
FcaStone - FCA file format conversion and
interoperability software

Uta Priss

Napier University, School of Computing,
u.priss@napier.ac.uk
www.upriss.org.uk

Abstract. This paper presents FcaStone - a software for FCA file format con-
version and interoperability. The paper both describes the features of FcaStone
and discusses FCA interoperability issues (such as the specific difficulties en-
countered when connecting FCA tools to other tools). The paper ends with a call
to the FCA community to develop some sort of standard FCA Interchange For-
mat, which could be used for data exchange between stand-alone applications and
across the web.

1 Introduction

FcaStone1 (named in analogy to ”Rosetta Stone”) is a command-line utility that con-
verts between the file formats of commonly-used FCA2 tools (such as ToscanaJ, Con-
Exp, Galicia, Colibri3) and between FCA formats and other graph and vector graph-
ics formats. The main purpose of FcaStone is to improve the interoperability between
FCA, graph editing and vector graphics software. Because it is a command-line tool,
FcaStone can easily be incorporated into server-side web applications, which generate
concept lattices on demand. FcaStone is open source software and available for down-
load from Sourceforge. FcaStone is written in an interpreted language (Perl) and thus
platform-independent. Installation on Linux and Apple OS X consists of copying the
file to a suitable location. Installation on Windows has also been tested and is also fairly
easy.

The need for interoperability software was highlighted in discussions among ICCS
participants in recent years. Several ICCS authors expressed disappointment with the
lack of progress in conceptual structures (CS) research with respect to applications
and software (Chein & Genest (2000); Keeler & Pfeiffer (2006)) and with respect to
current web developments (Rudolph et al., 2007). Although several sophisticated CS
tools exist, each of them has different features. If a user wants to use features that are
supported by different tools, it can be difficult to move the data from one tool to the
other because each tool has different file formats. APIs are missing that would allow
for the different existing tools to interoperate. Interoperability has been discussed by

1 http://fcastone.sourceforge.net/
2 FCA stands for Formal Concept Analysis. This paper provides no background on FCA. See
http://www.fcahome.org.uk for links to FCA references, introductions and software.

3 The URLs for all tools mentioned in this paper are listed at the end of the paper.

33



Dobrev (2006) and, implicitly in Tilley’s overview of existing FCA tools and has been
the topic of ICCS tools workshops. Recently, the Griwes project4 has been developing
a framework for conceptual graph (CG) interoperability. Griwes is a very promising
project, but it focuses more on CGs than FCA and is still in its early stages.

FcaStone provides a first step towards interoperability: it allows to convert between
different FCA file formats. Ideally, this conversion should not have to be performed at
the command-line, but instead should be integrated into existing tools. But until such
APIs exist that allow full interoperability, FcaStone provides a simple workaround. Fur-
thermore, it is quite unlikely that APIs will ever be written for all possibly relevant tools,
especially if this includes other non-CS tools. Thus there may always be a need for a
file format conversion tool. It should be stressed that so far FcaStone only supports
FCA formats, not CG formats. It is planned in the future to extend FcaStone also to CG
formats, but it has to be investigated, first, in how far that is feasible, because FcaStone
focuses mainly on lattice representations which are not the main concern of CGs.

While developing FcaStone, it became apparent that there are a few non-FCA file
formats, which are also suitable for representing concept lattices. In particular, graph
formats and vector graphics formats are of relevance. The difference between graph and
vector graphics formats is that vector graphics are more general. Graph formats usually
focus on graphs consisting of nodes and edges. Graph editors normally provide graph
layout algorithms. The connection between a node and its edges is usually fixed, so that
clicking on a node and moving it around will move the connected edges with that node.
Vector graphics formats, on the other hand, can be used for any sort of graphics (not
just nodes and edges). Although vector graphics editors usually have some grouping
mechanism that allows to create complex objects which can be moved around and edited
as a whole, it is not always possible to connect edges to nodes in such a manner. While
vector graphics formats can represent graphs and provide many editing features, they
often do not provide the specific editing features that more specialised graph editors
have. Both graph and vector graphics formats are of interest to FCA, but because of the
differences between them, not all FCA features can be represented in these formats.

The following list summarises the formats and features that are currently imple-
mented for FcaStone (the URLs for the tools are at the end of this paper):

– Commonly used FCA file formats (cxt, cex, csc, slf, bin.xml, and csx).
– Conversion between FCA file formats and comma separated value (csv) files as

exported from and imported into databases and spreadsheets.
– Export into Bernhard Ganter’s latex format (only for contexts at the moment).
– Graph formats (dot, gxl, gml, ...) for use by graph editors (yEd, jgraph, ...) and

vector graphics formats (fig, svg, ...) for use by vector graphics editors (Xfig, Dia,
Inkscape, ...).

