions after learning from the
given training data, may appear as a "black box" with no direct accountability for the decisions
it makes. This is often true, since these models often do not provide any reason for their
predictions. Hence, for critical domains such as biomedical applications, where the slightest
of mistakes may have grave effects and even can be fatal, the use of these methods becomes
a widely debated topic, as it has been seen in the past that a model giving the best accuracy
during the test might not be making the correct reasoning to arrive at their decision [6]. This
not only increases the chances of failure while in use in production but also makes it difficult to
trust such methods. So, for better acceptability and applicability, opening the black-box nature
of these models is the need of the hour. This will build trust in the decisions made by deep
learning models, as predictions will be better grounded and explained.

Recent years have seen an increase in different interpretability and explainability techniques
to try to understand the working mechanism of these complex models. Captum [7] is one of
the many available packages that enables the application of post hoc methods on deep learning
models already trained to help better understand those models. The primary focus of Captum,
as well as most of the existing methods, is on classification models. TorchEsegeta [8] is a unified
pipeline, including Captum and several other methods, which enables developers and decision
makers (e.g., doctors) to apply several post-hoc interpretability and explainability methods on
already trained classification models. This pipeline also extends these methods to explain deep
segmentation models. However, there has not been any significant research on reconstruction
models.

Image reconstruction is another task where deep learning models have demonstrated their
superiority. An example of image reconstruction in the field of medical imaging is the task
of undersampled image reconstruction. Magnetic resonance imaging (MRI) is an inherently
slow process - making it difficult to be used in real-time applications. Undersampling, a process
of ignoring parts of the data [9], can make image acquisition faster, but can compromise
image quality (e.g. loss of resolution, presence of artefacts). Deep learning models, such
as UNet [4] and ReconResNet (including the NCC1701 pipeline) [9], have shown superior
performance over non-deep learning-based techniques for undersampled MRI reconstruction,
such as compressed sensing [10]. There are also techniques that aim to combine deep learning
models with compressed sensing [11, 12]. All these models primarily aim to reduce artefacts
from the given input undersampled MRIs - learning by comparing their outputs against the
corresponding fully-sampled MRIs. Similarly, reconstruction models like ShuffleUNet [13] and
DDoS-UNet [14] attempt to superresolve (i.e., improving the image resolution) the input of
low-resolution undersampled MRIs to the resolution of the corresponding high-resolution fully
sampled MRIs. Although numerous deep learning methods have been proposed, in addition to



uncertainty quantification [15, 16], not much exploration has been done from the perspective
of interpretability and explainability. Hence, the objective of this research is to find ways to
understand the inner working mechanism of the reconstruction models for undersampled MRI
reconstruction, with the help of different analyses and visualisations, to try to interpret and
explain such models.

2. Methodology

In literature, interpretability and explainability methods are grouped under different rubrics,
for example, local vs global, model dependent vs model agnostic, intrinsic vs post hoc, etc. [17].
This work proposes several methods for model understanding, uncertainty estimation, and
interpretability in a post hoc fashion. The methods used are discussed in three subsections
accordingly. As input, reconstruction models are provided with undersampled brain images, and
the models are able to predict fully sampled images, and all models were trained in a supervised
manner.

2.1. Uncertainty estimation

2.1.1. Model weight perturbation

Epistemic uncertainty gives rise to parameter uncertainty in trained models, which means that
parameters can take several values for a region in input data space where there are no or very
few data points presented during training [18]. To leverage this fact, the model looks perturbed
by adding small random Gaussian noise in each run [19]. Then, this was applied several times
for the same input image. Again, the pixel-wise output variance was then calculated from all
the runs and produced an uncertainty heatmap from the same.

2.1.2. Monte-Carlo Simulation

This is a popular method for estimating the parameter uncertainty of predictions of a model.
This is marked as epistemic uncertainty in the literature. Often the dropout layer is used in deep
learning models as a Bayesian approximation of a model ensemble and as a regulariser to tackle
overfitting problems [20]. But, as standard practise, dropout is only enabled in training time
and disabled in test/inference time to output a deterministic and reproducible prediction [21].
The dropout was enabled at the test time and the model several times on the same input image.
Then the pixel-wise variance was calculated from all the runs and produced an uncertainty
heatmap of the same. Several additional dropouts were also introduced in the model at the test
time and the experiments were repeated.

