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Abstract
Creative influence is responsible for a considerable part of the creative process of an artist and can largely
be associated with their social circle. It has been observed that the type and amount of relationships with
other fellow artists correlates with the success of an artist. Most of the recent literature has focused on
using artefact similarity as a proxy for creative influence between two artists. However, this approach
neglects the significance of an artist’s social network or flattens the individuality of a relationship by only
addressing it as a direct connection. In this work, we propose an ontology to comprehensively model
the relationship between individuals as a Knowledge Graph. Additionally, we design and implement
an explainable method based on graph theory to predict the influences of an artist given their social
network. We evaluate our method on a dataset of relationships between Jazz musicians and achieve
accurate results when compared to baselines that rely on the distribution of the data. Our results are
aligned with relevant works from the socio-cognitive and psychology fields. 1
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1. Introduction

Identifying, capturing and hypothesising the influences of an artist is an important aspect that
an art critic considers when analysing an artefact or, in general, the artist themselves [1]. The
main difficulty in determining influence lies in the subjective nature of the problem. Identifying
the influence of an artist on another artist requires a profound knowledge of both entities, their
geographical location, the socio-cultural context in which they lived, the technicalities of their
artefacts, and so on. It has been argued that an unambiguous definition of creative influence is
problematic [2].

Yet, the importance of capturing and understanding the influences of an artist has a great
impact on many pragmatic aspects. Mitali and Ingram [3] analyses the work of 90 pioneers
in the abstract art movement. The results provide very strong evidence that the success and
fame of an artist are related to their social relationships. While it is true that creativity fosters

1The code and the ontology developed is shared at https://github.com/n28div/influence_prediction under CC-BY
license.
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those relationships, the more an artist gets deeper into a clique formed by other meaningful
artists, the more its work is acclaimed by critics. For instance, the success of the band The Velvet
Underground is often partially associated to their relationship with the artist Andy Warhol [4].
While the study focuses on visual arts, the same argument holds for any other artistic endeavour.
In music, the importance of the relationships of a musician in its creative process is widely
recognised [5, 6]. A popular example is the teacher-student relationship, sometimes referred to
as mentor-pupil. Famous artists are often the students of other famous artists, which results in
an inevitable influence on their creative process [7].

To understand the influence on an artist, it is important to take into account its social
relationships as well. Most recent approaches, however, use artefact similarity as a proxy for
creative influence Abe et al. [8], Saleh et al. [9], Elgammal and Saleh [10], O’Toole and Horvát
[11], Park et al. [12]. While this has resulted in promising outcomes, it neglects the incidence of
the social circle, making it impossible to detect influences from artists whose stylistic genres are
different. Moreover, by persuading a solely similarity-based approach, it is unfeasible to detect
artistic influences between two artists that perform on different domains, such as influences of
painters on musicians [13, 4], such as in the example of The Velvet Underground.

In this work, we propose a method to predict the influence of musical artists by only taking
into account their social network. We design an ontology to model the relationships between
artists in an expressive way. Rather than consider them as simple direct relationships we
model them as complex situations that involve different agents and concepts. We refactor the
data from the Linked Jazz project [14] 1, a Knowledge Graph encoding curated relationship
between Jazz musicians (among which creative influence), to comply with our ontology and
rely on it as a ground truth to perform influence prediction. We frame influence prediction as
a classification task where one has to identify and rank artists according to their likelihood
to be influential for a given artist. Our approach is based on techniques from graph theory,
namely the 𝑓 -communicability of a graph [15]. Informally, the 𝑓 -communicability of a graph
provides information on how close two artists are as a function of their connections. The
shorter the connections between two artists, the higher their communicability. We consider the
𝑓 -communicability between nodes 𝑖 and 𝑗 as the degree of influence that 𝑗 has on 𝑖 or, in other
words, how influenced is 𝑖 with respect to 𝑗. Our method assigns a weight to each relation
in the Knowledge Graph based on the type of relationship. We approximate the weighting
function by maximising the 𝑓 -communicability between influential relationships asserted in
the original Knowledge Graph in an optimisation procedure. We evaluate our results through
the use of standard information retrieval measures (MRR, MAP, DCG) and compare our method
with baselines that rely on the distribution of the data. The learned weighting function obtains
results that are aligned with other relevant studies from the socio-cognitive and psychology
fields.

