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Abstract
Class Activation Maps (CAM) approaches have been extensively used to understand the decision-making
process of neural network models when classifying images, the so-called network dissection. These
approaches identify the important regions or features that mostly contribute to the model’s prediction.
Most studies use this tool to offer a qualitative assessment (e.g., detect biases) of models or, at most, an
image-level metric of overlap (e.g., via Intersection over Union). In this work, we leverage one of the
most successful tools in network dissection for image classification, the Gradient-weighted CAM, to
develop a fully quantitative and simple approach based on a similarity metric, the Tversky index, that
enables a flexible benchmarking analysis of the models’ overall interpretability power according to a
defined criterion, whenever the classification abilities are comparable. As a proof-of-concept, we apply
the proposed methodology to identify which state-of-the-art neural network model is the most faithful
in using object shapes when classifying images, with Grad-CAM as our saliency map tool.
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1. Introduction

The growing demand to understand the decision-making process of image classification models
has led to the development of computational techniques to enhance the explainability of black
box models. One common approach in the field of image classification is to use saliency maps [1],
which highlights the parts within an image most important for the prediction. Generating Class
Activation Maps (CAM) is the most popular approach to obtain such maps [2, 3, 4]. Indeed,
CAMs have been developed to help visualize the regions within the input images that impact
the most the prediction of a neural network (NN) model. They have been successfully used in
fields such as medicine [5] or fault diagnostics [6]. The CAM approach has also been improved
over the years, especially with the introduction of the Gradient-weighted CAM (Grad-CAM) [7]
and its extensions, which, in general, use the gradient associated with the predicted class
membership as a weight to detect the most relevant regions or pixels.

At the same time, in recent years, there has been a rush to build new neural network model
architectures that can reach state-of-the-art performances in image classification tasks. With
so many architectures being proposed, CAM-based approaches have been used to increase
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trust and transparency of such models via qualitative analysis [8], to improve their overall
performances [9], or even to identify biases, such as the emphasis on image texture rather than
object shape [10], which, instead, has been proven to be one the most relevant and effective
element for human classification strategies [11, 12]. Yet, saliency maps have typically been
used only to assess a problem or domain-specific quality of a proposed NN model, where the
role of evaluation metrics, such as the Intersection over Union (IoU) [13, 14], is to provide local
interpretability insights, considering individual predictions. This means that they cannot be
used to evaluate, within a single metric, the global model-level quality of CAMs according to a
criterion, such as the object shape.

In this work, we strive to bridge this gap by proposing a quantitative approach based on a
widely used and successful saliency map tool, Grad-CAM, to evaluate different modern neural
network architectures’ interpretability power. In particular, we focus on their ability to capture
object shapes when performing image classification. We consider that such an approach can be
easily extended to all tools and methods that, just like Grad-CAM, generate activation maps.
Our proposed methodology aims to quantify the overall faithfulness of different models to any
desired criterion, thus enabling a benchmarking analysis of NN in terms of interpretability
power. Such an approach becomes relevant when it is critical to choose the most transparent
classification image model (e.g., autonomous car driving [15] or medical applications [16])
among the vast amount of powerful and accurate models available.

To this aim, we adopt, on the one side, a thresholding strategy to obtain binary saliency
maps, and, on the other, we employ a similarity metric, the Tversky index [17], that, unlike
the IoU, can provide us the flexibility to test what happens whenever we change the pixel
overlap focus, e.g., further penalizing the false negative or false positive pixels, as required by
the domain of interest. This twofold strategy enables the construction of curves which can be
leveraged to compute a global metric describing the interpretability power of different models.
As a preliminary experiment of our approach, we provide a proof-of-concept evaluation by
performing experiments on a new semantic segmented dataset that we built and that can be
used as a benchmark for future CAM-based studies.

