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Abstract 
Alzheimer’s Disease (AD) is a major disease associated with Dementia and a new case of AD is 
discovered every three seconds. Research proved that handwriting can be used to assess the health 
status of a subject. Writing and drawing tasks with different level of complexity were developed and 
inspected so far. At the same time there is evidence that not all the tasks have similar importance to 
evaluate the health status of patients. In this work a handwriting task selection is proposed based on the 
analysis of patterns of difficult cases (users) to be classified. The handwriting task selection was 
performed on the dataset “DARWIN” which includes 25 on-line recorded handwriting tasks 
(represented by a common set of parameter features). A wide set of classification models have been 
used to identify common difficult users: Random Forest (RF), Logistic Regression (LR), K-Nearest 
Neighbor (KNN), Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), Bayesian 
Networks (BN), Gaussian Naïve Bayes (GNB), Multilayer Perceptron (MP) and Learning Vector 
Quantization (LVQ). The approach also highlighted that the group of selected tasks results to be 
composed with different type of writing and drawing tasks, and different level of complexity, simpler 
and complex tasks. Hence, it is showed that in order to discriminate healthy subjects from subjects 
suffering Alzheimer Disease it is necessary to use different tasks considering the type of task and the 
level of complexity 
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1. Introduction 

Progressive brain cells destruction manifest itself affecting memory, thinking, behavioral and emotional skills. These 

symptoms are referred as Dementia [1], [2]. Largely Dementia evolves becoming more severe as Alzheimer’s Disease 

(AD) or Parkinson’s Disease (PD) or Lewy Body Dementia. About the 60-80% of peoples suffering Dementia develop 

AD [2]. Alzheimer’s Disease causes a disruption of the brain cells and nerves by abnormal proteins. The number of 

people around the world that are suffering from Alzheimer disease is incrementing estimating about of a new case every 

three seconds, accordingly with the World Alzheimer Report [1].  

The research is moving forward looking at application of new techniques to accurately detect Dementia, and disease 

related to Dementia as AD, PD etc., using machine learning techniques [3], [4]. Considering that Dementia severity is 

classified in three different stages (early, mild and late), the focus of research in Dementia detection is on the early 

stage, in order to assess the health status of the patient timely to help clinicians to prepare and assign appropriate medical 

treatment [3], [4].  

The assessment of the health status of a patient can be performed by using a wide range of data: images of handwriting 

tasks as draw and write text (offline handwriting) [5], time-series related to hand movements while performing 

handwriting tasks (online handwriting) [3], [6], videos of gait [7], audio from breath and cough [8], audio from speech 

[9] etc.  
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In this work, the focus is on the online handwriting [3], [6]. The analysis of the handwriting results to be crucial due 

the links between the performing of handwriting and the Dementia diseases [10]. Indeed, in literature several 

handwriting tasks are used in order to assess the patients’ health status [11]. Writing and drawing on digital tablets are 

action here referred as handwriting tasks, tablets capture the actions during their realization process. In this way it is 

possible to use raw data as time-series of pen-tip x-y coordinates on the digital tablet’s surface, pressure and other 

information as azimuth and altitude. Also, in-air movements are collected if the pen tip is at most at one centimeter from 

the digital tablet surface (the maximum distance depends on the specific device) [10], [11]. The previous described raw 

data can be enhanced using the so called “function features”, extracted directly from the used device or computed as 

time function (as displacement) [10]. 

The handwriting tasks can be divided in three mainly categories: simple writing, simple drawing and complex tasks. 

The three categories differentiate in the amount of cognitive loads and the motors skills involved in the action [10]. In 

this way, several amount of cognitive loads (from the lightest as drawing straight lines to the heaviest as copying details 

of bank check) and the motors skills are evaluated and used to classify subjects’ health status[10]. 

Handwriting tasks could be synthetized using features extracted from the time-series raw-data. The result of such 

features extraction is that each handwriting task is described a fixed-length vector, hence a fixed number of information 

are obtained (as the task duration, number of strokes etc.). These features are called “parameter features” [10]. 

An open issue in this field is the selection of the most profitable tasks to be used for classification aims. In this work, 

a classification results-based task selection is performed in order to evaluate handwriting tasks in classification 

performance. Specifically, the proposed methodology is based on identifying common patterns from the handwriting 

tasks analysis of classification results and analyzing the relationship of these patterns with the dataset. In this way, best 

tasks are selected.  

