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Abstract
Graphs can be leveraged to model polyphonic multitrack symbolic music, where notes, chords and entire
sections may be linked at different levels of the musical hierarchy by tonal and rhythmic relationships.
Nonetheless, there is a lack of works that consider graph representations in the context of deep learning
systems for music generation. This paper bridges this gap by introducing a novel graph representation
for music and a deep Variational Autoencoder that generates the structure and the content of musical
graphs separately, one after the other, with a hierarchical architecture that matches the structural priors
of music. By separating the structure and content of musical graphs, it is possible to condition generation
by specifying which instruments are played at certain times. This opens the door to a new form of
human-computer interaction in the context of music co-creation. After training the model on existing
MIDI datasets, the experiments show that the model is able to generate appealing short and long musical
sequences and to realistically interpolate between them, producing music that is tonally and rhythmically
consistent. Finally, the visualization of the embeddings shows that the model is able to organize its latent
space in accordance with known musical concepts.
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1. Introduction

The automatic generation of artistic artifacts is gathering increasing interest, also thanks to the
possibilities offered by modern deep generative models [1, 2, 3]. Despite these achievements, a
closer inspection is often enough to detect if a piece of art is the outcome of an automatic artificial
process. While being very good at approximating the external appearance of the artworks,
artificial models still lack a way to convey an artistic message to the overall experience. This
results in artworks that are convincing but soulless, lacking a general coherence and a deeper
meaning. This is particularly true in the case of music, where the artist needs to be very aware
of the emotions evoked by a particular sequence of notes in order to stimulate a specific mood
in the listener.

A way to circumvent the above issues is to look at deep learning models as a support to the
human artist, instead of as a replacement. The models can thus be used as a way to automatize
the low-level routine sub-tasks of the creative process, while leaving the artist free to concentrate
on the overall picture.
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In this paper, we introduce a new model for the automatic generation of symbolic sequences
of multitrack, polyphonic music. The generation process is carried out through the use of a
novel graph-based internal representation, which allows to explicitly model the different chords
in the song and the relations between them. This representation allows the human artist to
perform controlled changes to the output of the neural network in order to control specific
aspects of the artistic performance, while leaving the model free to generate the remaining part
in a coherent way.
The main contributions of this paper are the following. First, we propose a novel graph

representation of multitrack, polyphonic music, where nodes represent the chords played by
different instruments and edges model the relationships between them. Second, we introduce a
deep Variational Autoencoder [4] that generates musical graphs by separating their rhythmic
structure and tonal content. To the best of our knowledge, this is the first time in literature that
Deep Graph Networks [5] are used to generate multitrack, polyphonic music. Finally, we show
a new generative scenario enabled by our approach in which the user can intuitively condition
generation by specifying which instruments have to be played at specific timesteps.

2. Related Works

In recent years, there have been many attempts at generating symbolic music with deep learning
architectures such as LSTMs [6, 7, 8], Transformers [9, 10] and CNNs [11, 12], using Varia-
tional Autoencoders (VAE) [4], Generative Adversarial Networks (GAN) [13] and Adversarial
Autoencoders (AAE) [14] as the main generative frameworks.

One of the challenges in devising symbolic generators is choosing an appropriate repre-
sentation for music data. Researchers have therefore started to experiment with graph-based
representations, where musical entities and their relationships are modeled, respectively, by
nodes and edges. Musical graphs have been built at the note level [15, 16, 17, 18], associating
nodes to notes and edges to temporal or tonal relationships, as well as at a higher level of the
hierarchy, using melodic segments [19] and bars [20, 21] as building blocks.
In the literature, there is a substantial lack of studies that consider graph representations

in the context of deep learning for symbolic music. The VAE-based performance renderer in
[20] and the cadence detector in [22] are, to the best of our knowledge, the only systems that
use Deep Graph Networks to process musical graphs. For what concerns generation, the only
attempts at using graphs with deep learning are represented by PopMNet [20] and MELONS
[21]. Both works use graphs to condition the generation of monophonic music, which is carried
out by recurrent networks. In contrast to these works, our approach uses graphs at a lower level,
leveraging Deep Graph Networks to learn tonal and rhythmic representations in the context of
polyphonic multitrack music generation.

