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Abstract
Micro-gesture classification has emerged as a significant research area within emotion analysis and
human-computer interaction, garnering increasing attention. While some skeleton-based action recogni-
tion algorithms utilizing graph convolution networks have shown competence in micro-gesture classifi-
cation, these deep models still face challenges in representing subtle temporal actions and handling the
long-tailed distribution of samples. To address these issues, this paper proposes a deep framework with
ensemble hypergraph-convolution Transformers, which fuses multiple models focused on various cate-
gories. In this model, the Transformers with hypergraph based attention are constructed and extended to
enhance the representation ability of single model. Then a data grouping training and ensemble method
is employed to handle imbalanced categories for micro-gestures, resulting in a significant improvement in
classification accuracy of single models. Finally, our algorithm model is evaluated on the iMiGUE dataset,
which achieves the Top-1 accuracy of 0.6302 and the second ranking in the MiGA2023 Challenge
(Track 1: Micro-gesture Classification).
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1. Introduction

Micro-gesture (MiG) classification refers to the process of identifying and categorizing small and
subtle movements appeared on the human face and body, such as eye blinks, facial expressions,
or hand gestures. The goal of automatic MiG classification is to accurately recognize and
interpret these subtle movements, which can provide valuable insights into the understanding
of a person’s thoughts, emotions, and intentions. Deep learning algorithms and computer vision
techniques [1, 2] are commonly employed to accomplish this task, finding frequent application
in areas like human-computer interaction, emotion recognition, and biometric identification.

Due to the progress of deep learning techniques for action recognition [3, 4], the deep models
have also been utilized to recognize the categories of MiG with the data of RGB and skeleton
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modalities. In the early works for MiG [5, 6], the RGB based methods, e.g., the temporal
segmentation network (TSN) [7], and the skeleton based methods, e.g., spatio-temporal graph
convolution network (ST-GCN) [8], originally for action recognition have been applied to
evaluate the performance of recognizing MiGs as benchmarks. Although the RGB modality can
provide more information of MiGs, the identity privacy for the people restricts the application
of RGB modality. Therefore, the study focused on MiG tasks from skeleton modality.

Despite the dataset having been released for two years, there are currently limited reported
works on skeleton-based MiG classification as the challenges of modeling subtle motions
from the skeleton. But the graph convolutional networks (GCN) are commonly used in the
task of skeleton based action recognition [9]. GCN is a graph-based presentation learning
method originally designed for key point classification tasks. In applications, the relationships
between different types of key points and edges in the graph need to be modeled, and these
relationships can be very complicated. In this case, using a standard graph structure becomes less
appropriate because high-order semantic correlation can be far more complicated than the binary
relationships model by such graph. In contrast, hypergraphs [10, 11] provide more flexible and
rich representation capabilities, which can be used to represent multiple relationships between
key points of different types. The hyperedges can be used to construct complex relationships
between key points of different types. By mapping the key points and edges in the hypergraph
to a low-dimensional vector space, the graph neural network can not only improve its training
capabilities but also enhance reasoning processes, thus provides a GCN with stronger and more
comprehensive representation capabilities. So in order to capture the potential relationships that
exist between the key points of human skeleton, the self-attention (SA) based on hypergraph
[12] (called HyperSA) in a Transformer encoder was proposed to combine the Transformer
[13] with skeleton for measuring both paired and higher-order relationships and applied to
skeleton-based action recognition.

To capture the complicated relationships between different skeleton points from the face and
body for MiGs, we extend the HyperSA by enhancing the self-attention weight with considering
the relationship of hyperedges, which reorganizes the four parts of the SA module into different
branches. These branches are integrated during the learning process, and the results obtained
from this integration address the issue of insufficient learning from a single branch. Furthermore,
since the data collected from real-world scenario often exhibit an imbalanced distribution, or a
long-tailed distribution, a single model trained on relatively unbalanced data tends to exhibit
biased predictions favoring the head categories, resulting in poorer performance on the tail
categories. To overcome this problem, inspired by the data partitioning concept proposed by Cai
et al. [14], we propose to partition the training data into two overlapping subsets and ensemble
several independent models together by training them separately. The main contributions of
this paper can be summarized as:

• We design a deep framework of ensemble hypergraph-convolution Transformer (EHCT)
for the task of MiG classification.

