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Abstract
Micro-gesture is becoming a fundamental clue of emotion analysis and achieves more attention in this
field. The studies are mainly focused on the task of micro-gesture classification which predicts the
categories of micro-gesture while no works have been reported for spotting the micro-gestures. As
a preliminary step for classification, the micro-gesture online recognition (spotting) that predicts the
temporal location and category has achieved limited attention. In this context, we propose a novel deep
network for micro-gesture online recognition, which incorporates the graph-convolution and multiscale
transformer encoders. Specifically, we utilize a graph-convolution based Transformer module to extract
motion features of 2D skeleton sequences, which are then processed by a feature pyramid module to
obtain hierarchical multiscale features. We further employ a local Transformer module to model the
similarity between micro-gesture frames, and decouple the classification and regression branches to
achieve accurate location and category. These Transformers are trained in a two-stage strategy and
combined to perform the spotting. Our proposed method is validated on the iMiGUE dataset and has
achieved the first ranking in the task of online recognition (Track 2) of the MiGA2023 Challenge.
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1. Introduction

In daily interactions, the human usually rely on body gestures to perceive emotions, which
plays a crucial role in facilitating communication and understanding between individuals. With
the increasing demand for intelligent systems, such as robots and other human-computer
interaction systems, the ability to recognize and respond to users’ emotions based on their body
gestures has become a critical component [1]. Among the body gestures, micro-gesture (MiG)
is an involuntary reaction triggered by people’s inner emotions. To differentiate from more
overt behavioral gestures [2], such as waving hand, micro-gestures are often more subtle and
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conscious actions, such as biting finger, which are performed while attempting to conceal real
feelings. As this kind of gestures is typically performed unconsciously and unintentionally,
they can reveal the hidden emotional status of human beings, which is the emotional status
that people express intentionally. Psychological studies [3] also show that MiGs can be more
reliable emotion indicators.

The micro-gesture analysis by computer vision techniques has attracted much attention
in recent years. Micro-gesture analysis can mainly be divided into two classes [4]: 1) the
classification of body gestures and 2) temporal body gesture localization and recognition (online
recognition or spotting) in long sequences. The relevant researchers are committed to the
former task, which conducts the classification of the pre-segmented clips, and most of the
advanced technologies can achieve quite promising performance [5, 6]. The latter task is to
detect the temporal frames with micro-gestures from a sequence and recognize it. Currently,
there is a lack of automatic approaches of spotting micro-gestures, highlighting the importance
of developing an automated micro-gesture detection model. This would enable more accurate
and efficient analysis of micro-gestures, which are crucial for understanding and interpreting
human emotions.

In this paper, to locate and recognize the micro-gestures from a long skeleton sequence, we
propose a deep network for detecting micro-gestures by integrating the graph-convolution and
multiscale Transformer encoders. We utilize a graph-convolution Transformer module based
on hypergraphs and hyperedges to extract motion features of 2D skeleton sequences. Then the
hierarchical multiscale features are obtained by a feature pyramid module. We further employ
a multiscale Transformer module to model the similarity between micro-gesture frames. The
classification and regression branches are finally decoupled to achieve accurate location and
category. These Transformers are trained in a two-stage strategy and combined to perform the
spotting. The main contributions of this paper can be summarized as:

• We design a deep network for MiG online recognition for the first time, which integrates
the graph-convolution and multiscale Transformer encoders.

• We explore a graph-convolution Transformer as a feature extractor and a combination of
feature pyramid and local Transformer to locate MiGs, which are trained separately in a
two-stage way.

• We achieve the first ranking in the Track 2 of MiGA2023 challenge for online recognition.