Our contributions can be summarised as follows:

• an ontology to model the relationships between human agents, with a particular focus on
artists;

• an explainable method to predict creative influence between artists.

1Retrieved from https://triplydb.com/pratt/linked-jazz/

https://triplydb.com/pratt/linked-jazz/


The paper is structured as follows: in Section 2 we provide a review of related works addressing
the prediction and identification of influence between artists. In Section 3 we present the
ontology and its associated method to predict creative influence between artists. In Section 4
we describe the experimental setup while in Section 5 we present the obtained results. Section
6 summarises the results of previous sections and highlights potential extensions and future
work.

2. Related Works

Evaluating the influences of an artist, and in particular of a composer or a musician, is mostly
considered a subjective task. Usually, experts analyse the compositions of an artist in a critical
way to relate them to other important artists. One approach to detecting creative influence is
to directly analyse explicit influence connections, curated by human annotators. Smith and
Georges [16], for example, analyses the influences identified in the Classical Music Navigator
(CMS) to better understand the influence of the composers in the dataset. A similar approach is
taken by Georges and Seckin [17], where the data on creative influence is used to investigate
the similarity of musical compositions.

Relying on similarity as a proxy for creative influence is a popular approach that has been
explored using different techniques. Abe et al. [8] define a framework where influence can be
modelled using a graph structure. Edges are added to the graph by taking into account the
similarity between the two artworks. Several works have explored this approach in the visual
art domain with promising results [9, 10]. and in the musical domain. O’Toole and Horvát [11]
models the influence of musical composition as the probability of success of a composition given
its similarity to other popular compositions. In Park et al. [12], the influence of a composer
on another composer is measured as the degree of similarity between their compositions. A
composer is classified as influential when musical features of its compositions are re-used by
other composers.

Relying on artefact similarity, however, can be a problematic approach in art. Influence can
affect an artist in a negative way, in the sense that the influenced artist deliberately abstains
from his influence [2]. These kinds of artists are sometimes defined as deviant artists [18, 19].
Mauskapf et al. [20] investigates similarity with respect to socio-cultural indicators, such as
geographical and temporal location or organisational system in which the artist lives. Findings
suggest that highly embedded individuals, i.e. individuals with a dense social network, are
more likely to produce novel artefacts that can be influential to other artists. Borowiecki [21]
analyses influence of the teacher-student relationship through a combination of artifact features.
Albeit with different intensities, findings highlight the importance of such a relationship, as also
observed in Simonton [7]. Analysing the social network of artists using complex network tools
has been explored in literature [10, 22, 23]. The relationships taken into account are often the
result of heuristic methods or are limited to a few relationship types, such as teacher-student or
bandmates. Relying on a rich social network where different relationship types are taken into
account has been proven to be an effective way of uncovering meaningful insights [24] from
data. Moreover, considering many different relationship types is an important requirement, as it
has been largely discussed how different relationship ties can contribute differently to creative



Table 1

Relationship types in the ontology

Admiration, Fellowship, Bandmate, Copupils, Friendship, Mentorship, Parenthood, Rivalship, Sibling-
hood

influence [7, 23, 25].
Differently from the described approaches, we investigate the importance of social relation-

ships without taking into account any information on the creative artefact. Our approach can
be easily integrated with other methods that use similarity, to yield a more general method for
uncovering hidden relations when perceptual similarity is the only measure taken into account.

3. Methodology

This section provides a detailed description of our method. In Section 3.1 we discuss the design
and implementation of the ontology. In Section 3.2 we describe in detail the algorithm used to
compute the influences between entities in the KG. In Section 3.3 we describe the procedure
designed to learn the weight of each relationship type.

3.1. Relationship Ontology

The ontology is built upon the concept of social relation from the DOLCE ontology [26]. A
social relation can be defined as a situation expressed by some source of information 2, some
participants and a role that qualifies the type of the relation.

In our ontology, we only take into account pairwise relationships. This is intended as two
roles (source and target) that partake in the relationship. In this way, it is possible to define a
relation between sets of entities while retaining the directedness of the relationship. An example
is the Mentorship relation, where a single mentor might have multiple students. The source
of information tracks the provenance of the relationship assertion. The relationship types are
described in Table 1.