3. Graph-based Music Generation

The proposed model processes 4/4 polyphonic, multitrack fixed-length music sequences. Input
songs are assumed to be available as an 𝑁 × 𝐼 × 𝑇 × 𝑃 multitrack pianoroll binary tensor, where
𝑁 is the number of bars, 𝐼 the number of tracks, 𝑇 the number of timesteps in a bar and 𝑃 the



number of possible pitches. The number of timesteps in a bar, 𝑇, is fixed to 32. The division of
sequences into bars is crucial since the model treats different bars separately. An example of a
multitrack pianoroll is shown in Figure 1a.

3.1. Graph-based Music Representation

We propose to represent polyphonic multitrack music by a chord-level graph 𝑔 = (𝒱 , ℰ,𝒜 ,𝒳),
where 𝒱 is the set of nodes, ℰ is the set of (multi-type) edges, 𝒜 the set of edge features and 𝒳
the set of node features. An example of a chord-level graph is shown in Figure 1c.
The structure 𝒮 of 𝑔 is represented by the sets 𝒱, 𝒜 and ℰ. Each node 𝑣 ∈ 𝒱 corresponds to

the activation of a chord in a specific track and timestep. Notice that we use the term “chord”
loosely here to indicate any non-empty sequence of MIDI notes. We identify three types of
edges (𝑢, 𝑣) ∈ ℰ: track edges, onset edges and next edges. Track edges connect nodes that
represent consecutive activations of a single track. Onset edges connect nodes that represent
simultaneous activations of different tracks. Finally, next edges connect nodes that represent
consecutive activations of different tracks in different timesteps. In order to model different
tracks, a separate track edge type is instantiated for each track. Each edge feature 𝑎𝑢𝑣 ∈ 𝒜
contains the type of the edge (𝑢, 𝑣) as well as the distance in timesteps between the two nodes.

The content 𝒞 of 𝑔 is represented by the set of node features𝒳. Node features 𝑥𝑣 ∈ 𝒳 contain
the list of notes played in correspondence of node 𝑣. The number of maximum notes in a chord,
Σ, is fixed a priori. Each note is represented as a feature vector of dimension 𝐷. The vector
contains information about pitch and duration stored as a one-hot token pair. The pitch token
can assume 131 different values, which correspond to 128 MIDI pitches with the addition of
SOS𝑃, EOS𝑃 and PAD𝑃 tokens. Similarly, the duration token can assume 99 different values, which
correspond to 96 different durations (yielding a maximum duration of 3 bars) with the addition
of SOS𝐷, EOS𝐷 and PAD𝐷 tokens.
The structure of 𝑔 is encoded by the tensor S ∈ {0, 1}𝑁×𝐼×𝑇. S𝑛,𝑖,𝑡 = 1 if and only if there is

an activation of at least one note in the track 𝑖 at timestep 𝑡 of the 𝑛-th bar. Intuitively, S𝑛,𝑖,𝑡
indicates whether track 𝑖 is active (not counting the sustain of notes) at timestep 𝑡 in the 𝑛-th
bar. An example of a structure tensor is shown in Figure 1b. The content of a chord-level graph,
on the other hand, can be encoded through a tensor X ∈ ℝ|𝒱 |×Σ×𝐷 after fixing an ordering of 𝒱.

3.2. Deep Graph Network for Music

Our graph-based representation of music is processed by a deep VAE [4] that reconstructs
the structure 𝒮 and the content 𝒞 of a chord-level graph 𝑔 = (𝒮 , 𝒞 ). Its encoder models
the encoding distribution 𝑞𝜙(𝑧|𝒮 , 𝒞 ), where 𝑧 ∈ ℝ𝑑. The decoder network, on the other hand,
models 𝑝𝜃(𝒮 , 𝒞 |𝑧). After introducing the latent variables 𝑧𝒮 ∈ ℝ𝑑 and 𝑧𝒞 ∈ ℝ𝑑, the generative
process can be formalized as follows:

𝑝𝜃(𝒮 , 𝒞 , 𝑧𝒮, 𝑧𝒞|𝑧) = 𝑝𝜃(𝑧𝒮|𝑧)𝑝𝜃(𝑧𝒞|𝑧)𝑝𝜃(𝒮 |𝑧𝒮)𝑝𝜃(𝒞 |𝑧𝒞, 𝒮 ) (1)