• We extend the HyperSA by enhancing the hyperedges of SA module to promote the
representation ability for MiGs.

• We leverage the ensemble strategies to combine several independent models to weaken
the impact of imbalanced data.



• We perform extensive experiments and achieve the second ranking in the Track 1 of
MiGA2023 Challenge.

2. Methodology

The main framework of our proposed method (EHCT) is shown in Fig. 1 (a). In the frame-
work, we design two classifiers, namely, the main classifier and auxiliary classier, by using the
same-architecture base model of hyperformer convolution Transformer (HCT) to promote the
discrimination ability and mitigate the long-tailed distribution of data. For the base model, the
attention weight between key points and hyperedges are enhanced (eHyperSA) by considering
the relationships between individual key points in the body, face, left and right hands. The
details of three important components are described in the following section.

2.1. Hypergraph-convolution Transformer

As shown in Fig. 1 (b), the self-attention layer combined with the temporal convolution
layer in the HCT is the basic block and stacked by 𝐿 layers [12]. The skeletal input 𝑆𝑇 =
{𝑠1⃗, 𝑠2⃗, ..., 𝑠137⃗ } comprises the key points extracted from a single frame, including those per-
taining to the body, face, left and right hands, are presented in 2D format 𝑠�⃗� = (𝑥, 𝑦, 𝑐) by using
the protocol of OpenPose [15]. According to self-attention mechanism [16], a linear transfor-
mation is applied to input 𝑆 through multiplication with three weight matrices, resulting in the
derivation of matrices 𝑄, 𝐾 , and 𝑉 .

In the self-attention module of HCT shown in Fig. 1 (c), the feature 𝐸𝑓 with the hyperedges
of hypergraph is constructed by Eq. 1:

𝐸𝑓 = 𝐻𝐷−1
𝑒 𝐻𝑇𝑆𝑊𝑒, (1)

where 𝐻 represents the incidence matrix of key points and hyperedges. In the matrix 𝐻 , each
row represents a key point and each column represents a hyperedge. 𝐷𝑒 is the diagonal matrix
representing the degree matrix of hyperedges, and 𝑊𝑒 represents the projection matrix of
hyperedges. Based on the hyperedge feature 𝐸𝑓 , we extend the self-attention in our model
(eHyperSA), which is expressed as follows:

𝐴 = 𝑄𝐾𝑇⏟  ⏞  
𝑎

+𝑄𝑅𝑇
𝜑⏟  ⏞  

𝑏

+𝑄𝐸𝑇
𝑓⏟  ⏞  

𝑐

+𝐸𝑓𝐸
𝑇
𝑓⏟  ⏞  

𝑑

, (2)

In the eHyperSA, the basic attention (components 𝑎 and 𝑐) and relative positional embedding
(component 𝑏) 𝑅𝜑 are used and similar to [17, 12]. In contrast to the vanilla HyperSA [12], the
component 𝑑 in the above equation is newly added, which considers the inner product of the
hyperedge feature matrix 𝐸𝑓 , improving the attention between hyperedges.

2.2. Main Classifier

Given that single base model may potentially impact the weight of components 𝑎 and 𝑐 in Eq. 2,
in the interest of enhancing their weight and efficacy in the classification task, the main classifier
explores multiple base models (HCTs) as multiple branches and integrates them directly.
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Figure 1: The overall framework of the proposed method: (a) ensemble hypergraphy-convolution Trans-
former (EHCT), (b) hypergraph-convolution Transformer (HCT) module, (c) edge-enhanced hypergraph
Self-Attention (eHyperSA) module.

