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Abstract 

In Machine Learning, new architectures are continually proposed, making difficult to evaluate which 
configurations better fit specific fields and tasks. The most reliable way to overcome this issue is to test 
them using the same data and parameters. In this work, five state of art deep neural network architectures 
has been performed in a promising field of health technology: the breath analysis. In particular it is 
reported that standard convolutional neural networks exploiting inductive bias, do not perform as well as 
the AUCO ResNet, an architecture designed for audio classification. In addition, the Vision Transformer 
model need lots of data to learn patterns showing the limitation of this technique even when transfer 
learning is performed.  
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1. Introduction 

Three respiratory diseases were entrenched in the top 10 causes of death in the world. The chronic 
obstructive pulmonary disease (COPD) alone kills 3.2 million people every year [1] .COVID19 pandemic 
has remined us how vulnerable we are as a community. However, it has also been the opportunity to 
demonstrate the potential of digital solutions as a fundamental support for the healthcare system. 
Improving early detection is considered an essential step to reduce the burden of respiratory diseases. 
[1] However, accessible, affordable, and reliable tools must be designed for behavioral biometric 
analysis. [2] Machine Learning (ML) and Smart Sensors can be valuable resources in this matter, but 
the research must consider the practical implementations, to avoid wasting time and resources 
developing solutions which performance are not reproducible in the clinical environment. [3] 
Benchmarks are of paramount importance when it comes to test different models under the same 
conditions. This allows a fair comparison of their accuracies and provides insights into the strengths 
and weaknesses of each model. This study aims to provide an overview of five architectures applied 
to a database of breath sounds. Mostly of them have been originally developed for computer vision 
tasks, thus a filter converting sounds in images (i.e spectrograms) has been applied. Two different 
tasks have been performed, to test the models both in a binary and multiclass classification.  
The main research question is to understand which model is best suited to perform audio breath 
analysis when networks are trained in a transfer learning fashion. 
The work is organized as follows: Section II introduces the state-of-the-art review. Section III Material 
describes the datasets used for training and transfer learning as well as the pre-processing applied. 
Section IV Methods presents the architectures used as well as the experimental setup. Section V 
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sketches the results. In Section VI there is the discussion of results. While Section VII contains 
conclusions and future research directions.  

 

Figure 1 diagnosed diseases distribution in the Respiratory Sound Dataset 
 

2. State of the art review 

The database ICBHI 2017 has been used by various authors all in different conditions. Almost all 
authors since 2019 have been using deep neural network architectures, which have shown promising 
results. This brief literature review is focused on deep neural networks architectures already used on 
the ICBHI 2017 dataset.  In particular in work [4] authors finetuned a pre-trained ResNet architecture 
on the ICBHI 2017 and multi-channel lung sound datasets for performing binary healthy/unhealthy 
classification reaching 87.59 of F1-Score. Authors in [5] addressed the limited size dataset issue using 
supervised contrastive learning. This technique relies on respiration cycle annotations as well as 
spectrogram frequency and temporal masking in order to generate augmented samples for 
representation learning with a contrastive loss. The reached accuracy is 0.759.  

The Respiratory Sound Classification Network (ARSC-Net) [6] is a network designed for accurate 
respiratory sound classification. It combines residual blocks with channel-spatial attention to extract 
and classify two types of features from adventitious respiratory sounds: Mel-Frequency Cepstral 
Coefficients (MFCCs) and Mel-spectrogram. The two types of features are processed in parallel 
through encoder paths with residual attention to obtain a feature representation, which is then 
merged in a channel-spatial attention module to focus adaptively on important features in both the 
channel and spatial domains. The channel-spatial attention improves the feature representation by 
exploring inter-channel relationships in the spectrums using channel attention and generating inter-
spatial correlation mapping through serial spatial attention. The reached accuracy is 80% in binary 
classification (healthy/unhealthy) but no inter-subjects separation scheme was used. In [7] authors 
come up with a new way to enhance the classification of respiratory sounds performing data 
augmentation. The approach involves changing and moving around the input data.  The accuracy 
reached is about 0.704. 

The LungBRN [8] and its evolution, the LungRN+NL [9] have been designed especially for the 
ICBH2017 challenge. The LungBRN architecture is an advanced bi-ResNet deep learning architecture, 
that utilizes STFT and wavelet feature extraction to enhance accuracy, while the LungRN+NL has 
incorporated the non-local block in the ResNet architecture. In addition, to address the imbalance 
problem, authors also added data augmentation to increase the accuracies. Respectively the LungBRN 
and LungRN+NL achieved 0.692 and 0.632 of accuracy. 