A high-level representation of the model is shown in Figure 2. The encoder consists of
two separate submodules, namely a content encoder and a structure encoder which output,
respectively, the codes 𝑧𝒮 and 𝑧𝒞. The two codes are finally combined into a graph code 𝑧𝑔 with



(a) (b)
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Figure 1: (a) A multitrack pianoroll with four tracks (rows) and four timesteps (columns). The positions
of notes in each cell indicate their pitch. (b) A structure tensor computed from the pianoroll. (c) The
resulting chord level graph. Black, solid connections indicate track edges. Red, dotted connections
indicate next edges. Blue, dashed connections indicate onset edges. Edge features 𝛿𝑢𝑣 indicate the
distance in timesteps between two nodes.

a linear layer. The decoder, on the other hand, generates the structure 𝒮 and the content 𝒞 of
𝑔 one after the other. First, symmetrically to the encoder, it decomposes 𝑧 into two separate
latent vectors 𝑧𝒮 and 𝑧𝒞 through a linear layer. Then, it generates 𝒮 from 𝑧𝒮 through a structure
decoder and the content 𝒞 from 𝒮 and 𝑧𝒞 through a deep graph content decoder. The content
and the structure decoder model, respectively, the distributions 𝑝𝜃(𝒮 |𝑧) and 𝑝𝜃(𝒞 |𝒮 , 𝑧).

Content Encoder. In the content encoder (Figure 3a) each note is first embedded into a
𝑑-dimensional space with a linear note encoder. Next, a linear chord encoder processes the list
of notes associated to each node, producing 𝑑-dimensional chord representations. These chord
representations are processed by an encoder Graph Convolutional Network (GCN) [5] with 𝐿
layers. We refer the reader to the supplementary material1 for details about the implementation

1https://emanuelecosenza.github.io/polyphemus/assets/suppmaterials.pdf

Figure 2: High-level visualization of the model.

https://emanuelecosenza.github.io/polyphemus/assets/suppmaterials.pdf
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Figure 3: Visualization of the content encoder (a) and the structure encoder (b).

of the GCN. After 𝐿 graph convolutional layers, a soft attention readout layer similar to that
in [23] aggregates the information contained in each subgraph 𝑔𝑛 of 𝑔 related to the 𝑛-th bar
of the musical sequence, producing bar embeddings 𝑧1𝒞, … , 𝑧𝑁𝒞. The bar embeddings are finally
passed through a linear bar compressor to obtain the final content representation 𝑧𝒞.

Structure Encoder. The structure encoder (Figure 3b) takes as input the structure tensor
S ∈ ℝ𝑁×𝐼×𝑇 and computes the code 𝑧𝒮. This module first encodes each bar S𝑛 ∈ ℝ𝐼 ×𝑇 into a latent
representation 𝑧𝑛𝒮 ∈ ℝ𝑑 through a CNN [24] made of two convolutional layers with ReLU activa-
tions and Batch Normalization, interleaved by max pooling. The bar representations 𝑧1𝒮, … , 𝑧𝑁𝒮
are then computed by passing the signal through two dense layers. These representations are
finally concatenated and passed through a linear layer to obtain 𝑧𝒮.

Structure Decoder. The structure decoder (see Figure 4b) is specular to the structure encoder.
It first decompresses 𝑧𝒮 into 𝑁 structure bar representations 𝑧1𝒮, … , 𝑧𝑁𝒮 and decodes each of them
into a structure tensor S𝑛 ∈ ℝ𝐼 ×𝑇 with a bar decoder. The bar decoder mirrors the bar encoder,
with the difference that upsample layers are interleaved with convolutional layers to obtain the
original resolution of the pianoroll. Finally, a sigmoid layer produces probability values which
are stacked to form the probabilistic structure tensor ̃S.

(a) (b)

Figure 4: Visualization of the content decoder (a) and the structure decoder (b).