To execute multi-branch integration, each branch in the main classifier emphasizes the
primacy of components 𝑎 and 𝑐 while selectively incorporating components 𝑏 and 𝑑. The
corresponding mathematical equation for attention in each branch is show in Eq. 3:

𝐴𝑖 = 𝑄𝐾𝑇 +𝑄𝐸𝑇
𝑓 +

∑︁
𝑖

𝐶𝑖
2

{︀
𝑄𝑅𝑇

𝜑 , 𝐸𝑓𝐸
𝑇
𝑓

}︀
. (3)

The matrix 𝑉 is multiplied by the output of each branch’s attention calculated by the Softmax
function, and the integration is performed as follows:

𝐵𝑖 = 𝑅𝑒𝐿𝑈 (𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐶𝑜𝑛𝑣 (𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝐴𝑖)𝑉𝑖)) , (4)

The final output is obtained by taking the average of the output logits 𝐵𝑖 of each branch, which
is shown in Eq. 5:

𝐿𝑜𝑔𝑖𝑡𝑠𝑚𝑎𝑖𝑛 =

∑︀𝒩
𝑖 𝐵𝑖

𝒩
, (5)

where the parameter 𝒩 denotes the number of branches.

2.3. Auxiliary Classifier

The data used in the task of MiG classification usually exhibit an imbalanced distribution across
the different categories with a long-tailed distribution, e.g., the iMiGUE dataset [6]. In order



to mitigate the adverse impact of the sample imbalance, inspired by GoogLeNet [18] and ACE
[14], we design an auxiliary classifier.

The data are bifurcated based on the count of data instances per category into two major
categories, namely the head and tail categories. Subsequently, all data instances corresponding
to the tail categories are extracted, and the same number of instances as the tail categories are
randomly selected from the head categories to form the tail training set. In this tail training set,
the labels of the selected instances from the head categories are reassigned to other categories,
while the labels of the tail categories are one-to-one mapped to the original labels in the dataset.

With the logits from the main classifier and the auxiliary classifier, the way of combining
these two outputs is calculated as follows:

𝐿𝑜𝑔𝑖𝑡𝑠 = 𝐿𝑜𝑔𝑖𝑡𝑠𝑚𝑎𝑖𝑛 + 𝛼 ·𝑂𝑡ℎ𝑒𝑟 {𝐿𝑜𝑔𝑖𝑡𝑠𝑎𝑢𝑥}+ 𝛽 ·𝑀𝑎𝑝 {𝐿𝑜𝑔𝑖𝑡𝑠𝑎𝑢𝑥} , (6)

where the hyperparameter 𝛼 denoted as the weight by which the logits of the auxiliary classifier,
when predicted as the other category, is accumulated into the logits of the main classifier, and
the hyperparameter 𝛽 denoted as the weight by which the logits of the auxiliary classifier,
when predicted as a tail category, is accumulated into the logits of the main classifier through a
mapping relationship. The final prediction can be obtained from the following equation:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 (𝐿𝑜𝑔𝑖𝑡𝑠(𝑖)) . (7)

3. Experiments

In this section, we evaluate our model on the iMiGUE dataset [6] by following the protocol of
MiGA2023 Challenge (Track 1: Micro-gesture Classification). The dataset, metrics, ablation
study and comparison experiments are reported in the following sections.

3.1. Dataset and Metrics

In this challenge, the iMiGUE [6] dataset with fixed training and test samples is used to evaluate
our proposed method. This dataset includes a total of 32 categories of MiGs, and covers two
emotions as well as 72 subjects with each gender accounting for half of the total number of
subjects. It consists of 18,499 samples taken from 359 videos with a resolution of 1280× 720.
Each video is about 0.5-25.8 minutes long. Since the iMiGUE dataset is collected in-the-wild
setting, the overall dataset presents a long-tailed (unbalanced) distribution.