Figure 1 visually represents the ontology. The class :PersonalRelationship reifies the
relationship between two agents. To guarantee compactness and easiness of querying, we define
the property :hasPersonalRelationshipWith to instantiate the binary projection reified
by :PersonalRelationship. This is defined through the use of property chain axioms (blue
box in Figure 1). Note that we do not restrict the amount of subjects to the :hasSource and
:hasTarget properties. This enables the representation of pairwise relationships between two
sets of entities.

In Figure 2 an example of how the ontology can be used to define the friendship
relationship of Table 1 is described. In order to define a friendship relationship be-
tween the musicians Trent Reznor and David Bowie it is sufficient to add the triple <
Trent Reznor, :hasFriend,David Bowie > in the Knowledge Graph. The reification of the rela-
tionship is automatically performed by the inference engine.

2An information object in DOLCE



rdf:subClassOf

:PersonalRelationship

dul:SocialRelationowl:Thing

dul:isExpressedBy

dul:Agent

:hasSource
:hasTarget

:RelationshipTypedul:isClassifiedBy

:hasPersonal
RelationshipWith:isSourceOf  :hasTarget ⊑ :hasPersonalRelationshipWith

Prefixes
dul:

:
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#
https://relationship-ontology/

Figure 1: Ontology in Graffoo syntax. A pairwise relationship involving two agents is reified as a
PersonalRelationship classified by an arbitrary type and expressed by another entity. A binary
projection is automatically inferred using the property chain axiom in the blue box.

owl:equivalentTo
rdfs:subClassOf

:FriendshipRelationship

dul:isClassifiedBy value :Friendship

David
Bowie

Trent
Reznor:hasFriend:isSourceOf  :R_FriendshipRelationship  :hasTarget ⊑ :hasFriend

:PersonalRelationship :hasSource :hasTarget

dul:isExpressedBy

Document Friendship

dul:isClassifiedBy

:hasPersonal
RelationshipWith

Mentorship

dul:isClassifiedBy

Figure 2: Example of the friendship relationship using the ontology. The FriendshipRelationship
class (left) is constrained to be described by the Friendship class. The relationship <
Trent Reznor, :hasFriend,David Bowie > is represented on the right. The red colour (bottom right)
identifies the inferred axioms and entities. Dashed arrows are refinement additions. The property
:R_FriendshipRelationship (top left) is used to express class membership in property chain ax-
ioms using the rolification technique [27].

The implemented reification allows us to represent the relationship as a whole rather than
flattening it into a binary relation, resulting in a richer characterisation of the relationship and a
high degree of control in further refining it. For example, in Figure 2 the dashed properties rep-
resent refinement operations over the initial definition. It is possible to classify the relationship
as both a friendship and mentorship relationship while adding documents that act as references
to back up the assertion.

3.2. 𝑓 -communicability as influence indicator

Once relations are represented using the ontology described in Section 3.1, the resulting Knowl-
edge Graph can be interpreted as a semantically defined social network. By only relying on
the binary projections of the reified relationships we can extract a directed graph 𝐺 where
entities are directly connected to each other by means of a set of edges 𝐸. In order to quantify



the influence of one artist on another, we exploit tools that pertain to the analysis of complex
networks.

Our approach is based on the 𝑓 -communicability [15] of the nodes in a graph, which is
defined as a function of the paths that connect two distinct nodes. Generally, a node is highly
communicative with another node if there are many paths that connect the two nodes. The
length of the connecting path is an important factor that needs to be considered. If information
(e.g. creative influence) has to travel in the graph, a shorter path is much more convenient than
a longer one. This means that artists are generally influenced by close connections. Nonetheless,
long connections should not be ignored. The 𝑓 -communicability score between two connected
nodes changes as a function of the length of the path: the shorter the path, the higher the
communicability of the nodes.

Trent Reznor

Halsey

David Bowie

Brian Eno

has friend

has bandmate

admires

has mentor

has mentor

has mentor
Pete Townshend

Figure 3: Example of social graph. Intuitively, the communicability between Halsey and David Bowie
should be high given the direct and non-direct connections. Nonetheless, the communicability with Pete
Townshend should be considered as well, since there is a chain of relations that connects the two artists.

In Figure 3 a visual example of the communicability between artists and the importance of
the length of the path is reported.