The work is organized as follows: Section 2 sketches the related work. Section 3 explains the methods and pre-

processing techniques. The dataset is discussed in Section 4. Experimental Set-Ups is explained in Section 5. 

Benchmarking results and discussion is presented in Section 6. Conclusion are explained in Section 7. 

2. Related Works  

Handwriting is used in a wide range of scenarios from the recognition of the handwriting, drawing or script to the health 

status assessment by handwriting analysis, including early diagnosis, and to the writer verification and identification 

[11]. 

Cilia et al. [6] proposed different machine learning algorithms comparing them each other in two different setups: 

firstly, training the algorithms on the entire dataset (all tasks) and secondly creating task-specific classifier and then 

combing task-specific classifier at decision level. For the last set up, authors proceed to combining the best task-specific 

classifier in order to fuse them to enhance classification performance. Authors present a dataset of neurodegenerative 

disease, called “DARWIN” [6]. Also in this work, the “DARWIN” dataset [6] was used in order to analyze tasks 

performed by subjects for comparison aims because in [6] it is also presented a kind of task selection based on the 

classification performance. 

In particular, in [6] a first way to perform selection was a combination of the all task-specific classifier in a majority 

voting approach. The second way was to select the top best classifier for each task and then combining them in a majority 

voting approach. The third way was based on the analysis of the task-specific classifiers performance. Specifically, a 

Friedman test-based ranking was computed about the classification models. Then, the task-specific classifiers were 

grouped incrementally from the top to the bottom of the ranking and used with the majority voting approach.  

Such approaches do not take into account the tasks, but the performance of machine learning algorithms, in other 

words, the selection is performance-based. Meanwhile, in this work an extensively analysis of the classification results 

is performed in order to highlight common pattern along different users and then to select tasks. For this reason, the 

results used in this work for a fair comparison are them from the experiments performed using all tasks.  

In this work “task” is referencing the group of features related to an handwriting task performed by a person. The 

group of features is the same for each task performed by a person. Hence, “selection” is referencing the selection of 

“task” in order to enhance the performance of machine learning algorithms. The proposed “task selection” is performed 

basing it on the analysis of classification results of machine learning models in order to find pattern to enhance the 

selection, and the related classification performance, results. The proposed method is presented to overcome the "curse 

of dimensionality" problem present in the DARWIN dataset [6]. Hence, the comparison of the performance is done with 

the results in [6]. 

3. Methods 

The work is based on the protocol represented in Figure 1. Several machine learning algorithms were considered in 

order to inspect their common behavior and to identify difficult users to be classified. Successively handwriting task 

 
 



selection was performed. Hence, in this section the machine learning algorithms are firstly explained. Secondly, the 

statistical and similarity methods to perform task selection are explained. 

 

3.1. Machine Learning Algorithms (Baselines models) 

In this work a user is represented by a features vector belonging to a set of tasks. The following Machine Learning 

algorithms have been used to classify each user as a Healthy or a Patient: 

• Decision-Tree (DT) is an algorithm based on the use of tree data-structure and it is suitable for classification 

task. Hence, the built tree is composed by nodes and leaf. Nodes represent features tests, meanwhile leaves represent 

class label. The result is a classifier able to predict the class label for the new input data.  

• Random Forests (RF) is an ensemble algorithm. This means that the final model is composed of an ensemble 

of weak learners. In this case, the weak learners are decision trees. The classification is obtained by taking the class 

with the highest mean probability across the forest.  

A different decision-tree is built introducing randomness while building the classifier, in order to decrease the variance 

of the forest classifier. The randomness is introduced using firstly the bagging technique and then the Random 

Subspaces technique. 

• Logistic Regression (LR) is a classifier algorithm based on the use of the logistic function. The logistic 

function is used to model the class probabilities.  

• K-Nearest Neighbors (KNN) is an algorithm used in both supervised and unsupervised methods. In this work, 

the KNN is used in a supervised manner in order to find the k data samples nearest to the new input. How much data 

are near to each other is computed using distance functions such as the Euclidean function. After the algorithm found 

the k nearest data to the input, the class is predicted using the majority voting principle: the class with a major occurrence 

in the neighborhood is the class predicted. 

• Linear Discriminant Analysis (LDA) is an algorithm used for dimensionality reduction, data visualization, and 

classification. In this work, it was used as a classifier in order to build linear boundaries to classify data. 