2.1.3. Subject Level Uncertainty score

For patch-based segmentation networks, [22] proposed a way to estimate the uncertainty at the
subject level. This method estimates a multivariate Gaussian distribution over average pooled
latent space activations from training patches and then calculates the Mahalanobis distance for



test patches. Then, from these distances, it calculates an uncertainty mask for the entire volume
and finally provides a subject-level uncertainty score by averaging the mask over all voxels.

2.2. Model Understanding

2.2.1. Latent Space Exploration

Medical domain input data, such as MRI volume, is extremely high-dimensional, so directly
estimating the prior data distribution is not a suitable task. Deep learning model architectures
that incorporate an encoder-decoder structure learn a representation of the input data in its
latent space, which is relatively lower dimensional. Exploring the latent space is often a go-to
method for diving into the model’s understanding of the data. In this work, various latent space
exploration experiments [23, 24] on reconstruction models have been performed.

• The simplest technique is to directly visualise the latent space activation/feature maps.
• In the second method, 1000 images have been through the model and captured their latent

space representation. Later on, t-Distributed Stochastic Neighbour Embedding (tSNE)
was performed to project the high-dimensional data into a 2D map to visualise the same.
The same has been repeated for training, validation, and test set images to understand or
identify any distribution shift.

• Upon doing the tSNE and visualising, one could see grouping structures appearing. There-
fore, the clustering was performed on the 2D representation. And identified representative
input images for each cluster by backtracking the 2d representation to input data. The
goal is to visualise how different latent representations correspond to the different input
image.

• Latent spacewalk: Another popular approach, often performed by the deep learning
community to understand whether the manifold learnt by the model in its latent space is
continuous and fills the entire space or not. This can also help adapt the architecture of
the model. Two different input images, in this case - MRIs, were chosen randomly from
the test set and their latent representation of the model was obtained. Then, the latent
vectors were linearly interpolated with uniform steps to generate the intermediate latent
representations. Finally, these representations were decoded and visualised.

2.2.2. Noise Tolerance Estimation

This experiment shows the robustness of the model under test against possible noise, specifically
for the decoder part of the model [25].

• In the initial approach, Gaussian noise of different magnitudes has been added to the
latent representation, and then the noisy latent has been decoded. Finally, the structural
similarity index (SSIM)[26] of the reconstructed input and the ground truth is calculated.
After the experiment, a 2D graph of the SSIM value and the noise magnitude was plotted
to see the notion of how noise tolerant the decoder is.

• In the second approach, some of the latent feature maps were randomly zeroed in different
proportions and then reconstructed the resulting representation. The reconstructed image



and ground truth were compared by calculating the SSIM value. It is to be noted that
the latent feature maps are suppressed randomly, and when unimportant feature maps
get suppressed, no effective change occurs in the reconstructed image that is obtained
by decoding the latent. However, this may also give a false notion of noise robustness.
To ignore this problem, the same method has been applied several times and the median
image of the reconstructed images has been selected.

2.2.3. Probabilistic Model Understanding Approximation

Image Reconstruction models with bottleneck layers can be considered similarly to auto-
encoders (AE). The bottleneck layer represents the latent space representation for a given
input learnt by the model. So in connection to the AE, layers up to the bottleneck layer in the
model can be considered an encoder, and the rest of the layers as a decoder. Reconstruction
models are capable of removing any unintended artefacts that occurred due to violation of the
Nyquist-Shannon sampling theorem [27, 28], undersampling the MRI slices. So, these models
can be considered analogous to energy-based generative models, and expect that after training,
the model would have its understanding of data distribution. For

• Latent space representation: h
• Input data: x
• Reconstruction data: x’
• Encoder, decoder params: 𝜃
• True data distribution : 𝑃𝑑𝑎𝑡𝑎(𝑥) or 𝑃 (𝑥)