Content Decoder. It reconstructs the content of 𝑔 from 𝑧𝒞 and 𝒮. The decoder first de-
compresses 𝑧𝒞 into 𝑧1𝒞, … , 𝑧𝑁𝒞 ∈ ℝ𝑑. Each 𝑧𝑛𝒞 is used to initialize the states of the nodes in



the subgraph 𝑔𝑛, which represents the connected component related to the 𝑛-th bar of the
structure 𝒮. From there, a GCN identical to the one employed in the encoder computes the
final states h𝐿

𝑣 ∈ ℝ𝑑 for each node 𝑣. At this point, a linear chord decoder transforms each
final node state h𝐿

𝑣 into the corresponding Σ note representations of dimension 𝑑. Such note
representations are decoded and passed through a softmax layer, which outputs two separate
probability distributions over pitches and durations, yielding the probabilistic tensors P̃ and D̃,
which contain, respectively, pitch and duration probabilities.

3.3. Training

The model is trained to minimize the following loss

ℒ(𝑔) = 𝔼[− log 𝑝𝜃(𝑔|𝑧)] + 𝛽𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑔) || 𝒩 (0, 𝐼)), (2)

where 𝐷𝐾𝐿(⋅||⋅) is the KL divergence and the expectation is taken with respect to 𝑧 ∼ 𝑞𝜙(𝑧|𝑥).
Following the 𝛽-VAE framework [25], the hyperparameter 𝛽 controls the trade-off between
reconstruction accuracy and latent space regularization.
Since the generative process is divided in two parts, the log-likelihood term in Equation 2

can be decomposed as follows:

log 𝑝𝜃(𝑔|𝑧) = log (𝑝𝜃(𝒮 |𝑧)𝑝𝜃(𝒞 |𝑧, 𝒮 ))
= log 𝑝𝜃(𝒮 |𝑧) + log 𝑝𝜃(𝒞 |𝑧, 𝒮 ).

(3)

The first term in Equation 3 can be derived in the following way:

log 𝑝𝜃(𝒮 |𝑧) = ∑
𝑛,𝑖,𝑡

S𝑛,𝑖,𝑡 log S̃𝑛,𝑖,𝑡+

+ (1 − S𝑛,𝑖,𝑡) log(1 − S̃𝑛,𝑖,𝑡),
(4)

where independence is assumed between variables.
Computing the content log-likelihood in Equation 3 is trickier, since the structure generated

by the structure decoder may be different from the real one. We circumvent this problem by
using a form of teacher forcing, where the content is obtained by filling the real structure in
place of the one generated by the structure decoder. In this way, the following likelihood can
always be computed:

log 𝑝𝜃(𝒞 |𝑧, 𝒮 ) = ∑
𝑖
∑
𝜎
log(P̃𝑖,𝜎)𝑇P𝑖,𝜎+

+ log(D̃𝑖,𝜎)𝑇D𝑖,𝜎,
(5)

where P and D are tensors containing, respectively, real one-hot pitch and duration tokens,
while P̃ and D̃ represent their probabilistic reconstructions. Indepedence is assumed between
all pitch and duration variables.



Datasets 2 Bars 16 Bars

LMD-matched 6,813,946 2,842,739
MetaMIDI Dataset 11,076,635 27,251,322

Table 1
Size of the datasets obtained in the preprocessing phase.

4. Experiments

Following [8, 26, 10], we experiment on short and long sequences of MIDI music. The experi-
ments probe the generative capabilities of the model comparing, whenever possible, to state of
the art approaches. We refer the reader to the source code2 and the additional material3, which
contains the audio samples produced in the experimental phase.

4.1. Data and Experimental Setup

We use the ‘LMD-matched’ version of the Lakh MIDI Dataset [27], which contains a total of
45,129 MIDI songs. We also consider the more challenging MetaMIDI Dataset (MMD) [28], an
unexplored large scale MIDI collection totalling 436,631 songs. For each dataset, we obtain two
new datasets containing 2-bar and 16-bar sequences represented as chord-level graphs. The
preprocessing pipeline is similar to that in [8, 26, 10]. The details about preprocessing can be
found in the supplementary material. Each preprocessed sequence is composed of 4 tracks: a
drum track, a bass track, a guitar/piano track and a strings track. The sizes of the resulting
datasets are shown in Table 1.
The experiments focus on two versions of the model, one for 2-bar sequences and one for

16-bar sequences. We use for both a 70/10/20 split. The number of layers 𝐿 of the GCNs is
fixed to 8. The value 𝑑 is set to 512. Adam [29] is used as the optimizer for both models, setting
1e-4 and 5e-5 as initial learning rates for the 2-bar and the 16-bar models. The learning rates
are decayed exponentially after 8000 gradient updates with a decay factor of 1 − 5e-6. The
hyperparameter 𝛽 is annealed from 0 to 0.01 during training.