• Gaussian Naïve Bayes (GNB) is the implementation of the Naïve Bayes assuming that the likelihood is 

Gaussian. This algorithm is based on the Bayes Theorem whit the assumption that given a class, every feature pair is 

conditional independent. 

• Support Vector Machine (SVM) is an algorithm based on the concept of decision planes. This algorithm aims 

to build hyperplanes in feature spaces, that can linearly separate two classes. The hyperplanes are computed by finding 

the maximum margins between the nearest training data and the hyperplane. 

• Multi-Layer Perceptron (MLP) is an algorithm based on the use of stacked “neurons”. Specifically, neurons 

are the minimal computational element. Each element is composed by the application of, the so-called, activation 

function to the weighted combination of the input data features. The most famous activation function are: sigmoid, 

SoftMax, hyperbolic tangent, and ReLU. 

The neurons can be stacked in different layers, and, for each layer, a different number of neurons could be used.  

The training is performed using the back-propagation algorithms that modify the weights of the combination. 

• Learning Vector Quantization (LVQ) is an algorithm based on the use of prototypes. Specifically, the set of 

prototypes (called also neurons) is the solution for the classification. A prototype is an array of the same dimension of 

the data point. Hence, the prototypes are in the feature spaces. Each prototype belongs to one of the classes, this leads 

to a different number of prototypes for each class. 

The algorithm consists of: for each data point, find the nearest prototype based on the distance function; then adjust the 

Figure 1 Experimental Protocol 
Representation. 



position of that prototype accordingly with the class of the data point: moved near if the class is equal between data and 

nearest prototype, else moved away. 

3.2. Task selection methodology 

In general, the aim of task/features selection is aimed at identifying the most profitable tasks/features able to 

maximize performances. At the same time, it has been showed that there is not a common set of tasks/features able to 

be optimal for every users. Based on this consideration, in this work task selection is performed according to an analysis 

based on the most difficult users to be classified. In other words, for each classifier a list of misclassified users is 

identified: 

𝑀𝑐 = {𝑢𝑖|𝑜𝑖
𝑐 ≠ 𝑙𝑖}, 

With: 

1. 𝑖 ∈ {1,2, … , 𝑁}, being N the users within the dataset; 

2. 𝑐 ∈ {1,2, … , 𝐶}, being C the different classifiers considered (see the previous section); 

3. 𝑙𝑖 = {
𝐻𝐶
𝐷

𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑎𝑏𝑒𝑙 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠) 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑢𝑠𝑒𝑟; 

4. 𝑜𝑖
𝑐 = {

𝐻𝐶
𝐷

𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑢𝑠𝑒𝑟. 

Then, all 𝑀𝑐 subsets are intersected to identify the subset of users misclassified by all classifiers: 

𝑀 = 𝑀1 ∩ 𝑀2 ∩ … ∩ 𝑀𝐶 , 

 This subset is here referred as “common misclassified individuals”. Successively the similarity of features vectors 

of these individuals is evaluated to highlight if the subset is composed of similar individuals and thus to identify clusters. 

To the aim, the cosine similarity was adopted for the fast interpretation of the results. It is a similarity measure between 

two vectors of the same dimension: in our case a vector identifies a user. Considering two vectors the cosine similarity 

computes the cosine of the angular between the two input vectors. 

This measure ranges between [-1,1], where 1 indicates that the vectors are equal, -1 indicates the vectors are opposite 

and 0 indicates that vectors are orthogonal.  

The refinement of the analysis was possible by looking for similarities between the “common misclassified 

individuals”, referred as M, and the remaining subjects. In order to clearly define the remaining subjects, let use DD to 

identify the dataset composed by N subjects, then the remaining subjects are the subjects in the dataset DD but not in 

the set of “common misclassified individuals” M i.e., the remaining subjects are referred as 𝑅 =  𝐷𝐷\𝑀.  

In order to compare similarities, once all the similarities were computed, the similarities were subject-based and 

class-based divided. This means that for each subject in M, the similarity with subjects in R are divided considering the 

correct class 𝑙𝑖. Mathematically, the notation are: 

𝑆𝑖
𝐻𝐶 = {𝑐𝑜𝑠𝑖𝑛𝑒(𝑢𝑖 , 𝑢𝑘) | ∀ 𝑢𝑘 ∈ 𝑅 𝑎𝑛𝑑 𝑙𝑘 = 𝐻𝐶 𝑎𝑛𝑑 𝑢𝑖 ∈ 𝑀} 

Indicating all similarities between the i-th subject in M and all subjects in R that have the correct class as HC, and: 

𝑆𝑖
𝐷 = {𝑐𝑜𝑠𝑖𝑛𝑒(𝑢𝑖 , 𝑢𝑘) |𝑢𝑘 ∈ 𝑅 𝑎𝑛𝑑 𝑙𝑘 = 𝐷 𝑎𝑛𝑑  𝑢𝑖 ∈ 𝑀} 

Denoting all similarities between the i-th subject in M and all subjects in R that have the correct class as D. 