• Models data distribution : 𝑃𝑚𝑜𝑑𝑒𝑙(𝑥) or 𝑃𝜃(𝑥)

𝑃𝑚𝑜𝑑𝑒𝑙(𝑥) can be estimated using a repeated Gibbs update by sampling from 𝑃𝑚𝑜𝑑𝑒𝑙(ℎ|𝑥) and
𝑃𝑚𝑜𝑑𝑒𝑙(𝑥|ℎ). As this is a directed model, thus the single update only means one pass-through
encoder and decoder. But the problem is that, similar to AE, there is no mechanism to get
the initial h to burn the chain, so two solutions have been proposed in this work, inspired by
naive Markov Chain Monte Carlo (MCMC) and Contrastive Divergence (CD) [29]. In the naive
MCMC, a sample of a Normal distribution with 0 mean and standard deviation of 1 has been
fetched. And for the solution depicting CD, a sample from training data has been taken and
passed through the encoder once to get the initial h.

2.2.4. Input Anomaly test

The goal of the Input Anomaly test is to verify the robustness of the model against any additional
anomaly in the input image in real time that it has not seen at training time. This test inspired
by the fact that deep learning models might be prone to adversarial noise [30, 31] or might react
differently when encountered with anomalies if trained only with non-anomalous data - the
idea behind unsupervised anomaly detection [32]. This work mainly deals with brain image
reconstruction, so the expectation of the model is that the model should be able to perform
proper reconstruction of the image if there is a tumour or a tumour-like structure present in the
brain tissue. Brain images without tumours were selected, and a tumour-like circular structure
was added to these images, and later on, these images were used as ground truth. The images



were then undersampled and passed through the model to visualise the final reconstructed
image. This experiment has been performed for various pixel values for the circular lesion.

2.2.5. Targeted Activation Maximisation

Activation maximisation is a technique for classification models to show which types of input
images activate a particular output neuron the most [33, 34]. This idea has been extended
in this reconstruction model. For the classification task, there is a final output neuron (in
the case of binary classification), and this is the one on which activation maximisation is
applied. For the same, constantly the activation of the output neuron is taken, and the same
is considered for the loss, and a gradient ascent is performed on the input to maximise the
activation of this neuron as much as possible. So, the selection of this output neuron gives a
hint to the discriminating network in which "concept" is to be maximised. The problem with
the reconstruction network is that the selection of a particular output neuron is not possible.
Because each pixel in the reconstruction output is a regressed value, selecting just one output
pixel for activation maximisation does not provide a meaningful concept. So to give the network
a hint about the concept that is to be maximised, a group of pixels from the reconstruction
output can be chosen rather than a single one. But this raises the question of which pixels
to choose? For this, one can take the support of the truth of the ground. A fully sampled
ground-truth image was then used to generate two binary masks. The first masks indicate
which pixels have a value greater than a threshold, and the second mask indicates which pixels
have values lower than the threshold in the ground truth. These masks can be used as hints for
maximisation of the activation of the network. Initially, the computation can start from random
Gaussian noise, then perform gradient ascent for the pixels related to the first mask, and finally,
gradient descent is performed for the pixels related to the second mask. This can be achieved
by multiplying the binary mask by the reconstructed output at each step before summing. This
work also showed the different maximised concepts based on the threshold value.

2.2.6. Activation/Reconstruction Comparison

The primary motivation for this experiment is to capture the model’s response when presented
with out-of-distribution data, which they have not seen before during the training period [35].
This will help us to understand the model’s understanding of the data by analysing what sort
of thing it can successfully reconstruct and what it cannot. This, in turn, helps to understand
whether the models have learnt any prior knowledge about the structure that it is reconstructing
or not. As input, The models have been presented with one in-distribution brain data, one noise
input, and one completely out-of-distribution flower image, and then the histogram of latent
space values and the reconstructed images have been compared.