– Creating lattice diagrams (using Graphviz’s layout) from contexts.
– Serve as a component of a server-side script for generating lattices on webpages.

The emphasis of FcaStone is on converting file formats, not on fast algorithms for
lattice construction which are already provided by other FCA software. FcaStone can
convert formal contexts into lattices. It uses the Ganter algorithm (Ganter, 1984), but in

4 http://www-sop.inria.fr/acacia/project/griwes/

34



a very simple string implementation that is not efficient. FcaStone then uses Graphviz to
calculate the graph layouts. Graphviz is open source graph visualisation software, which
contains several graph layout algorithms. In this respect, FcaStone is similar to the
Colibri software, which also relies on Graphviz for lattice layouts. Because Graphviz
provides a large number of file conversion options, FcaStone only needs to produce a
single format (called “dot format”) which can then be further converted by Graphviz
into a large number of other formats.

It is possible with FcaStone to convert a formal context into a concept lattice (for
example as a gif file) by just running FcaStone on the command-line. In many cases
the resulting pictures are surprisingly good without manual editing of the diagrams -
although the diagrams do not exactly follow all of the traditional FCA style conventions.
FcaStone is a very slim program. Its interaction with Graphviz and with other scripts
(if used on a web-server) is designed to be achieved via system calls (pipes). Although
this is a fairly basic form of interaction which may not be very efficient, it should be
easy for a programmer to incorporate FcaStone into other scripts or to modify it to suit
other needs. FcaStone is work in progress. The following features are not yet available,
but are planned for future releases:

– Converting lattices between different formats in a manner that preserves the graph
layout of the lattice. (This would also mean that other FCA software such as Galicia
or Colibri could be called from FcaStone in order to obtain layouts and efficiency.)

– Database connectivity.
– Convert into other knowledge representation formats (conceptual structures, se-

mantic web), if they are suitable for representing lattices.

The remainder of this paper provides an overview of the file formats that are sup-
ported by FcaStone (Section 2); discusses the specific difficulties related to presenting
concept lattices in graph formats (Section 3); presents more details on which tools are
suitable for editing FCA data and how these are supported by FcaStone (Section 4); and,
finally, discusses FCA web applications (Section 5), which includes a call to the FCA
community to develop some sort of standard FCA Interchange Format, which could be
used for data exchange between stand-alone applications and across the web.

2 Supported formats

Fig. 1 provides an overview of the supported file formats. The top half of the figure
shows formats that are supported for input and output; the bottom half show formats
that are only supported for output. The top half of the output-only formats could also be
supported for input in future versions of the software, but only if certain constraints are
observed by the formats. This is because these formats are not FCA-specific and allow
for the representation of other graphs or vector graphics. The raster graphics and page
description formats are totally unsuitable for input, because reading those files would
require image recognition techniques.

The FCA formats should be the easiest to handle. Unfortunately, there are many
different ways to encode a formal context or concept lattice. For example, a context
can be stored as a cross table or as a two column table; a concept lattice can be stored

35



extension I/O type scope Graphivz
required? comments

cxt

input/output

FCA format

only context
no

P. Burmeister's format

con Colibri format

slf Galicia format

bin.xml Galicia format

tuples tab separated values

Tupleware format 
(like csv, but tab instead of comma
+ additional first line) 
only two column files supported

csv comma separated values used by databases/spreadsheets

csc

FCA format

context + lattice

F. Vogt's Anaconda format 
(lattice not implemented)

cex no ConExp, lattice not yet implemented

csx no ToscanaJ, lattice not yet implemented

fig

output only

vector graphics
yes for lattice

xfig

tex latex to be used with B. Ganter's fca.sty, 
lattice not yet implemented

dot

graph format

only lattice

no Graphviz format

gml no

gxl

yes format availability depends
on local Graphviz installation

svg vector graphics

jpg

raster graphicsgif

png

ps
page description format

pdf

Fig. 1. Supported formats

36



as nodes and edges at a concrete level with coordinates or at an abstract level with-
out coordinates or purely as a graph or as partial information that can only be read in
combination with the context. Thus even though all of the more modern FCA formats
are XML formats, translating between formats is not just a simple XML transaction
because different information is stored. For example, if one XML format stores only
the context and a second format only the lattice, then the complete lattice needs to be
calculated for the conversion from the first to the second format.