Since the high cardinality of 𝑆𝑖
𝐻𝐶 and 𝑆𝑖

𝐷, because of the amount of subjects in both classes, the analysis was carried 

out using a statistical method called One-Way ANOVA. In this way, the information carried out was about the statistical 

difference between the means of the two set of similarities, considering also the variance intra- and inter- the two sets. 

Such analysis was applied separately for each subject in M. 

One-Way ANOVA assume as null hypothesis that the means of the two groups are statistically equal. Hence, the 

aim is to find the F-value to check if such value is higher or lower than the critical F-values defined assuming a 

significance level. Practically, the application of the analysis was carried out applying the following steps: 

1. Computation of the overall mean:  let 𝑆𝑖
𝑇𝑂𝑇 = 𝑆𝑖

𝐻𝐶 ∪ 𝑆𝑖
𝐷  , hence 𝑚𝑒𝑎𝑛𝑖

𝑇𝑂𝑇 =  
∑ 𝑐𝑠𝑖𝑐𝑠𝑖∈𝑆𝑖

𝑇𝑂𝑇

|𝑆𝑖
𝑇𝑂𝑇|

   

2. Computation of the mean for each set: 𝑚𝑒𝑎𝑛𝑖
𝐻𝐶 =  

∑  𝑐𝑠𝑖𝑐𝑠𝑖 ∈𝑆𝑖
𝐻𝐶

|𝑆𝑖
𝐻𝐶|

  and 𝑚𝑒𝑎𝑛𝑖
𝐷 =  

∑  𝑐𝑠𝑖𝑐𝑠𝑖 ∈𝑆𝑖
𝐷

|𝑆𝑖
𝐷|

 

3. Computation of the sum of squared differences of mean between groups: 𝑆𝑆𝑏𝑔 =  ∑ (𝑚𝑒𝑎𝑛𝑖
𝑙 −𝑙 ∈{𝐻𝐶,𝐷}

𝑚𝑒𝑎𝑛𝑖
𝑇𝑂𝑇)

2
∗ |𝑆𝑖

𝑙| 

4. Computation of the variance within groups: 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛 =  ∑ ∑ (𝑐𝑠𝑖
𝑙 − 𝑚𝑒𝑎𝑛𝑖

𝑙)
2

𝑐𝑠𝑖
𝑙 ∈𝑆𝑖

𝑙𝑙 ∈{𝐻𝐶,𝐷}  



5. Computation of between and within group degrees of freedom:  

o Between-group degree of freedom: 𝑏𝑔 = 𝑁° 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 − 1. In this case, 𝑏𝑔 = 2 − 1. 

o Within-group degree of freedom: 𝑤𝑔 =  𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 –  𝑁° 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 =  N −  2  

6. Computation of the mean square between and within the group: 𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 =
𝑆𝑆𝑏𝑔

𝑏𝑔
 and 𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛 =

𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛

𝑤𝑔
 

7. Computation of the F-Statistic : 𝐹 =  
𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛
  

8. Finally, let consider the degree of freedom 𝑏𝑔 and 𝑤𝑔, and the F-distribution. From 𝐹(𝑏𝑔, 𝑤𝑔), it was computed 
the critical F-values 𝐹𝑐𝑟𝑖𝑡 for a fixed significant level, in order to check if using the F-Statistic F the null 
hypothesis is rejected or not.  
The null hypothesis is rejected when 𝐹 > 𝐹𝑐𝑟𝑖𝑡. 

Using one-way ANOVA, it was highlighted whether the similarity groups calculated for each of the subjects in M 

were different and, controlling for group means, which of the groups the subject was most similar to. 

Considering that each subject is represented with a feature vector and that each feature vector is the concatenation 

of the same type of features computed for different writing tasks, the same statistical analysis, previously described, 

was repeated by dividing the feature vectors according to the reference task. In this way, it was possible to obtain, for 

each writing task and for each subject in M, the information regarding which class the subject was most similar to.  