To evaluate the classification performance of our model, we employ Top-1 accuracy and
Top-5 accuracy as evaluation metrics, the equations of the metrics are as follows:

𝐴𝑐𝑐𝑇𝑜𝑝−1 =

∑︀𝑁
𝑖=1[𝑎𝑟𝑔𝑚𝑎𝑥(𝑃 (𝑦𝑖|𝑥𝑖)) = 𝑦𝑖]

𝑁
, (8)

𝐴𝑐𝑐𝑇𝑜𝑝−5 =

∑︀𝑁
𝑖=1[𝑦𝑖 ∈ 𝑡𝑜𝑝5(𝑃 (𝑦𝑖|𝑥𝑖))]

𝑁
, (9)

where 𝑁 denotes the number of samples, 𝑥𝑖 denotes the feature of the 𝑖-th sample, 𝑦𝑖 denotes
the true label of the 𝑖-th sample, 𝑃 (𝑦𝑖|𝑥𝑖) denotes the probability distribution obtained from



Table 1
Performance comparison using various components on iMiGUE dataset, where 𝑎, 𝑏, 𝑐, 𝑑 denote the
components in Eq. 2, 𝑑𝑜𝑟𝑖 represents the original component 𝑑 in vanilla HyperSA, B1~B5 denote single
base models, and E1~E3 denote ensemble models.

Method
Self-Attention

Ensemble Aux-classifier
Accuracy(%)

𝑎 𝑏 𝑐 𝑑 Top-1 Top-5
Hyperformer [12] ✔ ✔ ✔ 𝑑𝑜𝑟𝑖 ✘ ✘ 57.01 87.86
B1: Ours (𝑎+ 𝑐+ 𝑑𝑜𝑟𝑖) ✔ ✘ ✔ 𝑑𝑜𝑟𝑖 ✘ ✘ 58.35 87.88
B2: Ours (𝑎+ 𝑐) ✔ ✘ ✔ ✘ ✘ ✘ 57.83 89.22
B3: Ours (𝑎+ 𝑏+ 𝑐) ✔ ✔ ✔ ✘ ✘ ✘ 58.57 89.43
B4: Ours (𝑎+ 𝑏+ 𝑐+ 𝑑) ✔ ✔ ✔ ✔ ✘ ✘ 58.79 89.11
B5: Ours (𝑎+ 𝑐+ 𝑑) ✔ ✘ ✔ ✔ ✘ ✘ 58.09 90.27
E1: Ours (B3+B4+B5) ✔ ✔ ✔ ✔ ✔ ✘ 60.68 89.00
E2: Ours (B2+B3+B4+B5) ✔ ✔ ✔ ✔ ✔ ✘ 61.38 90.22
E3: Ours (B2+B3+B4+B5) ✔ ✔ ✔ ✔ ✔ ✔ 63.02 91.36

the model’s predictions for the 𝑖-th sample, and 𝑡𝑜𝑝5 denotes the top five categories with the
highest probabilities.

In our experiments, the key parameter settings are configured as follows: 150 training epochs,
a batch size of 8, an initial learning rate of 0.0005, and a learning rate decay rate of 0.1. In Fig.
1 (b) HCT, the number of stacked layers 𝐿 is set to 10. All experiments are performed on an
NVIDIA GeForce RTX 4090.

3.2. Ablation Study

Firstly, in order to verify the effectiveness of various parts of the self-attention mechanism based
on the skeletal structure of human body, we conduct a series of ablative research experiments,
and the specific results can be obtained from Table 1.

We use the vanilla Hyperformer model as the baseline and remove the relative position
encoding 𝑏 and bias 𝑑𝑜𝑟𝑖 for the four components of the attention module in vanilla HyperSA
to observe the role of each component. Through the results, it can be observed that compared
to the baseline, when we remove both the relative position encoding 𝑏 and bias 𝑑𝑜𝑟𝑖, the Top-1
accuracy is improved by 0.82%. When we remove only the relative position encoding 𝑏 or bias
𝑑𝑜𝑟𝑖 separately, the Top-1 accuracy is improved by 1.34% and 1.56%, respectively. Therefore,
we believe that the relative position encoding 𝑏 and bias 𝑑𝑜𝑟𝑖 in HyperSA may not have verify
significant effects on attention extraction.