Contribution. Our main contributions can be summarized as follows:

• we propose an innovative quantitative approach and a metric, the Area Under Tversky
Curve, that, based on a popular saliency map tool, Grad-CAM, enables to benchmark the
interpretability power of different models in the image classification task.

• we conduct a proof-of-concept evaluation on a selection of best performing models, with
object shape as our goodness-of-fit CAM criterion.

• we contribute to a new dataset of object-shape segmented images based on the Imagenette
dataset [18], which can be used for future shape-based experiments.

Overview. The rest of this paper is organized as follows. Section 2 provides a summary of
the neural network architectures considered for our proof-of-concept and briefly introduces
the Grad-CAM approach. In Section 3, we present our methodology to build a metric which
evaluates the models’ CAMs based on object shapes. Section 4 discusses the preliminary results
of our proof-of-concept while Section 5 concludes the paper and presents potential future
directions and applications.



2. Overview of model architectures and Grad-CAM

This section briefly provides an overview of some powerful NN models commonly used in image
classification. Table 1 summarizes the main differences we identified among the architectures.

VGG16 Resnet50 InceptionV3 MobileNet ViT Base
Architecture

Style
Sequential

Residual
Learning

Inception
Modules

Depthwise
Conv.

Transformer
blocks

N. of layers
16 (including
13 Conv.)

50 (including
49 Conv.)

48 (including
42 Conv.)

28 (including
27 Conv.)

12 blocks (12
heads each)

N. of parameters 138 Mil 23 Mil 25 Mil 13 Mil 86 Mil
Conv. filters 3x3 and 1x1 7x7, 3x3, 1x1 5x5, 3x3, 1x1 3x3, 1x1, None

Table 1
Overview of the neural network architectures used in the experiments.

VGG16. VGG16 [19] is a convolutional neural network (CNN) model with 16 layers and is one
of the most popular CNN models for image classification. The VGG16 model is made up of a
stack of convolutional layers and max pooling layers. Convolutional layers extract features
from the input image, and max pooling layers downsample the feature maps, reducing the
model’s size while retaining important features.

Resnet50. ResNet50 [20] is a CNN model with 50 layers and is one of the most popular for
image classification. It is based on the idea of residual learning, a technique that allows CNNs to
learn long-range dependencies between features. This is done by adding a shortcut connection
between the input and output of a convolutional block.

Inception. The Inception [21] model is a convolutional neural network (CNN) model originally
developed by Google in 2014. Its V3 version is a deep CNN with 48 layers and is one of the most
popular models for image classification. The Inception model is based on inception modules,
which combine convolutional filters in a single layer. This allows the model to learn more
features from the input image and can also help reduce the model’s size.

MobileNet. MobileNet [22] is a CNN model developed by Google in 2017. It is a small,
lightweight CNN that is based on the idea of depthwise separable convolutions. Depthwise
separable convolutions reduce the computational complexity of a CNN by factorizing a convolu-
tional layer into two layers: a depthwise and a pointwise convolution layer. The depthwise layer
extracts features from the input image, while the pointwise layer is responsible for building
new features by computing linear combinations of the input channels. This allows MobileNet
to achieve high accuracy on image classification tasks while still being small and lightweight.

ViT. Vision Transformer (ViT) is a type of neural network based on transformers, originally de-
veloped for natural language processing tasks and recently extended to image classification [23].
ViT works by dividing the input image into a grid of patches, which are then processed by a stack
of transformer blocks. Unlike the above architectures, the ViT model contains no convolutional
layers. Each transformer block comprises two sub-layers: a self-attention and a feed-forward
layer. The first allows the model to learn the relationships between different patches in the
image while the latter allows the model to learn more complex features from the image.



2.1. Grad-CAM

Grad-CAM (Gradient-weighted Class ActivationMapping) is a method for visualizing an image’s
regions most relevant to a particular class prediction made by a CNN [7]. It is a simple and
effective method that can be used to understand how CNNs make their predictions. The Grad-
CAM technique computes the gradients of the classification score for the final convolutional
feature map to identify the regions of an image that most impact the classification score. The
pixels with a large gradient denote the regions that most influence the final score.