Using this information it was possible to perform a task-selection based on the similarity of subjects in M with the 

classes. Specifically, the tasks selected were those where at least one of the subjects in M was most similar to the correct 

class. 

4. Dataset and experimental set-up 

4.1. Dataset 

The “DARWIN” dataset has been used [6]. “DARWIN” is the abbreviation for “Diagnosis AlzheimeR WIth 

handwriting”. Hence, the dataset is composed by data related to handwriting tasks. In particular, a set of 174 subjects 

were examined. Such set is composed by 85 healthy peoples, that compose the Health Control group and were labelled 

with “H”, and 89 subjects that suffer of Alzheimer, that were labelled with “P”. The evaluation of the Alzheimer Disease 

severity was performed using clinical tests such as the Mini-Mental State Examination (MMSE), the Frontal Assessment 

Battery (FAB), and the Montreal Cognitive Assessment (MoCA). In order to build such dataset, subjects under 

medication or too compromised were excluded and a further selection of subjects was done in order to have two groups 

with similar statistical distribution of age, gender, type of work and educational level. 

Each subject performed 25 handwriting tasks, drawing or writing. The performed tasks are showed in Table 1, and 

they was collected accordingly to the protocol described by Cilia N et al in [12] that consist of in performing each task 

on a paper sheet, an A4, placed on a digital tablet (a WACOM Bamboo Folio) in order to record the raw signal from 

the pen such as coordinates x and y, movements of the pen touching the paper sheet and movements near to the surface 

(in-air movements of the pen tip) and timestamps. Instructions were printed on the paper sheets and also provided by 

the instructor to ensure that the subjects performing the experiments understood the requirements. 

Then, from each handwriting task, the same series of 18 features is extracted. The extracted features are related to 

the time spent to complete the task (total time); such time were also divided in on-paper time and in-air time; the average 

speed, acceleration and jerk computed separately for on-paper movements and in-air movements; mean and variance of 

the pressure; the Generalization of the Mean Relative Tremor (GMRT), which consists of the average of the sum of the 

differences between the i-th point and its d-th predecessor, firstly divided on-paper and in-air values, and the averaging 

the previous values; the maximal extension about x and y axis; and finally the Dispersion Index which consists of 

dividing the paper sheet in fixed-size boxes (e.g. 3x3) then counting how many boxes are covered by the handwriting 

traits and successively dividing that number with the total amount of the boxes; in this way, the coverage ratio of the 

paper sheet is computed. 

For each subject, all the groups of features were concatenated obtaining vectors composed by 450 elements.  

Table 1 Handwriting task performed by subjects in order to diagnose if they are suffering of Alzheimer or not. In the 
table there is a code to identify a task and its description. 

Code Task Description 

1 Write the signature 

2 Draw a horizontal line to join two points, continuously four times 

3 Draw a vertical line to join two points, continuously four times 



4 Redraw a circle with a diameter equal to 6 cm, for four times continuously 

5 Redraw a circle with a diameter equal to 3 cm, for four times continuously 

6 Copy letters such as the “l”, “m” and “p” 

7 Copy the same letters of task 6 on an adjacent row 

8 Write as a sequence for four times the letter “l” in cursive 

9 Write as a sequence for four times the bigram “le” in cursive 

10 Copy a specific word, “foglio” that means “sheet” in Italian 

11 Copy a specific word, “foglio” that means “sheet” in Italian, above a line 

12 Copy a specific word, “mamma” that means “mom” in Italian 

13 Copy a specific word, “mamma” that means “mom” in Italian, above a line 

14 Memorize and rewrite words “telefono”, “cane” and “negozio” (Italian version 

for “telephone”, “dog” and “store”) 

15 Copying the word “bottiglia” (Italian translation of “bottle”) in reverse 

16 Copying the word “casa” (Italian translation of “home”) in reverse 

17 Copy six of regular, non-regular and non-words into the appropriate boxes. 

Specifically, “pane”, “mela” (respectively “bread” and “apple”) as regular words, 

“prosciutto”, “ciliegia” (respectively “ham” and “cherry”) as non-regular words, 

finally “taganaccio” and “lonfo” as non-words. 