As it is possible to observe from this small literature review, the majority of works are based on the 
ResNet deep learning architecture trained from scratch or in transfer learning fashion. In addition, it 
is possible to observe that some work used data augmentation. As pointed out in [10] data 
augmentation has caused some confusion in identifying correct patterns for certain classes when 



initial data is not representative. Additionally, data augmentation decreases reproducibility and raises 
ethical concerns in the medical field [11].   

For these reasons, it has been decided to perform a benchmark of the most famous deep neural 
networks architectures in computer vision as well as novel architectures such as the Vision 
Transformer and AUCO ResNet all trained on exactly same data and in exactly same conditions. 
Additionally, the methods used in this work do not make use of any data augmentation technique 
increasing reproducibility of the results. 

 

3. Material 

3.1. Respiratory Sound Dataset 

Compiled in 2017 at the International Conference on Biomedical Health Informatics (ICBHI 2017), 
the Respiratory Sound Dataset [1] was built to provide reliable data for comparing different automatic 
audio analysis. The database consists of a total of 5.5 hours of recordings collected in 920 annotated 
audio samples from 126 subjects ranging from young to old ages. 6898 respiratory cycles are included, 
of which 1864 contain crackles, 886 wheezes, and 506 both crackles and wheezes. The recordings 
were collected using heterogeneous equipment and their duration ranged from 7.85 s to 86.2 s. Data 
include clean breathing sounds and noisy recordings that simulate real-life conditions. 

Unfortunately, this database is not free from limitations. Not only some subjects have been used 
to collect several audio samples (up to 60, making 6.5% of the entire sample size belonging to a single 
subject), but the file samples are also strongly unbalanced both in the distribution of the seven 
labelled diseases and between the number of healthy (no disease) and un-healthy subjects which 
respectively are 35 (3.8%) and 885 (96.2%) (separation used for the Binary Task). These issues, shown 
in Figure 1, have been taken in account and faced as later discuss in the present work. Given the lack 
of data, instead of considering each disease individually, it has been preferred to group all diseases 
into non-chronic diseases (i.e. Lower Respiratory Tract Infections (LRTI), Upper Respiratory Tract 
Infections (URTI), Pneumonia, e Bronchiolitis, for a total of 75 samples) and chronic diseases (i.e. 
COPD, Bronchiectasis e Asthma, including the remaining 810 samples), in addition of the third group 
of healthy subjects (used for the Multiclass Task). Acute (i.e. temporary) diseases sometimes (e.g. 
when under- or mis-treated) evolve in Chronic ones, thus any tool in support of medical decision-
making is highly welcomed. 

 

Figure 2 Overlapping between respiratory cycles  
 



3.2. UrbanSound8K Dataset 

UrbanSound8K Dataset [2] is one of the biggest and more used of its kind. It collects 8732 audio 
tracks, up to 4 seconds in length each, recorded from a urban environment and labelled in 10 quite 
well balanced classes. The files are stored in .wav format, as in Respiratory Sound Database, organized 
in 10 folds for an easier results comparison between different ML models. Given its remarkable 
dimension, this dataset was used in the transfer learning procedure, as later explained.  

3.3. Preprocessing on Respiratory Sound Dataset 

Since 94% of the Respiratory Sound Dataset was recorded at 44,100 Hz, it has been chosen to 
sample all audio tracks within that sampling rate. Moreover, since the audio tracks have different 
durations, as testify by the max and average length of 86.2 and 21.5 seconds respectively, each file 
audio has been divided into its respiratory cycles, avoiding cutting all audios to a prefixed length with 
a massive loss of data. 

As it is known from signal processing theory, there are some chunks of audio yielding more 
information, resulting to be relevant for training the algorithms. Inspired by the conclusions of a study 
focused on a similar task, but with a different respiratory disease (COVID19)[4] it has been supposed 
that, also in this scenario, relevant information may be present between the transition from one 
respiratory cycle to another. For this reason, each respiratory cycle has been segmented to ensure a 
certain data overlapping (1s) with the next one (Figure 2). Some adjustments were needed when 
dealing with cycles shorter than 1s, in those cases the gap was filled adding enough zeros to 
compensate (padding technique). 