2.3. Interpretability

The TorchEsegeta project [8] provides more than 40 interpretability methods from the literature
and third-party libraries, catering to classification and segmentation models. As a part of the
current research, some of these methods were extended for reconstruction models. This has been
achieved with the help of a wrapping mechanism which converts the output of reconstruction



models to be similar to that of classification models. The wrapping mechanism was inspired by
the wrapper proposed in TorchEsegeta [8]. This method performs class identification by Otsu
thresholding of the reconstruction output and then sums up the pixels for each class. This task
is also performed in two steps:

a. Normalisation - In this step, the output reconstructed image is normalised by the following
function:

𝑦𝑖𝑗𝑛𝑜𝑟𝑚 =
𝑦𝑖𝑗 −𝑚𝑖𝑛(𝑦)

𝑚𝑎𝑥(𝑦)−𝑚𝑖𝑛(𝑦)
(1)

b. Pixel-wise binarisation - Pixel-wise binarisation is performed with the help of Otsu
thresholding.

𝑦𝑖𝑗 =

{︃1 𝑤ℎ𝑒𝑟𝑒 𝑦𝑖𝑗𝑛𝑜𝑟𝑚>𝑡ℎ

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

(2)

where th = otsu(𝑦𝑖𝑗𝑛𝑜𝑟𝑚 )
The output of both processes is a tensor with a single value for each class. Although, the output

range would not strictly be in the range [0,1]. As of now, the methods present in TorchEsegeta,
belonging to the two libraries Captum and CNN Visualisation, have been extended and tested
for the reconstruction models.

2.4. Experimental Setup

This research analysed the ReconResNet model [9] for the task of undersampled MRIs. Fol-
lowing the original article, two different publicly available brain MRI datasets were used for
all experiments with the undersampled MRIs - OASIS [36] and IXI (available online: ). The
MRIs from the datasets were treated as fully sampled ground truth images and were artificially
undersampled. The model was trained by supplying undersampled images as input (i.e., images
with artefacts), and the prediction was compared with the ground-truth images.

3. Results

This section presents the results obtained using some of the methods discussed in the method-
ology section.

3.1. Uncertainty estimation

The rightmost heatmaps in Figure 1 are generated using the ’hot’ colourmap from the Matplotlib
library, which means that black represents the lowest uncertainty and bright yellow represents
a high amount of uncertainty. As the pictures depict, the model is quite certain about the areas
outside of the brain area, and hence no noisy undersampling artefact of the input image is
transferred to the reconstructed output image. The most uncertainty arises in the skull and
brain tissues. Also, it can be seen that the model is quite robust against dropout, but it produces
higher uncertainty when the model weights are perturbed.

https://brain-development.org/ixi-dataset/


Figure 1: The top row is the outcome of the Monte-Carlo simulation, whereas the bottom row is the
outcome of the model’s weight perturbation.

Figure 2: This image depicts all the latent space feature maps. This plot is helpful in understanding
what shape or structure the different filters are looking for.

The uncertainty map in Figure 1 clearly shows an increase in uncertainty, and quantitatively
the variance of the maximum uncertainty value also increases.

3.2. Model Understanding

As shown in Figure 3a, the second method of latent space exploration shows that there are
indeed three clusters that exist in the latent space data with reduced dimensionality. The authors
took three representative samples from each cluster and then backtracked them to the input
space. The lower subplot shows the three different input images corresponding to those three
samples.

Two codes have been selected from the latent code space, linearly interpolated between the
codes, and reconstructed all the codes. In Figure 3b, you can see how one image is slowly
interpolating into another. This experiment helps to understand whether the manifold learnt in
the latent space is continuous and sufficiently covers the whole space or not. As the transition
is quite smooth and intermediate images are not that blurry, one can say that the model has



(a) Principal component analysis using the tSNE
method. The top left subplot shows the distri-
bution shift between the training, validation, and
test dataset. The top right subplot showed the
clustering outcome when the 2D embeddings
were clustered to find any pattern. (b) Outcome of walking the latent space experiment.