We rely on 𝑓 -communicability as an indicator of how influential an artist is with respect
to the other artists in the Knowledge Graph. We define a Knowledge Graph 𝐾𝐺 as a directed
edge-labelled graph 𝐺 = (𝑉,𝐸, 𝐿) where 𝑉 represents the set of nodes in the graph, 𝐸 the set
of edges and 𝐿 the set of labels that can be assigned to an edge 𝑒 ∈ 𝐸. 𝐿 is effectively the set of
binary projections obtained from the relationship types of Table 1.

The 𝑓 -communicability between nodes 𝑖, 𝑗 in a graph 𝐺 is computed as 𝑓(𝐴)𝑖𝑗 where 𝑓 is a
suitable matrix function and 𝐴 is the adjacency matrix of 𝐺. In order to take into account the
different importance of the relationship types 𝑙 ∈ 𝐿 we use a weighting function 𝑤 : 𝐿 → R+

0 .
The function 𝑤 can be interpreted as the absolute degree of importance of a relationship type



𝑃𝑇 𝐵𝐸 𝐷𝐵 𝑇𝑅 𝐻⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

𝑃𝑇 0 0 0 0 0
𝐵𝐸 1 0 0 0 0
𝐷𝐵 0 1 0 2 0
𝑇𝑅 0 0 2 0 0
𝐻 0 0 0 1 0

(a) 𝑓1(𝐴𝑖𝑗)

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

0 0 0 0 0
1 0 0 0 0
0.5 1 2 2 0
0 1 2 2 0
0 0 1 1 0

(b) 𝑓2(𝐴𝑖𝑗)

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

0 0 0 0 0
1 0 0 0 0
0.5 1.67 2 3.33 0
0.33 1 3.33 2 0
0 0.33 1 1.67 0

(c) 𝑓3(𝐴𝑖𝑗)

Figure 4: Examples of equation 3 computed on the example from Figure 3. The labels 𝑇𝐷,𝐷𝐵,𝐵𝐸, 𝑇𝑅
and 𝐻 are used to represent the nodes of, respectively, Pete Townshend, Brian Eno, David Bowe, Trent
Reznor and Halsey. For simplicity of understanding the weights of equation 1 are considered to be
𝑤(𝑙) = 1 ∀𝑙 ∈ 𝐿. Relations that represent direct influence (e.g. 𝐻 → 𝐷𝐵) are not added to the
graph. In Figure a the adjacency matrix obtained from Equation 1 is shown. Note that the nodes that
have redundant connections (e.g. 𝐷𝐵 → 𝑇𝑅) have a value of 2. In Figure b the 𝑓 -communicability
function is computed for walks of length 1. Nodes that were previously disconnected (e.g. 𝑇𝑅 → 𝑃𝑇 )
are now connected. The same happens in Figure c, except that new connections have a lower weight
(e.g. 𝐻 → 𝑃𝑇 ).

and can either be predefined or learned, as we show in section 3.3. We can now define the
weighted adjacency matrix 𝐴 as

𝐴𝑖𝑗 =
∑︁

𝑙∈𝑙𝑎𝑏𝑒𝑙𝑠(𝑖,𝑗)

𝑤(𝑙) (1)

where 𝑙𝑎𝑏𝑒𝑙𝑠(𝑖, 𝑗) is the set of labels of the edges between 𝑖 and 𝑗.
The 𝑓 -communicability 𝑓(𝑖, 𝑗) between the nodes 𝑖, 𝑗 ∈ 𝑉 is computed as

𝑓(𝑖, 𝑗) =
∞∑︁
𝑘=1

𝛼𝑘(𝐴
𝑘)𝑖𝑗 (2)

where 𝐴𝑛 is the 𝑛-th power of 𝐴, and 𝛼𝑘 is a weight assigned to the walks of length 𝑘. Given
an adjacency matrix 𝐴 of a graph 𝐺, the entry (𝐴𝑘)𝑖𝑗 is equal to the sum of the weights of all
walks in 𝐺 from node 𝑖 to node 𝑗 of length exactly 𝑘 [28].