Given the average length of 3s per respiratory cycle, the cycles longer than 4s (1s overlapping 
included) have been resized to be 4s long, while the shorter ones have been extended using padding. 
After this procedure, each respiratory cycle corresponds to a (4*4,4100 =) 176,400-dimensional vector 
of amplitudes.   

To reduce the chance of biased results, it was performed the User-based Dataset splitting, which 
ensures that each subject, from which the data have been collected, belongs to the training or the 
testing set only [3] as it will be detailed later.  

  

4. Methods 

 Two classification tasks have been performed in this work to compare different architectures. The 
first one aimed to recognised healthy vs unhealthy subjects, while the second one is a multi-class 
classification test to recognize the specific disease (if healthy or unhealthy with chronic disease or 
unhealthy with acute disease). The tested architectures are: 

AUCO ResNet [4], the Auditory Cortex ResNet (AUCO ResNet) is a biologically inspired deep  neural 
network especially designed for sound classification. It is built on the intuition that mammals have 
evolved the sound perception in order to focus on certain frequencies better than others not audible 
to the human ear even with a phonendoscope. This intuition is encoded by the presence of three 
attention mechanisms namely the squeeze and excitation mechanism [5], the convolutional block 
attention module [6], and the novel sinusoidal learnable attention [4]. This last attention mechanism 
acts by merging relevant information from activation maps at various levels of the network acting 
similarly to biological pyramidal-like neuronal cells that have been reported to code for high level 
concepts by neuroscientist. AUCO ResNet takes as input raw audio and outputs the respective class, 
without pre-processing, data augmentation or manual spectrogram generation. The model includes 
elements also present in the biological auditory cortex of mammals (rats), such as it is composed by 
six main blocks, it can evolve sound perception because also the mel spectrogram layer is trainable, it 



has several attention levels and number of neurons within each stage has similar proportions of 
neurons found in rats and similar functionalities. 

 
DenseNet 201 [17], with transfer learning pre-training and non-trainable Mel Spectrogram filter. 

In the DenseNet architecture, the input from one layer is later concatenated with the feature maps of 
all previous layers. This procedure allows for rich feature propagation and gradient flow, reducing the 
vanishing gradient problem faced in deep networks. This leads to a reduction in the number of 
parameters in the network and improved computation efficiency. The key features of the DenseNet 
architecture are the presence of Dense blocks: a group of layers where each layer is connected to 
every other layer in the same block. The Transition layers which are used to reduce the spatial size of 
the feature maps and prevent overfitting. The use of a Global average pooling as the final layer of the 
network, to generate the output predictions. 

 
ResNet50 [18], with transfer learning pre-training and non-trainable Mel Spectrogram filter.  
This architecture is designed to face the problem of training very deep networks, where the 

accuracy degrades with increasing depth due to the vanishing gradients problem. ResNet solves this 
problem by introducing residual connections. In residual connections, the input is directly added to 
the output of each layer. The residual connections allow for the effective propagation of gradients, 
even for very deep networks, and it is used as a technique to improve accuracy while reduced 
overfitting. ResNet, together with DenseNet and many others have been shown to generalize. [19] 
The architecture of ResNet consists of multiple residual blocks, where each block contains multiple 
convolutional layers and it could include additional operations such as batch normalization as well as 
attention mechanism [5]. The residual connections are implemented by summing the output of each 
block with its input, before passing the result to the next block. 

 
InceptionResNet-V2 [20], with transfer learning pre-training and non-trainable Mel Spectrogram 

filter. This architecture is designed to perform multiple parallel convolutional filters of different sizes 
and pooling operations to capture information at multiple scales in the input image. It is similar to 
multi-scale learning process in computer vision allowing, thus, to learn features at different levels of 
detail, improving its overall representation and accuracy. The architecture is a sequence of multiple 
Inception blocks, each of which contains multiple parallel convolutional and pooling operations with 
in parallel filters, followed by a concatenation of the results. This allows the network to learn a wide 
range of features and is computationally efficient, as it reduces the number of parameters in the 
network. 

 
Vision Transformer (ViT) [21]. 
The Vision Transformer architecture is based on the transformer architecture [22], which uses self-

attention mechanisms (multiheaded attention) to learn the patterns between input elements in a 
sequence. In the case of Vision Transformer, the input elements are image patches (16x16 pixels), and 
the self-attention mechanism learns relationships between patches. This process is different from the 
one found in Convolutional Neural Network which seeks to exploit the inductive bias and produce the 
convolutional filters. Self-attention is a mechanism which allows to attend to different parts of its 
input and learn the relationships between the elements in the input. The ViT architecture consists of 
multiple stacked transformer blocks, each of which contains a self-attention mechanism and a fully 
connected layer used to generate the output predictions. 