Grad-CAM𝑐(𝑖, 𝑗) = ReLU(∑
𝑘

𝜕𝑌 𝑐

𝜕𝐴𝑘
𝑖𝑗
𝐴𝑘
𝑖𝑗) (1)

where Grad-CAM𝑐(𝑖, 𝑗) relates to the Grad-CAM activation for class 𝑐 at spatial position (𝑖, 𝑗).
𝑌 𝑐 denotes the output score of the target class 𝑐 in the final layer of the neural network, and 𝐴𝑘

𝑖𝑗
corresponds to the activation value of the feature map at position (𝑖, 𝑗) in the 𝑘-th channel.

3. Methodology

In this section, we present our approach to quantitatively assess how models explain, through
saliency maps, their prediction in image classification tasks. In particular, we focus on detecting
which model most relies on object shapes for classifying images, as we identified it as one
of the main drivers of human classification behavior. To this aim, we utilize a widely used
benchmark dataset, Imagenette [18], and we build a set of test images via semantic segmenta-
tion, i.e., manually detecting and segmenting object shapes. Then, we define a thresholding
strategy to binarize the Grad-CAM-generated images and use a similarity index to determine the
degree of overlap between segmented images and the CAMs, considering distinct penalization
mechanisms. Finally, we leverage the thresholds to plot the behavior of the similarity index and
introduce an Area Under Curve criterion that captures the overall quality of CAMs.

3.1. Dataset, Fine-Tuning and Grad-CAM

We identify Imagenette [18], a smaller subset of 9,469 images from ImageNet [24], as our
reference dataset. It includes 10 easily classifying classes (tench, English springer, cassette
player, chain saw, church, French horn, garbage truck, gas pump, golf ball, and parachute). All
the models in Section 2 are already pre-trained on the entire ImageNet dataset. However, we
decided to perform additional fine-tuning over 20 epochs on the Imagenette subset to further
mitigate classification issues. Table 2 summarizes the results of the fine-tuning 1

Grad-CAM Test Set. Given the Imagenette dataset, we manually collected around 30 images
per class from the web, resulting in a total of 307 images. These images define our Grad-CAM
Test Set, on which we will showcase our methodology. We assume that the collected images
are outside the training data as we performed a search selecting recent images only. Although
some datasets with semantic segmentation already exist, such as the PASCAL dataset [25], we

1The codes to fine-tune the models, generating Grad-CAMs and to replicate our experiment are available at https:
//github.com/SofSof98/Human-like-image-classification

https://github.com/SofSof98/Human-like-image-classification
https://github.com/SofSof98/Human-like-image-classification


VGG16 Resnet50 InceptionV3 MobileNet ViT Base
Best Validation Epoch 19 18 12 15 12
Validation Accuracy 0.961 0.989 0.983 0.984 0.974

Table 2
Results of the models’ fine-tuning on Imagenette with a 70-30 training-validation split.

deemed our novel dataset, based on the Imagenette classes, ideal for our analysis as it includes
images belonging to rather distinct classes, thus avoiding the issue of undecidability due to the
presence of multi-label or similarly-labeled images. In fact, our approach is thought to evaluate
and compare the behavior of different models with similar and high classification accuracy,
intending to provide an interpretability power ranking of these performing architectures.

As expected, out of our 307 test images, all the selected models in Section 2 achieve very
high accuracy, with a total of 300 images that have been jointly labeled correctly by all the
architectures and that can be used for generating the CAMs. While there exists a solid record
of Grad-CAM applications to CNNs that proved its effectiveness [26, 27], we followed recent
studies that extend Grad-CAM to be applied to a transformer-based architecture such as the
popular ViT model [28, 29]. For CNN, as a general principle, we identified the last convolutional
layer as the target for Grad-CAM, with adaptations depending on the model and previous CAM
studies [30].