The weight 𝛼𝑘 defines how the importance of a walk should decay as a function of its length
and needs to be carefully chosen in order to make sure that the sum of Equation 2 converges
to the finite value. This is done by using a succession (𝛼𝑘) converging to 0 [15]. This ensures
that walks of length ∞ will have a null weight. The choice of how 𝛼𝑘 should decay leads to the
use of different functions [29, 30]. We follow the definition of Estrada and Hatano [30] and set
𝛼𝑘 = 1

𝑘! . Our function 𝑓 is hence the exponential matrix function. Given the computational cost
of obtaining the exact exponential function (particularly for large graphs), we define our actual
𝑓 -communicability function as an approximation of the exponential matrix function. This is
done by truncating the power series that represents such a function. Formally, we compute

𝑓𝐷(𝑖, 𝑗) =
𝐷∑︁

𝑘=1

(𝐴𝑘)𝑖𝑗
𝑘!

(3)



where 𝐷 is a parameter corresponding to the maximum length of a walk taken into account by
𝑓𝐷 . An approximation of the centrality of a node 𝑖 ∈ 𝐺 can be obtained by computing 𝑓𝐷(𝑖, 𝑖).
See Figure 4 for an example on how Equation 3 is computed based on Figure 3.

3.3. Learning the importance of a relationship

One requirement of the method just described is that the graph from which the influence is
predicted is weighted.

Defining the weight of a social relationship is an elaborate task, particularly when it needs to
be contextualised in the creative domain. Perry-Smith [23] argues on the existence of strong
and weak social ties and their influence on creativity. Strong ties, defined as highly redundant
connections between two individuals (e.g. Trent Reznor and David Bowie in Figure 3) are found to
positively correlate with creativity. A straightforward approach, which will serve as a baseline,
is to assign to each relation type the same weight (e.g. 1) by using 𝑤 : 𝐿 → 1. However, it
is important to note that not all relationships equally correlate with creativity [7]. Given a
reference KG, a distributional approach can be taken by defining the weight of the label to
be (inversely) proportional to their distribution in the graph. This can be done by defining
𝑤(𝑙) = |𝐸𝑙|

|𝐸| (respectively 𝑤(𝑙) = |𝐸|
|𝐸𝑙| ) where 𝐸𝑙 = {𝑒 ∈ 𝐸 𝑠.𝑡. 𝑙 ∈ 𝑙𝑎𝑏𝑒𝑙𝑠(𝑒)}. This approach

assumes that the importance of a relationship is (inversely) proportional to the distribution of
that same relationship among the reference population. While this might be true, KG relies
on the open-world assumption, where data incompleteness is taken into account. This is an
important aspect since it is difficult (if not impossible) to completely enumerate the social
relationships of an individual.

We propose to learn the weights assigned by 𝑤 by fitting the data in the knowledge graph.
This can be obtained by framing the problem of predicting creative influence as a multi-class
classification problem. Given an edge 𝑒 = (𝑖, 𝑗) we can interpret 𝑓𝐷(𝑖, 𝑗) as the probability
that 𝑒 ∈ 𝐸 with 𝑙 ∈ 𝑙𝑎𝑏𝑒𝑙𝑠(𝑒) where 𝑙 is the label assigned to the edges that semantically states
that 𝑖 is creatively influenced by 𝑗. Essentially, the 𝑓 -communicability of a pair of nodes (𝑖, 𝑗)
measures the degree to which 𝑖 is creatively influenced by 𝑗.

In order to do that we minimise the cross entropy-based learning-to-rank loss defined in
Bruch [31] between 𝑓𝐷(�̂�𝑖𝑗) and 𝐴𝑡𝑖𝑗 where 𝑡 is the label assigned to the relationship that
represents the influence of an artist onto another artist and �̂�𝑖𝑗 =

∑︀
𝑙∈𝐿𝑡

𝐴𝑙𝑖𝑗 . By relying on

a learning-to-rank loss we learn weights in such a way that, given an input artist, its most
influential artists are given a high weight. As a result, the model will be able to rank other
artists in a meaningful way despite the absence of any explicit edge in the original graph.

While aggregating relations as in Equation 1 is a natural and straightforward approach, it is
reasonable to suppose that the joint presence of two relationships, e.g. friendship and mentorship
together, might be more (or less) important than the sum of the two components. To take this
additional consideration into account we perform a non-linear combination using a feedforward
neural network with one hidden layer using a ReLU activation. Equation 1 is hence updated to

𝐴𝑖𝑗 = 𝑁𝑁([𝐴𝑡𝑖𝑗 ∀𝑡 ∈ 𝐿]) (4)

with 𝑁𝑁 being the function learned by the neural network.