2. Methodology

2.1. Overall Architecture

For spotting the micro-gestures, we propose a Transformer based network, which mainly
consists of four important components: graph-convolution Transformer, hierarchical feature
extractor, local Transformer and micro-gesture estimator. The overall architecture is shown in
Fig. 1. Given a long sequence, the framework outputs the temporal positions (the starting and
ending indexes in a long sequence) and categories of micro-gestures. In the graph-convolution
Transformer, motion features are extracted from the long sequence by the graph convolution
on hypergraphs and hyperedges. Then, the extracted features are further processed by the
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Figure 1: The framework of the proposed method, which mainly consists of four important components:
(I) graph-convolution Transformer, (II) hierarchical feature extractor, (III) local Transformer, and (IV)
micro-gesture estimator.

hierarchical feature extractor to obtain multiscale encoding features, which is fed to local
Transformer for modelling the correlation between frames within an inner window. Finally, the
interval of micro-gesture is predicted by decoupling classification and regression branches.

2.2. Graph-convolution Transformer

The performance of micro-gesture online recognition depends on the ability to capture subtle
motion information in spatial and temporal dimensions. Therefore, the selection of backbone
model plays a critical role in determining the detection performance. In the field of image
processing, it is widely recognized that pretrained classification models can serve as the backbone
of downstream tasks to extract features, such as object detection. Drawing inspiration from this,
we also choose a video recognition model as the backbone for our proposed method. Although
any graph-convolution network can be used as the backbone, in order to effectively process
the 2D skeleton sequence, we choose to exploit the hypergraph Transformer [7] for the action
recognition as the backbone to represent the micro-gesture clip, which is shown in Fig. 1 (I).

The use of hypergraphs and hyperedges in hypergraph Transformer (Hyperformer) allows
for a more comprehensive representation of the input data, enabling the model to capture subtle
nuances in the skeletal point relationships and structures that are crucial for accurate micro-
gesture detection. Currently, hypergraph Transformer is primarily utilized for macro-action
recognition, while there exists the significant difference between micro-gesture and behavioral
action. To address this issue, we choose to train the Hyperformer on the iMiGUE dataset in
the first stage, which uses the sequence clips of the recognition task (Track 1) to learn the
parameters. The trained model is then utilized as a one-stage feature extractor to extract the
motion-aware features, which can be matched with various micro-gesture spotting networks



to achieve precise micro-gesture location. Given a pre-segmented clip with 𝑇 frames, the
feature extracted by the trained Hyperformer with the input 𝐼 ∈ R𝑇×𝐶×𝑁 can be embedded as
𝐸 ∈ R(𝑇/8)×𝐷 , where 𝑁 and 𝐷 represent the number and characteristic dimensions of skeletal
points, respectively. We choose to use fixed-length sliding window for solving the problem of
varying sequence lengths. Therefore, we concatenate the features of different small fragments
in the time dimension to obtain the motion features in a sliding window, which is fed into the
subsequent module. The concatenation operation is given by:

𝐸𝑠𝑢𝑚 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 (𝐸1, 𝐸2, ··, 𝐸𝑛) (1)

where 𝑛 is the number of clips in a sliding window, 𝐸𝑠𝑢𝑚 can be embedded as 𝐸𝑠𝑢𝑚 ∈
R(𝑛×𝑇/8)×𝐷 .

2.3. Hierarchical Feature Extractor

As the different durations of micro-gestures exist in a long sequence, hierarchical feature
pyramid is beneficial to capture different temporal window lengths (multiscale information).
The block module of the pyramid in our network shown in Fig. 1 (II) is similar to the C3 module
in YOLOv5 1 but with some key differences. Specifically, we utilize 1D convolution with kernel
size of 3× 1 and stride of 1, followed by layer normalization and SiLU activation function. In
order to ensure that the model can capture micro-gesture features with a short duration, the
stride of the first layer in the feature pyramid is set to 1, other layers are set to 2. Subsequently,
we acquire multiscale features 𝐹 𝑖 through linear upsampling and concatenation operations,
which enable the integration of rich contextual information and enhance the representation

ability of the features. Given a feature 𝐸𝑠𝑢𝑚 ∈ R𝑇
′×𝐷 extracted from the previous module, 𝐹 𝑖

can be embedded as {𝐹 𝑖 ∈ R(𝑇
′
/2𝑖−1)×𝐷, 𝑖 = 1, 2, 3, 4}.