3.2. Proposed Approach

Semantic segmentation. The next step of our approach is to define a semantic segmentation
criterion on which we want to perform our interpretability analysis. To this aim, we decided to
annotate the entire object area under evaluation 2, as shown in Figure 1. While this semantic
segmentation approach discards elements from the background, which might result in a loss of
contextual information, we follow recent studies that identify this principle as one of the main
drivers that allows humans to classify images [11, 12] and, therefore, a natural choice for an
interpretability criterion.

Figure 1: Example of semantic segmentation of test images. White area represents the object’s shape.

2The test and the segmented dataset are publicly available on HuggingFace at https://bitly.ws/WPqN

https://bitly.ws/WPqN


Thresholding Grad-CAM images. The segmentation criterion requires a pixel-wise compari-
son with the Grad-CAM output. However, the class activation map includes different intensity
levels, while our maps are binary. As a manual segmentation that incorporates intensity levels is
not feasible and is highly affected by inter-observer variability, we adopt a threshold strategy on
Grad-CAM [31]. Based on the intensity level, each pixel will take a value of 1 if the associated
value is above a certain threshold value and 0 otherwise. In our setting, we do not use a fixed
threshold; instead, we test different threshold values to evaluate how models behave when
focusing on more relevant regions, as shown in Figure 2.

Figure 2: Example of Grad-CAMs and their binarization for different thresholds 𝑡.

The Tversky index. To evaluate which model most resembles our criterion, we must account
for different aspects. On the one hand, we have to prefer models that consider, as important
regions, the ones intersecting the annotated area, i.e., high recall models. On the other hand,
we need to evaluate the precision of the models and penalize those that achieve high recall by
also looking at some background regions, i.e., low-precision ones. To consistently consider both
aspects within a single metric, we identified the Tversky index as ideal, giving us the flexibility
to compare Grad-CAMs over distinct layers of importance. The Tversky index is a similarity
coefficient that measures the degree of overlap between two sets defined as:

𝑇 (𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∩ 𝐵| + 𝛼|𝐴\𝐵| + 𝛽|𝐵\𝐴|
(2)

where 𝐴 is the set of pixels of the segmented image and 𝐵 is the one resulting from the
thresholding strategy on Grad-CAM. |𝐴 ∩ 𝐵| represents the cardinality of their intersection,



|𝐴\𝐵| represents the cardinality of elements in𝐴 but not in 𝐵, and |𝐵\𝐴| represents the cardinality
of elements in 𝐵 but not in 𝐴. The parameters 𝛼 and 𝛽 control the emphasis on the differences
in the sets. Adjusting 𝛼 and 𝛽 allows the Tversky index to provide a flexible similarity measure
that can account for variations in the importance of shared and non-shared elements between
sets. Specifically, the 𝛼 and 𝛽 parameters control the relative importance of false positives and
false negatives, respectively.

Area Under Tversky Curve. The Tversky index can be computed on an individual image level.
To get a model-level metric we introduce the Averaged Tversky Index 𝑇 𝑒𝛼,𝛽 = ∑𝑖 𝑇𝛼,𝛽(𝐴𝑖, 𝐵𝑖)/𝑁,
which represents the mean value over the entire set of the 𝑁 test images. If we compute it for
an increasing set of thresholds (used to derive the binary Grad-CAMs), we get a set of values for
the same model that can be plotted in a graph, generating a curve that describes the behavior of
the Tversky index when we focus on pixels of increased importance, given certain values of
𝛼 and 𝛽. From the curve, we can derive the Area Under Tversky Curve, 𝐴𝑈𝑇𝛼,𝛽, which allows
us to compare the overall Grad-CAM performances between different models. In other words,
with our approach, we propose replicating what happens in a binary classification problem and
translating this approach to globally evaluating the interpretability performances of NN models.