 
4.1. Mel Spectrogram filter 

Some of the listed architectures (i.e. DenseNet201, ResNet50 and InceptionResnet-V2), already 
implemented in Keras API, are designed for image classification tasks. Therefore, it is necessary to 
implement the Mel Spectrogram filter, to convert audio files into images of their spectrograms. This 
filter firstly extracts the information about the audio frequencies, computing the short-time Fourier 



transform (STFT) and its magnitude, and then the features from each audio signal. Thus, it computes 
and applies the matrix of the Mel Filter-Bank through a triangular Mel Filter-Bank, which imitates the 
perceptions of humans’ ears. This setting choice has been led by the idea of making the results from 
the algorithms as explainable as possible for a hypothetical clinical implementation. In AUCO ResNet 
the Mel Spectrogram is inbuilt as a trainable layer of the network, and it learns the most discriminating 
frequencies for each class of the dataset during training [4]. 

 
4.2. Pre-training with UrbanSound4K 

All the listed architectures have been pre-trained with the UrbanSound4K Dataset, using 9 of the 
10 folds as a training-set and the remaining one as test-set. For AUCO ResNet the first 250 layers were 
frozen (apart the Mel Spectrogram layer), the later 150 layers were trainable, and a final dense layer 
with softmax activation function was added for the classification. For DenseNet, InceptionResNetV2 
and ResNet50 and ViT, the last layer was substituted with a novel dense layer with softmax activation 
function for performing the final classification, while the entire network was allowed to be trained.  
The training hyperparameters are reported in Table I.  

 
TABLE I.  Hyperparameters used for traying 

Parameters 
Values used with 

UrbanSound4K Dataset 
Values used with 

Respiratory Sound Dataset 

fft 2048 fft 2048 fft 2048 

n_mels 150 n_mels 150 n_mels 150 

win_length 140 win_length 140 win_length 140 

hop_length 344 hop_length 344 hop_length 344 

optimizer RMSprop optimizer RMSprop optimizer RMSprop 

epochs 100 epochs 100 epochs 50 

batch size 16 batch size 16 batch size 16 

 
4.3. Architectures training and finetuning 

When training the architectures on the Respiratory Sound Dataset, the User-based Repeated 
random sub-sampling validation with under sampling was used to finetune the hyperparameters. The 
Repeated Random Sub-Sampling Validation, also called Monte Carlo Cross-Validation, has been 
preferred to K-fold Cross-Validation. It randomly splits the training set in 80% for the actual training 
and 20% for the validation at each iteration (10 in total) and finally provides the average of the metrics. 
Moreover, given the aforementioned database unbalances, at each iteration it was performed an 
under-sampling of the most numerous classes, to expose the models to the same number of patients 
for each class.  

The labels of each target class, in both the tasks, was One-Hot encoded and the Softmax function 
was used as the Activation Function. The procedure was performed twice using two different loss 
functions: the Categorical Cross Entropy and the Balanced Categorical Cross-Entropy. The latter 
consists in multiplying the former by a weight computed by using the number of examples for each 
class. Therefore, if there is unbalancing between different classes, the loss function emphasizes the 
samples of the minority classes. 

 
4.4. Architectures testing 

The architectures have been tested classifying not only single respiratory cycles, but also complete 
audio files of a specific patient in the test-set, to simulate a real-world scenario. Testing the models 
on single patients was done by feeding the model with all the respiratory cycles of each patient. Thus, 
the associated class has been associated by computing the Mode over all the respiratory cycles of 
each patient. 



The statistical Mode has been used considering the non-remarkable results collected by the tested 
architectures in this work. However, this approach may lead to a loss of data, especially in patients 
with light or not totally manifested conditions. Even more, certain conditions may be spotted in 
certain kind of breath cycles only (e.g. of specific duration range), and, again, using the Mode these 
data would be lost. 

 

5. Results 

The collected results have been computed using the categorical cross-entropy loss function. 
Results are computed per cycle in binary classification (Table I) and multi-class classification (Table III), 
as well as per patient, both in binary classification (Table II) and multi-task classification (Table IV). In 
bold there are the highest performances. In Tables V are reported the percentages of wrong 
predictions per respiratory cycle durations in the Binary classification task. 