Figure 3: Latent space exploration

(a) Reconstructed images (b) SSIM values

Figure 4: Reconstruction with different amounts of noise added to the latent

learnt a manifold that can cover the latent space sufficiently and continuously.
Figure 4a and Figure 4b are from the decoder’s noise tolerance experiment. The top image

shows how the reconstructed image changes depending on the amount of noise added to the
latent space representation. While the top image is a visual representation, the bottom image
quantitatively shows the result. The beta values along the x-axis are the noise level, and the
y-axis depicts the SSIM values for the reconstructed image against the ground truth. The starting
of the graph is horizontal up to a certain beta value. This shows the robustness to noise of the
model in the region.



Figure 5: Visual and quantitative quality of reconstructed image with different amounts of suppressed
latent feature maps

(a) Varden1D model (b) Radial model

Figure 6: Samples from estimated 𝑃𝑚𝑜𝑑𝑒𝑙(𝑥)

Figure 7: Activation maximisation for a different group of pixels based on different threshold values.

Figure 5 shows the quality (visual and quantitative) of the reconstructed image when randomly
suppressing a certain fraction of the latent feature maps.

The result of the probabilistic model understanding approximation experiment is depicted in
Figure 6a. The outcome shows different 𝑃𝑚𝑜𝑑𝑒𝑙(𝑥|ℎ) output after running different numbers of
CD steps. This is the result of the Varden1D reconstruction model. The same experiment was
also performed for the radial model, Figure 6b shows the same.

In Figure 7, the result of the targeted activation maximisation experiment is shown here.
The result shows different input images, which maximises the output of the model against
different selected threshold values. It is interesting to see, for different threshold values, how
the activation of the is maximised for different parts of the brain when the input is mere noise.
The images are from threshold value 0.0 to 0.6 as you go along from left to right and top to
bottom.

Figure 8a presents the result of the input anomaly test experiment, in which the authors
check the robustness or ability of the network to reconstruct the lesion in brain cells, which the
model has not seen during training. When presenting lesion images with various pixel values
as output, the model generates plausible results when the pixel value is in a higher range. When
the pixel value of the lesion is similar to the neighbouring brain cells, the reconstructed pixel
values are underpredicted, and the reconstruction is not that prominent.

In the activation/reconstruction comparison experiment, it was found that the reconstruction
model failed to reconstruct the out-of-distribution input images. Figure 8b shows the experiment



(a) Unseen lesion (anomaly) with different pixel in-
tensity (b) In-distribution vs out-of-distribution data

Figure 8: Reconstruction comparisons for extreme tests

(a) (b) (c) (d)

Figure 9: (a-b) Saliency and (c-d) Guided back-propagation

output. For the flower image in the middle, the model reconstructed the parts that are similar
to the in-distribution brain image. But it made most of the reconstructed pixel zero, following
the distribution of brain images. Furthermore, the histogram shows that for the flower image,
the latent space activation is zero for more neurons compared to the in-distribution data. That
means that most neurons are not activated when presented with the flower image.

3.3. Interpretability

The attribution results of the reconstructed model generated by TorchEsegeta [8] are shown in
Figures 9 and 10. As elaborated in the Methods section, an Otsu-based wrapper has been used
for generating these attributions. For all figures, the positive attribution of the corresponding
methods is overlaid on top of the input images.

4. Conclusion and Future Work

This research presented several methods for understanding ReconResNet, a deep learning-based
undersampled MRI reconstruction model. This paper serves as a starting point for exploring
these and other methods for the explainability and interpretability of such models. Here, some



(a) (b) (c) (d)

Figure 10: (a) Feature Ablation, (b) Occlusion sensitivity, (c) Guided grad-cam, and (d) Deconvolution

of the proposed methods were applied at a limited scale. In the future, all these methods will be
evaluated in more detail and a user study will be conducted involving medical professionals
to evaluate the advantage of these methods in terms of trust-building in clinical practise. In
addition, more undersampling techniques for reconstruction models, different datasets, and
comparisons between different models will also be performed in the near future. The remaining
interpretability methods in the TorchEsegeta pipeline would also be extended and evaluated for
reconstruction models.
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