4. Experiments

In this section, we describe the experiment that we perform on the method proposed in Section
3. In Section 4.1 we describe the creation of the Knowledge Graph that is used to estimate and
evaluate the predicted creative influence while in Section 4.2 we describe the experimental
setup used to assess the accuracy of the method from Section 3.

4.1. Knowledge Graph

We rely on the data from the Linked Jazz project [14]. Linked Jazz is a Knowledge Graph
containing information about famous jazz musicians and their social connections to other
musicians. Data is semi-automatically annotated from the transcription of artists’ interviews
using crowd-sourced annotations. While some relationship types are objective (e.g. bandmate
relationship) some have a subjective definition (e.g. influence relationship) and needs to be
interpreted in the context of the interview. Annotators are provided with a definition for each
relationship type, which partly addresses this issues. Modelling social relations as linked open
data has shown how it is possible to uncover meaningful relationships between entities that are
otherwise difficult to uncover [24].

We align the Linked Jazz KG to our ontology (described in Section 3.1) through the use of a
SPARQL construct query.

Figure 5: Relation distribution in the KG.

The KG contains a total of 5058 statements between 70 artists, where each musician has
72 relations asserted on average. In Figure 5 the distribution of the relationship between the
entities in the KG is shown.

4.2. Experimental setup

We experiment with the methods of Section 3 on the Knowledge Graph described in the previous
section.

In order to learn the weights of the function 𝑤 of Equation 1 we split the data into the usual
training and testing partitions, where the testing partition is 20% of the total data. The resulting
training and testing data are hence composed of, respectively, 56 and 14 artists. Since the



Figure 6: Aggregate value combining all methods as a function of the variable 𝐷 in Equation 2.

amount of explicitly stated influences available in the KG is much lower than the total amount
of edges, the split is only based on nodes that have some influence edges asserted. This allows
us to effectively evaluate the accuracy of the model with respect to creative influence prediction.
Given the small size of both splits, we evaluate the models on aggregate values from a set of 5
distinct experiments on different subsets of the data. This helps us mitigate the noise due to the
low amount of data available.

We evaluate each model using Mean Reciprocal Rank (MRR), Mean Average Precision (MAP)
and Discounted Cumulative Gain (DCG). All the listed metrics measure how high are ranked
appropriate values, e.g. how high are ranked actual influential artists with respect to a reference
artist. MRR can be interpreted as how far is the first influential artist in the ordered list. MAP is
the average of the number of relevant entries within the first 𝑘 results, where 𝑘 is the number
of influences of each artist. DCG evaluates the results by penalising when relevant entries are
not positioned at the top of the list. Each model is trained using COCOB [32], a parameter-free
optimisation method. All the experiments are performed on an Intel i9 with 128𝐺𝐵 of RAM
and an Nvidia RTX3090 with 24𝐺𝐵 of VRAM.

5. Results

In Figure 6 results from all methods are aggregated and plotted as a function of the degree 𝐷
of Equation 2. The results highlight how using walks whose length extends at most up to 2
nodes obtains the best results. Influences from artists that are difficult to reach, i.e. that are
separated by many other nodes, add noise to the 𝑓 -communicability matrix. In fact, Perry-Smith
[23] argues that creative influence can be classified into two main categories: strong and weak
influence, where strong influence, as opposed to weak influence, is the result of many redundant
connections between two nodes. In other words, the influence of an artist on another artist is
stronger if the amount of connections between the two is high. Taking into account long walks
results in many connections that eventually turn a weak influence into a strong one. This can
also be seen in the example of Figure 2. The influence of Pete Townshend on Halsey can be safely



ignored. Taking into account walks longer than degree 2 wrongly detects this relationship as a
strong one. In Equation 2 longer walks are considered less important. However, this proves not
to be enough, as the number of distinct longer walks from two entities mitigates this discount
and results in less accurate predictions. Further investigation on other converging series used
for decaying weights can result in more accurate performances.

Table 2
Result from the experiment described in Section 4. Each value is reported alongside its standard
deviation.