As mentioned before, Graphviz is used to produce the graph layouts in FcaStone.
Because Graphviz has the ability to convert its “dot” format into a variety of formats (the
ones on the bottom third of Fig. 1), the conversion into these formats is automatically
provided without FcaStone having to do any work. The disadvantage is that FcaStone
does not have control over these file types. Graphviz produces slightly different results
in different settings. For example, one user reported problems with the xfig output of
FcaStone which have not been encountered in other installations of the software. If users
do not want to install Graphviz, an alternative is provided by the gml format which is
very similar to the dot format. Software exists that can produce graph layouts for this
gml format (such as yEd).

3 The representation of lattices in non-FCA graph formats

For interoperability between FCA and non-FCA software, it is essential to represent lat-
tices in graph formats. Since there is not any graph format that is universally accepted as
a standard by a variety of tools, it is difficult to decide which graph formats to convert to.
Currently FcaStone supports the non-XML formats dot and gml. In later versions XML
formats (GraphML, XGMML) may be added. It is difficult to represent FCA lattices in
these non-FCA graph formats because concept lattices use many labels per node (ob-
jects and attributes), which require special placement (below or above the node). Other
graph applications usually only have one label per node. Thus the placement of several
labels per node is a challenge.

The default in FcaStone is to concatenate all objects belonging to the same node into
one string which is then cut off after 30 characters. The same is done with the attributes.
If the -c option is used, the objects and attributes are ”clarified”, i.e., only at most one
object and at most one attribute of each node is represented. The -t option places the
objects of each node (and, separately, the attributes of each node) on top of each other.
This is only useful if the output file is of type fig or svg and the file is afterwards edited
in a vector graphics editor.

Two lattice designs are available5: Using the -b option, each node is represented as
a box (see Fig. 2). This is similar to the Graphviz files generated by Colibri. The objects
are listed in the bottom half, the attributes in the top half. The advantage of this format
is that the labels never overlap because Graphviz will adjust the box sizes depending on
the label sizes. The disadvantage is that this is not the standard FCA way of representing
lattices. Also, some boxes in Fig. 2 are too large and the text is too close to the left

5 The data for Fig. 2 and Fig. 3 and for a few other examples is available at http://www.
upriss.org.uk/fca/examples.html together with sample pictures produced with
FcaStone and Graphviz.

37



side. This is because in the particular Graphviz installation that was used to create this
diagram, Graphviz had problems with some fonts, which seemed to affect some output
formats more than others. Fig. 2 shows the default output. The output can be modified
by changing Graphviz’s attributes. But such modifications depend on the settings of the
specific computer that is used. Most users will find that they need to experiment with
their particular Graphviz installation in order to determine which combination of fonts
and output formats works best.

Fig. 2. An example of a layout with Graphviz (using data from Wille (1992)).

The other design (in Fig. 3) is more similar to traditional FCA lattices, with the
disadvantage that labels can overlap. Again, the default output is shown, which in this
case has very small fonts compared to the size of the lattice. These design choices are
based on what can be stored in Graphviz’s dot format. Just attaching two labels to a
single node is difficult in the dot format. A hint found on the Graphviz mailing list
suggests to attach an invisible self-edge to each node and then position the labels with
respect to this invisible edge. This “hack” appears to be the only current solution to the
labelling problem. Because the other vector and raster graphics formats are generated

38



by conversion from the Graphviz format, they all have the same layout. In the future,
we plan to let FcaStone generate some output files (such as svg) directly by using only
the graph coordinates, but not the rest of the file content, as provided by Graphviz. This
will give more freedom in the ways how the lattices can be represented.

Fig. 3. A second example of a layout with Graphviz (using data from Stahl & Wille (1986)).

The gml output of FcaStone uses yet another type of design because of the lack of
design options available with that format. In this format the labels are placed across the
nodes, which is not satisfactory. Therefore, gml output should only be used if the lattice
is afterwards manually edited. As far as we can see, gml has even fewer options for
placing labels in different locations. The trick of using invisible self-edges appears not
to be supported by this format.

In general, automatically generated lattices will probably never be as perfect as
hand drawn ones. Graphviz’s layouts are surprisingly good and in the case of Figs. 2
and 3 surprisingly similar to the published hand drawn ones. In both examples, some
of the Boolean sublattices are visible, even though the edges are not parallel and some
are even curved. If non-FCA tools are used for layout or editing, then one has to work
with whatever features for graphs are provided by such tools. If perfect lattice pictures
are desired, then traditional FCA tools should be used for editing. FcaStone’s primary
aim is to help users to produce the input formats for such tools. FcaStone’s facility for
lattice generation is more aimed at applications in which the lattices cannot be hand
drawn (such as automatically generated ones on webpages) or do not need to be perfect
(for example, because they are just used to provide a rough sketch of what the lattice
looks like).