4.2. Generation

The first set of experiments concerns the analysis of sequences generated from random codes
𝑧. In the manual qualitative analysis4, both the 2-bar and the 16-bar models appear to be
particularly consistent, producing reasonable chord progressions, melodic segments and drum
patterns. To provide a more quantitative assessment, following previous works [30, 10], we
measure the generative ability of the trained models by computing the following metrics on
20,000 generated sequences:

• EB (Empty Bars): ratio of empty bars.

2https://github.com/EmanueleCosenza/polyphemus
3https://emanuelecosenza.github.io/polyphemus/
4Audio samples of generated 2-bar and 16-bar samples can be found here: https://emanuelecosenza.github.io/
polyphemus/generation.html

https://github.com/EmanueleCosenza/polyphemus
https://emanuelecosenza.github.io/polyphemus/
https://emanuelecosenza.github.io/polyphemus/generation.html
https://emanuelecosenza.github.io/polyphemus/generation.html


EB UPC ↓ DP ↑

D B G/P S B G S D

LMD-matched

jamming 6.59 2.33 20.45 6.10 1.53 3.91 4.09 93.2
composer 0.01 28.9 1.35 0.01 2.51 4.55 5.19 75.3
hybrid 2.14 29.7 14.75 6.04 2.35 5.11 5.24 71.3

Calliope 0.0 0.0 0.0 0.0 2.08 3.87 2.52 94.84

Ours (2-bars) 4.58 4.39 20.46 17.74 2.27 2.53 2.72 96.97
Ours (16-bars) 1.96 3.37 11.38 12.02 1.79 2.38 2.07 96.59

MetaMIDI Dataset
Ours (2-bars) 5.38 8.31 23.49 21.54 1.85 2.03 2.24 96.28
Ours (16-bars) 4.20 7.20 18.39 17.56 1.34 1.66 1.39 95.92

Table 2
Generation metrics of the proposed model, Calliope and the jamming, composer and hybrid versions of
MuseGAN (EB: empty bars (%), UPC: number of used pitch classes, DP: drum patterns (%), D: drums, B:
bass, G/P: guitar/piano, S: strings).

• UPC (Used Pitch Classes): number of used pitch classes (12) per bar.
• DP (Drum Patterns): ratio of notes in 16-beat patterns, which are common in popular
music (in %).

Table 2 shows the results obtained by our models, comparing our approach to different
versions of MuseGAN [30] and Calliope [10]. We also include metrics for the models trained on
MetaMIDI Dataset with the goal of stimulating research on larger MIDI collections. The EB
values are never equal to zero, which indicates that there are no issues with holes in the latent
space and that the models do not ignore the latent codes during decoding. The UPC values
are consistently low, indicating that the models have learned to stick to specific tonalities in
the context of single bars. Additionally, the DP values for the proposed model are the highest,
confirming its consistency on the rhythmic level. These results further validate the proposed
methodology and confirm the rhythmic and tonal coherence of the model.

4.3. Structure-conditioned Generation

The separation of structure and content in our approach allows for the replacement of the
generated structure tensor S with a new tensor ̂S during the decoding process. This new tensor
can be modified in a similar fashion to pianoroll editing in Digital Audio Workstations (DAW).
For instance, the user can specify that a certain instrument should only be played at a specific
time in the sequence by filling the desired positions in the binary activation grid. To show
this, we operate as follows, focusing on the 2-bar model trained on the Lahk MIDI Dataset.
We start by sampling a random latent code 𝑧, from which we obtain the two representations
𝑧𝒮 and 𝑧𝒞. We then let the structure decoder produce the corresponding structure tensor S
from 𝑧𝒮. At this point, we modify S to our liking, obtaining a new structure tensor ̂S. This
corresponds to adding or removing nodes from the chord-level graph being generated. Finally,
we let the content decoder compute two separate content tensors X and ̂X, corresponding to
two final music sequences. For our purposes, the content decoder should be robust to changes
in the structure, replicating the same musical content represented by 𝑧𝒞. When listening to the
audio samples generated in this way, the model appears to be able to preserve the rhythmic