𝑤 MAP DCG MRR

Uniform 0.23± 0.13 0.48± 0.13 0.43± 0.24
Frequency 0.17± 0.12 0.43± 0.12 0.28± 0.23
Inverse Frequency 0.23± 0.16 0.49± 0.16 0.43± 0.27
Learned 0.28± 0.130.28± 0.130.28± 0.13 0.53± 0.110.53± 0.110.53± 0.11 0.50± 0.170.50± 0.170.50± 0.17
DNN 0.1± 0.17 0.3± 0.19 0.16± 0.27

Table 2 reports the results obtained from the experiments of Section 4 with 𝐷 = 2. Learning
the function 𝑤 used in Equation 3 leads to the best results on aggregate with respect to all the
metrics taken into account. Surprisingly, using a neural network as illustrated in Equation 4
does not result in a definite gain with respect to the simpler model of Equation 1. The main
reason for that is the lack of training data. The network is not able to generalise over the target
task and tends to overfit in the training data despite the small number of parameters.

Table 3
Statistics on the learned weights from the best model of table 2.

Relationship max(𝑤) mean(𝑤) median(𝑤) min(𝑤)

has acquaintance 9.456889 9.244201 9.286146 8.995128
has bandmate 9.958392 7.067571 6.286661 6.230026
has friend 15.739528 14.435940 14.669381 13.340489
has mentor 4.089674 3.709073 3.636836 3.510836
has pupil 12.359836 10.432499 11.434330 6.429887
is friend of 4.090974 3.709161 3.636191 3.510761

In Table 3 the weights learned by the best method of Table 2 are described. Judging from the
mean and median values, the most important relationships are the friendship and mentorship
relationship. The former aligns with the findings of [3]: the influences of famous artists can be
largely associated with the connections they have with other meaningful artists from the same
clique. Moreover, it is important to notice how the inverse relationship, is friend of, has a lower
weight when compared to the has friend relationship. In order to understand this phenomenon
it is sufficient to contextualise it in the task we have identified. An artist can be influenced by a
friend only if the artist itself acknowledges that relationship. If the relationship is asymmetric,
i.e. one of the two artists is unaware of it, the influence between the two should be much
weaker. An interesting phenomenon happens with the mentorship relationship. Artists are
much more influenced by their students (has pupil relationship) rather than their mentors. This



is a direct result of taking into account relationships that span multiple edges rather than a
direct connection. Even though an artist can be influenced by one of its students, we argue that
the result of the high weight is explained best by a co-pupil relationship. An artist is influenced
by another artist when they both share the same mentor. This aligns with the findings of [7],
where mentors are seen as a bridge between two artists.

6. Conclusion

In this work, we present a novel method, described in Section 3, to detect creative influence
between artists using techniques based on graph theory and complex network science. Our
method takes into account the individuality of a relationship type through the use of an ontology
illustrated in Section 3.1. By framing the influence prediction task as a classification task we
are able to obtain an interpretable model that performs better than robust baselines. The
results described in Section 5 highlight how a straightforward combination of the different
graph planes identified by the different relationship types results in accurate results. Moreover,
the weights assigned to each relationship type are in line with relevant socio-cognitive and
psychological findings, thus additionally validating the results. Our attempt to increase the
accuracy of our results through the use of a machine learning approach led to less accurate
predictions. Nonetheless, it is difficult to objectively rule out the possibility of combining
machine learning techniques with our methods. In future works, we plan on extending the
dataset available. The main problem with the experiments relying on the neural network can
indeed be partially caused by the limited amount of training data for the model. An approach is
to employ data augmentation techniques, in order to exploit the data as much as possible and
reduce the chances of overfitting the model. With the availability of additional data, for instance
by using relation extraction methods [33, 34, 35], more complex architectures can also be used,
such as attention-based models [36]. Finally, we would like to explore clustering methods and
detect communities of artists within the 𝑓 -communicability matrix obtained from the method
of Section 3.2. This would enable the identification of cliques of artists that are socially related
and hence provide a tool to better understand the creative process of an artist. Combining the
relationship types with additional relevant information, such as the socio-cultural context [20],
is also an interesting improvement worth investigating. Similarly, combining our approach with
the one identified by Saleh et al. [9], where influence between artists is modelled on the basis of
the similarity between their artefacts, is an interesting approach as it could help increase the
accuracy while also providing examples of artefacts where such similarities can be identified.
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