18 Write the object’s name shown in a picture (specifically, it was shown a chair) 

19 Copying the fields of a postal order 

20 Write the simple sentence dictated 

21 Redrawing a complex shape 

22 Copy a phone number 

23 Write the dictated phone number 

24 Draw a complete clock, with all hours, and put hands at 11:05 (Clock Drawing 

Test) 

25 Copy a text paragraph. The paragraph has 110 characters accordingly with 

literature  

4.2. Experimental Set-ups 

The experimental pipeline is similar to the original one on the reference dataset for comparison aims [6]. More 

specifically, the dataset was randomly shuffled and divided into training and testing. This division was done 20 times. 

In this way, it is possible to alleviate the effects of the bias introduced by the randomness of the shuffling and the split. 

Each classifier was optimized on the training split to find the best hyperparameters using the grid search with a 5-fold 

cross-validation. The set of parameters to be optimized is equal to the set of parameters indicated in [6] and that set of 

parameters, along with the range of values in which to find the optimal solution, is represented in Table 2.  

Table 2 For each classifier indicated the hyperparameters and the explored range of values.  

Classifier Parameter Min Value Max Value Step 

Random Forest 

Max Depth 3 10 1 

N. Estimators 100 300 50 

Bootstrap True False  

Min Samples Split 2   

Min Samples Leave 1   

Logistic Regression C 0.001 5 0.005 

KNN B Neighbors 5 15 1 

Linear Discriminant Analysis Solver SVD   

Gaussian Naïve Bayes 
Priors 2   

Var. Smoothing 1e-9   



Support Vector Machine 

Kernel Radial Basis Function, Linear   

C 0.5 1.5 0.1 

γ 0.5   

Decision Tree 

Criterion Gini, Entropy   

Max Depth 2 10 1 

Min Samples Split 2 5 1 

Min Samples Leaf 2 20 2 

Max Leaf Node 2 20 2 

Multi-Layer Perceptron 

Activation ReLu, Logistic, TanH   

Hidden Layer Size 8 20 1 

Learning Rate Init. 0.05 0.4 0.05 

Max Iteration 1000   

α 0.0001   

Learning Vector Quantization 

Prototype for classes 1 50 5 

β 2 50 5 

Max Iteration 2500   

 

After that the best hyperparameters are found, the model is trained on the training split with the best hyperparameter, 

and then the classifier is tested. The metrics for each run of the experiments are averaged. The experimental set-setup 

explained is represented in Figure 1. 

5. Results and Discussion 

5.1. Preliminary results 

The first step has been the evaluation of the different classifiers to the entire set of available tasks. This is the baseline 

for further analysis as well as the state-of-art on the DARWIN dataset [6]. The baseline values are reported in Table 3. 

Table 3 Classification accuracy, specificity and sensitivity presented in [6] This results are used as baseline. 

 RF LR K-NN LDA GNB SVM DT MLP LVQ 

Accuracy 

[6] 0.8829 0.8186 0.7143 0.7214 0.85 0.79 0.7857 0.8314 0.7743 

Specificity 

[6] 0.8618 0.7941 0.8941 0.7265 0.7912 0.8059 0.7441 0.8176 0.8735 

Sensitivity 

[6] 0.9028 0.8417 0.5444 0.7167 0.9056 0.7750 0.8250 0.8444 0.6806 

 



An in-depth analysis, as described in par 3.2, of the results showed that there is a subset of individuals who are 

misclassified at least once during the execution of the experiments from all the used classifiers. For the sake of clarity, 

detail how the subset of common misclassified individuals was identified is explained: by analyzing the predictions of 

each classifier for each of the 20 runs of the experiments, a subset of individuals misclassified by a specific classifier 

was identified. Then, all subsets of individuals misclassified by the specific classifier were intersected to identify the 

subset of common individuals misclassified by all classifiers. In this case  

𝑀𝑐 = {2,7,41,42,45,63,74} is the set of common misclassified users. The range of cosine similarity values is [0.8175, 

0.8946]. This result suggests that the individuals are remarkably similar, this also reflects the common behavior of the 

different classifiers seems to be justified. The values are represented in Figure 2. 

Furthermore, the subset of commonly misclassified individuals results to be composed only of patients. This means 

that these patients are (miss)-classified as healthy subjects by all the classifiers. This information leads to the hypothesis 

that the commonly misclassified individuals are patients more similar to the healthy class than the patients. In order to 

demonstrate that hypothesis, further analyses are performed comparing the cosine similarity between the commonly 

misclassified individuals and the patient’s class and healthy class.  

The healthy class results to have similarity in range [0.80 – 0.9275]. Meanwhile, the similarity range with all other 

patients is in the range [0.6764 – 0.9159]. The values are reported in  

Table 4.  