 
TABLE II.  Binary Classification,  Results on Respiratory Cycles 

 Macro avg F1 score AUC 

AUCOResNet 0.79 0.96 

DenseNet201 0.75 0.94 

ResNet50 0.71 0.92 

InceptionResNet-V2 0.53 0.76 

ViT 0.12 0.52 

 
 

  

TABLE III.  Binary Classification,  Results on Patients 
 

 Macro avg F1 score 

AUCOResNet 0.81 

DenseNet201 0.70 

ResNet50 0.74 

InceptionResNet-V2 0.49 

ViT 0.49 

  

TABLE IV.  Multiclass Classification,  Results on Respiratory Cycles 

 
Macro avg F1 

score 
AUC 

AUCOResNet 0.48 0.91 

DenseNet201 0.47 0.95 

ResNet50 0.52 0.94 

InceptionResNet-V2 0.31 0.48 

ViT 0.38 0.75 

 
 
 
 
 

  

 



TABLE V.  Multiclass Task, Results on Patients 
 Macro avg F1 score 

AUCOResNet 0.48 

DenseNet201 0.46 

ResNet50 0.53 

InceptionResNet-V2 0.32 

ViT 0.02 

 
 
TABLE VI.  Binary Task, Results on Respiratory Cycles 

 ≤ 1s ]1s,1.5s] 
]1.5s,2
s] 

]2s,2.5
s] 

]2.
5s,3s] 

]3s
,3.5s] 

]3.
5s, 4s] 

> 
4s 

AUCO 
ResNet 

28% 7% 6% 8% 5% 4% 3% 1% 

DenseNet 
201 

26% 11% 9% 8% 8% 2% 2% 0% 

ResNet-50 29% 12% 8% 10% 9% 9% 3% 2% 

Inception 
ResNet-V2 

22% 9% 9% 10% 8% 3% 1% 0% 

ViT 78% 91% 91% 89% 
91

% 
97

% 
99

% 
99

% 

 
 
 

6. Discussion 

In the Binary Task the AUCO ResNet performed better than the other architectures when pre-
trained with the UrbanSound4K Database. It is not a surprising result considering that this architecture 
has been developed for audio analysis.  

In the Multiclass Task the results are poor in all the architectures tested. Again, this was an 
expected result given the unbalanced database used as well as its limited size. In fact, especially the 
Vision Transformer architecture needs to be trained with a lot of data. In a similar fashion, also the 
AUCO ResNet needs more data as its several attention mechanisms are not capable of filtering the 
noise keeping the frequencies containing more information. 

Analysing the wrong prediction percentages in different respiratory cycle lengths, as shown in 
Table V, it becomes clear that the architectures were better performing with longer cycles. This insight 
could lead to new experimentations, in which only cycles with a certain minimum length would be 
considered. Even if this suggested approach needs to be evaluated from a clinical perspective, because 
important information could be stored in the small respiratory cycles too. 

Given the huge amount of COPD samples in the Respiratory Sound Database, it may be considered 
the idea of developing a COPD detector, training AUCO ResNet architecture on a binary task: COPD 
positive samples vs the sum of the other classes, for differential diagnosis purposes. 

Moreover, to improve the performances of the AUCO ResNet architecture with transfer learning, 
it may be preferred a more contextualised dataset for the pre-training (e.g. the one used in the original 
paper, based on breath and cough audios of COVID19 patients). 

Finally, the most obvious improvement would be achieved by feeding the models with a huge and 
well-balanced dataset. 

 
 



7. Conclusions 

Performing benchmarks is as important as building and releasing new architectures. It not only 
allows to compare different solutions, but also to better contextualise their limitations and their 
potential. This work goes even beyond, importing models from the computer vision field to concretely 
taste their applicability in a totally different context. This is the essence of innovation, and it should 
never be underestimated, even when the results are not that enthusiastic, as in this case. The hope is 
to inspire other researchers to explore and test new combinations of architectures and configurations, 
having in mind the real-world applicability of their work. 

AUCO ResNet has provided remarkable results in audio analysis, but new studies, based on more 
balanced databases, are needed to deeply explore its potential.  

Once a ML architecture would reach satisfying results in this context, validated by clinical trials, 
then endless opportunities, will be unlocked democratising access to care, bringing tangible benefits 
to people all around the globe. This is more than enough to keep investing in AI research applied to 
healthcare, despite the challenges it presents compared to other quicklier remunerative fields. 
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