39



4 Using FcaStone with other tools

This section discusses interoperability with non-FCA tools. There are many reasons
why such tools might be used. It may sometimes be necessary to edit lattices in ways
not supported by traditional FCA software. For example, if one just wants to insert
additional information for illustrative purposes, using traditional tools one would have
to convert the lattice to a raster graphics format, then upload it into a vector graph-
ics editor where one could add the additional information6. With FcaStone lattices can
be exported straight into a format that can be read by vector editors. Another reason
for using formats that can by processed by non-FCA tools is that other research com-
munities have developed algorithms that are relevant for lattices, such as graph layout
algorithms, and that FCA techniques are relevant for other communities. It would be
desirable if there was greater exchange between FCA and related communities.

The following tools can be used with formats generated by FcaStone (the URLs for
the tools are listed at the end of the paper):

– Text formatting
• Latex is a document mark-up and preparation system. The FCA latex output is

to be used with Bernhard Ganter’s fca.sty. At the moment FcaStone can only
generate latex files for contexts. In the future it is planned to also generate
lattices in latex format.

– Graph layout and editors
• Graphviz is an open source (CPL licence) graph layout program with a native

format called “dot”. It provides a variety of file conversion options. FcaStone
calls it in order to produce the lattice layouts. Graphviz comes with the XWin-
dows program ”dotty”, which can be used to edit the lattices (stored in the dot
format). A list of other tools that can be used with dot files, is available on the
Graphviz website.

• yEd is a closed source, proprietary, but free to download, Java-based graph
editor with GraphML as its native format. It is easy to install on Windows,
Mac OS X and Unix/Linux. It can import gml files. yEd has its own graph
layout functionality. FcaStone can produce gml files without Graphviz being
installed.

• Jgraph is an open source, proprietary, but free to download, Java-based graph
editor. Presumably it can read gxl files, but we have not tested this.

– Vector graphics editors
• Xfig is a Unix (Linux, Mac OS X) vector graphics editor with fig as its native

format. WinFig is a version that runs on PCs; jfig is platform independent.
Without the ”-g” option, FcaStone produces a fig file of the context. With the
”-g” option, the lattice is produced.

• Inkscape is a an open-source, vector graphics editor with svg as its native for-
mat. It can be downloaded and installed via sourceforge as binary versions for
Linux, Mac OS X, and Windows. Lattices in svg format can be uploaded into
Inkscape. Inkscape has a connector facility which would make it possible to

6 Some FCA software does support svg output, but, for example, in the case of ToscanaJ a
special plugin is needed.

40



edit graphs so that moving a node also moves the connected edges. Unfortu-
nately, the connections are stored using special Inkscape-only xml tags, which
do not correspond to the svg files that are generated by Graphviz. This could
be addressed in future versions of FcaStone.

• Dia is a GTK+ based diagram creation program for Linux, Unix and Windows
released under the GPL license. It is pre-installed on many Linux distributions.
A Windows executable is available. On other Unix and Mac OS X, it has to
be installed from source. Graphviz can convert dot files into dia files, if the
required libraries are installed.

5 FCA web applications

Ideally, it should be possible to use FCA tools on the WWW and in distributed envi-
ronments in order to allow FCA modelling of remote data sources, sharing of FCA files
across different client applications and improved tool interoperability in general. The
top half of Fig. 4 shows the current use of FCA software on the web by applications
such as Roget’s Thesaurus7. At the moment, webserver FCA functionality is mostly
restricted to either producing static graphics (raster graphics or svg), which are only
viewed but not changed by a user, or to producing FCA files which are then saved by
the user and uploaded into a stand-alone FCA application. On-line FCA software, such
as Jon Ducrou’s Surfmachine8, exists which allows to interactively explore lattices, but
does not allow to upload, download and save data. As far as we know there is no on-
line FCA software which has the same kind of functionality as the stand-alone tools
(ConExp, ToscanaJ, Galicia, etc) because it would be quite difficult to implement such
a tool in an efficient and secure manner. In our opinion a better solution is a distributed
approach where the server-side software focuses on producing data in an FCA format
while the client-side software performs the resource-intensive operations of the GUI
interface. It should not be too difficult to implement such an approach using the current
tools, if the FCA community would agree on a shared FCA interchange format.

An FCA interchange format in XML could be extended to provide web services
as shown in the bottom half of Fig. 4. Web services are a means for communication
between servers and clients using XML messages. An example of the use of web ser-
vices is a client interface that accesses information from an on-line search engine or
e-commerce website by sending messages to a web API on the server. This technol-
ogy is usually implemented using WSDL/SOAP or REST (which cannot be discussed
in the framework of this paper). Credo9 and SearchSleuth10 are two examples of FCA
front-ends which connect to the API of a search engine in this manner.