Table 4 Cosine Similarity between the common misclassified individuals and the healthy and patients’ classes. In the 
table is also reported the number of individuals for both classes. 

 N° Individuals Min Max 

Patients 81 0.6764 0.9159 

Healthy 85 – full class 0.80 0.9275 

 

In order to refine such analysis, the One-Way ANOVA Test was performed as described in par. 3.2. In addition to 

the analysis of the distribution, a comparison between the means of both classes is performed to understand which class 

is more similar to each of the commonly misclassified individuals. The results are all synthesized in Table 5. 

Table 5 One-Way Anova F Statistics, P Values, and means of similarity distribution separate are reported. As last row, 
there is the evaluation of such values. As it is noticeable, all the individuals are more similar to healthy class than the 

patients’ class which is their real class 

ID misclassified 

individuals 
2 7 41 42 45 63 74 

F Statistic 72.583 80.198 48.022 52.423 51.976 64.453 41.255 

Figure 2 Cosine Similarity matrix. The similarity was 
calculated only for the upper triangle of the matrix and 
avoiding the computation for the diagonal since the 
diagonal should have all values equal to 1.00. 



P Value 
9.3063e-

15 

6.6378e-

16 

8.8757e-

11 

1.5867e-

11 

1.887e-

11 

1.7221e-

13 

1.3517e-

09 

Means of 

similarity 

with: 

Patients 0.82357 0.81192 0.84661 0.82499 0.83452 0.83658 0.82622 

Healthy 0.8599 0.8605 0.87797 0.85722 0.86502 0.87073 0.86859 

 

Also the statistical analysis of the distribution of the similarity confirms the results of the classifiers. Moreover, the 

statistical analysis confirms the hypothesis that the common misclassified individuals are patients more similar to 

healthy class than patients’ class.  

In order to perform tasks selection, the previous statistical analysis was extended to the task level. This means that a 

table similar to Table 5 is obtained for each task and based on these tables, a "task selection" was performed by choosing 

the task for which at least one of the commonly misclassified patients is most similar to the “patient” class. For the sake 

of readability, only the final selected tasks are here reported: 

• task 2 (i.e., joint two points with a horizontal line, continuously four times); 

• task 17 (i.e., copying six words in appropriate boxes);  

• task 24 (i.e. drawing a clock with all hours and hands at 11:05);  

• task 25 (i.e., copying a paragraph).  

The selected tasks are classified, accordingly to [10]:  

• task 2 is a simple drawing task, because it is suitable for the evaluation of simple motor performance; 

• task 17 is simple writing tasks, because the used six words allows to capture information related to motor 

processes and planning skills, moreover the planning skill involves the identification of the proper target box. Another 

interesting issue is that words are composed with letters that contains similar movement patterns (“e”, “l”), with letters 

that needs to lift the pen to complete the word (“t”, “i”). Furthermore, using more than one words allows to capture the 

fatigue effects on handwriting;  

• task 24 and task 25 as complex tasks: motor, cognitive and functional skills are involved, indeed the subject 

have to respectively remember the clock shape or read the text, have to search and find the right place to write and then 

the subject have to write the content.  

Given the above, it is noticeable that the group of selected tasks is composed by different types of tasks, indeed there 

are drawing and writing tasks. Moreover, the tasks are of different complexity from the simpler, task 2, to the complex 

ones, task 24 and 25. Hence, based on the dataset and on the experiments, it is possible to highlight the following: firstly, 

there is not an unique task that allows to perfectly discriminate healthy subjects to subject that suffer of Alzheimer 

Disease; secondly, the selected tasks are of different type and complexity, hence to evaluate the healthy status of a 

patients a combination of different task is needed. 

5.2. Results after Task-Selection 

Finally, the experimental pipeline above described (see fig. 1) was applied using the information of the selected 

tasks: results are reported in Table 6. 

Table 6  Accuracy, specificity, and sensitivity of the experiments performed on the selected tasks (2, 17, 24, and 25) 
and the accuracy, specificity, and sensitivity presented by the authors in [6]. The bold results are better comparing the 

results presented in [6]. 