Next, in order to further improve the accuracy of the model, we improve the original bias 𝑑𝑜𝑟𝑖
into the current component 𝑑, which is the attention between hyperedges obtained through
the inner product of hyperedge features. By doing this, the Top-1 accuracy of the model is
increased by 1.78% compared to the baseline, indicating that the attention between hyperedges
has achieved significant effects on MiGs.

Due to the phenomenon of overfitting that may occur during the training of one single model,
its performance may be good only on the training set, but it may decrease when facing new
data. Moreover, when the dataset is complex, a single model often cannot learn global patterns.



Table 2
The comparison results of various methods on iMiGUE dataset.

Methods Model+Modality
Accuracy(%)
Top-1 Top-5

ST-GCN [8]
GCN + Skeleton

46.97 84.09
MS-G3D [19] 54.91 89.98
TSN [7]

2DCNN + RGB
51.54 85.42

TRN [20] 55.24 89.17
TSM [3] 61.10 91.24
Hyperformer [12]

Transformer + Skeleton
57.01 87.86

EHCT (Ours) 63.02 91.36

Therefore, we integrate multiple models using different attention components in training to
improve the generalization and robustness of the single model.

We employ ensemble learning with three branches, which improves the Top-1 accuracy by
3.67% compared to the baseline. To further enhance the attention weights between key points
(component 𝑎) and between key points and hyperedges (component 𝑐), we add branches that
only utilize components 𝑎 and 𝑐, respectively, resulting in a four-branch ensemble approach.
This further improves the Top-1 accuracy by 4.37% compared to the baseline.

Furthermore, we select all categories with instance counts at 1/50 of the maximum instance
count as the tail categories. At the same time, we select head categories with a ratio of approxi-
mately 1:1 to merge with the tail categories and construct an independent training set. Through
this training set, an auxiliary classifier is trained that uses all components of attention. The
model with the auxiliary classifier achieves a Top-1 accuracy of 63.02%, which is an improvement
of 6.01% compared to the baseline.

3.3. Comparison to State-of-the-art Methods

Our proposed technique is also examined through a comparative analysis on iMiGUE dataset,
which is shown in Table 2. We compare our proposed method with state-of-the-art methods
such as 2D convolutional networks utilizing CNNs with RGB data, GCNs with skeleton data,
and Transformers with skeleton data. Compared to the MS-G3D [19] method, which utilizes 3D
GCN on skeleton data, our method demonstrates an improvement of 8.11% on Top-1 accuracy
and 1.38% on Top-5 accuracy. In comparison with the TSM [3] method, which employs 2D
convolutional networks on RGB data, our method improves Top-1 accuracy by 1.92% and Top-5
accuracy by 0.12%. Compared to the Hyperformer [12] method, which uses Transformer on
sjeketib data, our method shows the significant improvement of 6.01% in Top-1 accuracy and
3.5% in Top-5 accuracy. It is observed that our proposed method (EHCT) outperforms the other
methods, achieving the best performance on the iMiGUE dataset.



4. Conclusions

In conclusion, this paper introduces a deep framework that utilizes ensemble models based
on hypergraph-convolution Transformer for the MiG classification from human skeleton data.
The skeleton is organized by the proposed hypergraphs, which enable to capture complex
correlations. By enhancing the attention mechanism and multimodel fusion techniques, the
proposed method effectively extracts subtle dynamic features from different gestures. As a
result, our designed model surpasses the state-of-the-art performance on the iMiGUE dataset,
demonstrating its effectiveness in accurate classification of human skeleton data.
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