If there was an FCA interchange format, then FCA software, such as Roget, Credo
and SearchSleuth, could produce an XML file in addition to its current html output. This
XML file could then be read by any stand-alone FCA tool that supports web services
technology. Users could use the tool of their choice to draw and explore lattices which

7 http://www.roget.org/
8 http://www.kvocentral.org/software/surfmachine.html
9 http://credo.fub.it/

10 http://www.kvocentral.org/software/searchsleuth.html

41



web services or

or FCA file

client/browser

standalone tool

Current:

Proposed:

http request

html or graphics file

web services request

XML file

static graphics

views or saves file

then uploaded into

server produces

server produces

interactively

uses FCA file

client

XML file

Fig. 4. Using FCA applications over the web

are produced from data that resides on the server. It would become much easier to
develop new web-based FCA applications, because application developers would only
need to write programs that extract and present the data as formal contexts, without
having to worry about how to draw the lattices. The FCA algorithms would be provided
by existing software.

The challenge of creating an FCA interchange format resides as much in deciding
the content of the format as in obtaining an agreement from the developers and getting
the format accepted. It might be that a currently existing format could be used as an
interchange format if it was widely supported by FCA software. Part of the problem
is to decide how much information to include in the interchange format. For example,
should information about fonts and colours of the lattice diagrams be included? It is not
the purpose of this paper to make any concrete suggestions, but hopefully this paper will
help stimulating discussions about these issues. In the meantime, FcaStone attempts to
fill the gap and provide some rudimentary means for interoperability by file format
conversion!

URLs for the tools (FCA and non-FCA)

1. Colibri: http://www.st.cs.uni-sb.de/∼lindig/#colibri
2. ConExp: http://sourceforge.net/projects/conexp
3. Dia: http://live.gnome.org/Dia
4. FcaStone: http://fcastone.sourceforge.net
5. fca.sty: http://www.math.tu-dresden.de/ganter/fca
6. Galicia: http://www.iro.umontreal.ca/∼galicia

42



7. Graphviz: http://www.graphviz.org
8. Jfig: http://tech-www.informatik.uni-hamburg.de/applets/javafig
9. Jgraph: http://www.jgraph.com

10. Inkscape: http://www.inkscape.org
11. ToscanaJ: http://tockit.sourceforge.net
12. Winfig: http://www.schmidt-web-berlin.de/winfig
13. Xfig: http://www.xfig.org
14. yEd: http://www.yworks.com/en/products yed about.html

References

1. Chein, M.; Genest, D. (2000). CGs Applications: Where Are We 7 Years After the First ICCS?
In: Ganter; Mineau (eds.): Lecture Notes in Artificial Intelligence 1876, Springer, p. 127-139.

2. Dobrev, P. (2006). CG Tools Interoperability and the Semantic Web Challenges. Contributions
to ICCS 2006, 14th International Conference on Conceptual Structures, Aalborg University
Press.

3. Ganter, Bernhard (1984). Two basic algorithms in concept analysis. Technische Hochschule
Darmstadt, FB4-Preprint, 831, 1984.

4. Keeler, M.; Pfeiffer, H. (2006). Building a Pragmatic Methodology for KR Tool Research
and Development. In: Schaerfe, Hitzler, Ohrstrom (eds.), Conceptual Structures: Inspiration
and Application, Proceedings of the 14th International Conference on Conceptual Structures,
ICCS’06, Springer Verlag, LNAI 4068, p. 314-330.

5. Rudolph, S.; Krötzsch, M.; Hitzler, P. (2007) Quo Vadis, CS? On the (non)-impact of Concep-
tual Structures on the Semantic Web. In: Priss, Polovina, Hill (eds.), Proceedings of the 15th
International Conference on Conceptual Structures, ICCS’07, Springer Verlag, LNAI 4604, p.
464-467.

6. Stahl, J.; Wille, R. (1986). Preconcepts and set representation of contexts. In: Gaul & Schader
(eds): Classification as a tool of research.

7. Tilley, Thomas (2004). Tool Support for FCA. In: Eklund (ed.), Concept Lattices: Second
International Conference on Formal Concept Analysis, Springer Verlag, LNCS 2961, p. 104-
111.

8. Wille, Rudolf (1992). Concept Lattices and Conceptual Knowledge Systems. Computers
Math. Applic., 23, 6-9, p 493-515.

43