 RF LR K-NN LDA GNB SVM DT MLP LVQ 

Accurac

y [6] 
0.882

9 

0.818

6 
0.71

43 

0.721

4 
0.85 0.79 

0.785

7 

0.831

4 

0.774

3 

Specifici

ty [6] 
0.861

8 

0.794

1 
0.89

41 

0.726

5 

0.79

12 

0.80

59 

0.744

1 

0.817

6 

0.873

5 

Sensitivi

ty [6] 
0.902

8 

0.841

7 
0.54

44 

0.716

7 

0.90

56 

0.77

50 

0.825

0 

0.844

4 

0.680

6 

Accurac

y 
0,824

3 

0,835

7 

0,74

86 

 

0,765
7 

0,77 

0,80

43 

 

0,725
7 

0,712
9 

0,835
7 



Specifici

ty 
0,814

3 

0,864

5 
0,96

01 

0,793

0 

0,85

51 

0,83

17 

0,709

3 

0,722

5 

0,851

5 

Sensitivi

ty 
0,838

2 

0,815

3 
0,57

78 

0,746

8 

0,70

5 

0,78

76 

0,741

1 

0,722

8 

0,821

7 

 

It is noticeable that K-NN, Linear Discriminant Analysis and Support Vector Machine are the three algorithms that 

have major benefits from the task selection. Indeed, all the three metrics of accuracy, specificity and sensitivity are 

greater than the same metrics for the same classifier using all the set of available tasks [6].  

In addition, the accuracy of Logistic Regression (LR) and Learning Vector Quantization (LVQ) has improved 

significantly. These improvements are accompanied by the improvement of specificity (an increase of about 7 percent) 

of LR and sensitivity (an increase of about 14 percent) of LVQ. Together, the sensitivity of LR and specificity of LVQ 

decreased by about 3% but remained above 80%. 

Gaussian Naïve Bayes (GNB) specificity is the only improved metric, while the other metrics are decremented from 

the results presented in [6]. Considering that the task selection was performed by taking into account the commonly 

misclassified individuals and that the individuals are all patients, the specificity of GNB is improved accordingly with 

the proposed task selection. 

In addition, for every model that improves on at least one metric, specificity is higher than sensitivity. This means 

that the models, using only selected tasks, are better able to detect whether a patient has Alzheimer's disease. 

6. Conclusion 

In this paper, a handwriting task selection methodology is proposed based the analysis of classification results. The 

analysis of classification results is based on statistical analysis and similarity analysis in order to find pattern in results.  

The experiments were repeated 20 times to ensure classification results and to mitigate the effects of the randomness in 

the data due to the shuffling and split process. Indeed, at each repetition the dataset was randomly shuffled and the split 

in train and test subsets. The classifier models were optimized on the training set using a grid-search 5-fold cross 

validation, in order to evaluate the optimal hyperparameters values given a set of parameters and their range of values 

to evaluate. Furthermore, the experiments described above were performed on the entire dataset (using all the tasks and 

related features set) and on the group of selected tasks. 

The analysis of the experimental results on the entire dataset had highlighted a subgroup of patients (subjects that 

suffer Alzheimer Disease) miss-classified at least once as healthy from all the classifiers (called commonly misclassified 

individuals). This is a very interesting results, in fact these could be early cases. Further analysis shown that this 

subgroup of patients results to be more similar to the healthy subject.  

Hence, an analysis at task level was performed. From such analysis a subgroup of tasks was selected. The selected 

tasks are the tasks where at least one patients of the commonly misclassified individuals results to be more similar to 

the patients class. 

The proposed methodology results in improved classification performance of several machine learning models. In 

particular, for the K-NN, Linear Discriminant Analysis, and Support Vector Machine models, a complete improvement 

was obtained on all performance metrics used. In addition, due to this methodology, the specificity of the previous 

models, together with Logistic Regression and Learning Vector Quantization. Hence, the models are more capable of 

identifying individuals with Alzheimer's disease using only a small number of “tasks”. 

The selected tasks are of different levels of complexity, from simple task to complex task, and they are of different 

type, writing and drawing tasks. It is possible to conclude that it is necessary to use a group of different tasks in order 

to evaluate the healthy status of a subject.  

Even if results have revealed that the approach is able to reveal early cases of patients miss-classified by the different 

classifiers, and even if performances are improved in many cases adopting the proposed schema, it is clear that more 

research is needed. Indeed, future improvements could be performed using the kinematic theory. Such approach is 

widely used in many domains as in fall detection [13], human activity recognition [14], and surely in handwriting [15]. 

Furthermore, considering the use of features instead of time-series, it could be possible build a client-server system in 

order to provide such application worldwide. Obviously, data should be protected following SoA techniques [16]–[21]. 
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