4. Proof-of-Concept Evaluation

To evaluate the approach presented in Section 3, we conduct a proof-of-concept experiment,
selecting three combinations of 𝛼 and 𝛽 values for computing the Average Tversky index, such
that we can focus on different levels of recall and precision. In particular, we present a case of
high importance to false positives, i.e., focus on CAM precision (𝛼 = 0.8, 𝛽 = 0.2), a balanced
case (𝛼 = 𝛽 = 0.5) and a case whose interest is on detecting which model maximize the CAM
recall (𝛼 = 0.2, 𝛽 = 0.8). In all these cases, we applied the usual relation 𝛼 + 𝛽 = 1, commonly
used with the Tversky index [32]. To compute the curve, we chose a set of increasing thresholds
with a step size of 0.05. In Figure 3 we report the curves whose 𝐴𝑈𝑇 values are in Table 3.

Figure 3: Tversky curves computed over a selection of 𝛼 and 𝛽 values.

Discussion of the results. Analyzing the 𝐴𝑈𝑇 values, we can clearly identify some model-
specific trends. The 𝐴𝑈𝑇 values of the Inception and ViT models increase the more we focus
on maximizing the pixel overlap, i.e., 𝐴𝑈𝑇0.2,0.8. This means, and it can be empirically verified



Model 𝐴𝑈𝑇0.8,0.2 𝐴𝑈𝑇0.5,0.5 𝐴𝑈𝑇0.2,0.8
InceptionV3 0.44 0.45 0.52
Resnet50 0.42 0.35 0.33
MobileNet 0.51 0.46 0.46
VGG 0.37 0.32 0.32
ViT-Base 0.28 0.30 0.37

Table 3
Area Under Tversky Curve for the considered architectures over different 𝛼 and 𝛽 combinations.

by manually looking at their Grad-CAMs, that these models look at large sets of pixels when
classifying images, generating areas bigger than the object shape. Conversely, the VGG, Resnet,
and MobileNet models show a declining trend in the 𝐴𝑈𝑇 values, meaning that they perform
better in terms of precision of the overlap between the annotated area and the Grad-CAMs.
Overall, in our PoC based on Grad-CAM, we identified MobileNet as the best-performing model,
being the most precise in detecting object shape when classification accuracy is similar, and
experiencing only a slight performance drop if we focus on recall, i.e., 𝐴𝑈𝑇0.2,0.8.

A dedicated discussion about the behavior of the ViT model is needed. We empirically observe
that the ViT, the only non-CNN model we tested, follows a rather distinct path and seems to
perform the worst according to our analysis. Further analysis revealed that the ViT model uses
different criteria when classifying images, even within the same class. Cases arise where the
object shape seems more relevant, while in other cases, only the background is significant, as
shown in Figure 4. This might justify its higher classification accuracy in more complex cases,
even outperforming all CNN-based models [33]. However, it might add a layer of complexity
that undermines interpretability, with no clear patterns that can be identified in the CAMs.

Figure 4: Example of ViT Grad-CAMs (in the colored scale version) on images of the Parachute class.
Note that red regions correspond to high-class relevance.

5. Conclusion and Future Work

In this paper, we leveraged a flexible metric, i.e., the Tversky index, to define an innovative
quantitative approach to evaluate the interpretability and faithfulness of state-of-the-art neural
network architectures for image classification to a defined criterion. We conducted a proof-
of-concept evaluation utilizing the object shape as our criterion and a widely used saliency
maps tool, Grad-CAM, and we proposed a new metric, the Area Under Tversky Curve as
an overall indicator of interpretability performance. We think that, after a further, more
extensive, evaluation proving its consistency, this approach can be applied to more general and
complex cases. For instance, we envision its potential use in a crowdsourcing study to draw
solid conclusions about the interpretability power of different NN models and detect which
architectural elements might influence the ability of NN to replicate human thought.
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