(a)
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Figure 5: A visualization of the structure editing process. (a) A structure tensor S generated from a
random latent code 𝑧 (D: drums, B: bass, G: guitar, S: strings). Blue entries indicate the activation of
single instruments at specific timesteps. Beats are numbered on the horizontal axis. (b) The edited
structure tensor Ŝ. Green entries indicate the addition of new activations.

and tonal features of the original sequence, rearranging the musical content while abiding by
the imposed structure. As an example, Figure 5a shows a generated structure tensor S. The
resulting sequence contains a recognizable I-IV progression in the key of B, supported by 8-beat
bass and drum patterns5. We edit the tensor by making the drums sparser, keeping only the
nodes at the start of each beat, and by making the strings more active, adding new nodes at the
start of beats. This yields a new structure tensor Ŝ, which is shown in Figure 5b. The resulting
music produced by the content decoder maintains the same harmonic progression of the original
sequence. The bass and guitar tracks remain unaltered with very slight variations. Finally, the
strings play a new melodic line in the right key, while the drums play a steady 4-beat hi-hat
pattern. Overall, this shows that the content decoder can adapt to new structures specified by
the user, opening the door to a new form of human-computer music co-creation.

4.4. Embedding Visualization

Similarly to [31] we explore the pitch, duration and chord embeddings by visualizing their
principal components, focusing on the encoder network of the 2-bar model trained on the Lahk
MIDI Dataset. Figure 6a shows the PCA projection in 3D space of all the 128 pitch embeddings.
Pitch projections follow a circular path along the clockwise direction, suggesting that the
model has learned the tonal relationships between different pitches. Figure 6b shows a 3D
PCA projection of chord embeddings considering every major chord obtained by picking as
roots the notes between C1 and B8. Durations are fixed to 1 beat. Similarly to what happens
for pitches, chord embeddings follow a circular path in the space and form clusters related to
specific octaves.

Figure 7 shows the PCA projections in 2D space of duration embeddings considering, respec-
tively, all the possible 96 durations (i.e. up to three bars) and the first 32 durations (i.e. up to a
bar). In the first case (Figure 7a), two distinct clusters contain, respectively, durations above
64 (i.e. above 2 bars) and durations below 64 (i.e. below 2 bars). In the second plot (Figure 7b),

5This and other examples related to conditioned generation can be found here: https://emanuelecosenza.github.io/
polyphemus/conditioned-generation.html

https://emanuelecosenza.github.io/polyphemus/conditioned-generation.html
https://emanuelecosenza.github.io/polyphemus/conditioned-generation.html


(a) (b)

Figure 6: (a) PCA projection of pitch embeddings. (b) PCA projection of major chord embeddings. The
major chords are obtained by picking as roots each note between C1 and B8.

(a) (b)

Figure 7: 2D PCA projections of duration embeddings, considering all 96 durations (a) and the first 32
(b).

three clusters can be identified with, respectively, durations below 16 (i.e. below 2 beats, left
of the plot), durations between 16 and 24 (i.e. between 2 and 3 beats, upper-right of the plot)
and durations above 24 (i.e. between 3 beats and a bar). The plots suggest that the model has
learned to organize its duration space in accordance to the rhythmic concepts of beats and bars.

5. Conclusions

In this work, we introduced a new graph representation for polyphonic multitrack music and a
model that generates musical graphs by separating their structure and content. As seen in the
qualitative analysis and the comparison with the state of the art, our approach has revealed
to be beneficial with regards to the rhythmic and tonal consistency of the generated music.
Through manual experiments, we showed that our methodology enables a generative scenario
where users can specify the activity of particular instruments in a music sequence. Finally, we
further validated our work by visualizing the pitch, chord and duration embeddings learned by
the model. In each case, the embedding spaces are organized in accordance with known tonal
and rhythmic concepts. To conclude, we believe that the model has the potential to support
human-computer co-creation, and it will be interesting to find possible applications of our
methodology in modern software audio tools.
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