2.4. Local Transformer

Since the occurrence of micro-gesture is often inseparable from the contextual frames, we
employ the attention mechanism to measure the similarity between frames and model the
dependency of frames. Transformer [8] is utilized for similarity modeling between frames,
but the traditional transformer with global attention mechanism may not be suitable for long
sequence. It is recognized that the temporal context beyond a certain range is less informative
for micro-gesture detection, and the global attention can introduce redundant information that
interferes with the analysis. So we utilize the local Transformer by limiting attention within
a local window [9], which is shown in Fig. 1 (III). A series of overlapping local windows are
generated in the time dimension of 𝐹 𝑖. Then we calculate self-attention in each window. Finally,
the embedding results of each window are concatenated in the time dimension to obtain a
comprehensive representation of the micro-gesture sequence.

Given 𝐹 𝑖 ∈ R𝑇×𝐷, 𝐹 𝑖 is utilized to project encoded representations of Query(Q), Key(K),
and Value(V) by using 𝑃𝑄 ∈ R𝐷×𝐷𝑄 , 𝑃𝐾 ∈ R𝐷×𝐷𝐾 , 𝑃𝑉 ∈ R𝐷×𝐷𝑉 , which are given by:

𝑄 = 𝐹 𝑖 × 𝑃𝑄,𝐾 = 𝐹 𝑖 × 𝑃𝐾 , 𝑉 = 𝐹 𝑖 × 𝑃𝑉 (2)

1https://github.com/ultralytics/yolov5



Then multi-head attention (MHA) will be applied in a local window by the following operations:

𝑀𝐻𝐴(𝑄𝑖,𝐾𝑖, 𝑉𝑖) = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛(ℎ𝑒𝑎𝑑0, . . . , ℎ𝑒𝑎𝑑𝑛)𝑊
𝑂,

ℎ𝑒𝑎𝑑𝑖 = 𝑠𝑜𝑓𝑡max

(︂
𝑄𝑖𝐾

𝑇
𝑖√

𝐷𝑞

)︂
𝑉𝑖

(3)

where 𝑛 is the number of heads, 𝑊𝑂 is the parameter matrix, 𝑄𝑖, 𝐾𝑖 and 𝑉𝑖 respectively
represent 𝑄, 𝐾 and 𝑉 in the 𝑖-th local window. Then the results of each window MHA are
concatenated in the time dimension to obtain the encoded results, which is given by:

𝑌 =
∑︁
𝑖

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 (𝑀𝐻𝐴 (𝑄𝑖,𝐾𝑖, 𝑉𝑖)) (4)

where 𝑌 ∈ R𝑇×𝐷 and 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 (·) the concatenation of MHA results in the time
dimension.

2.5. Micro-gesture Estimator

Finally, the encoded features of local Transformer are fed to the estimator module to predict the
location and category of micro-gestures. The estimator module consists of decoupling regression
and classification branches, which is shown in Fig. 1 (IV). The former predicts the distance
to the starting and ending frames of the micro-gesture at each point in the time dimension,
while the classification branch is responsible for identifying the category to which it belongs. In
order to obtain classification and regression related feature information, we employ the channel
attention mechanism and apply it before sending the features to the head. To prevent overfitting,
we enforce weight sharing among these attention layers. To further achieve accurate localization
of the gesture interval for micro-gesture detection, we adopt the approach proposed by [10],
which treats the regression problem as a distribution prediction problem to model uncertainty.
Given an encoded feature 𝑌 ∈ R𝑇×𝐷 , the output of the regression branch can be embedded as
𝑃𝑟𝑒𝑔 ∈ R𝑇×2, and the classification branch can be embedded as 𝑃𝑐𝑙𝑠 ∈ R𝑇×𝐶 , where 𝐶 is
the number of categories of micro-gestures. In the second stage of model learning, the local
Transformer and estimator are jointly trained by the training data of online recognition.

3. Experiments

3.1. Dataset and Metric

Dataset. Micro-Gesture Understanding and Emotion analysis (iMiGUE) dataset [11] is employed
to evaluate our proposed method. The dataset consists of 32 categories from post-match press
conference videos of famous tennis players. The micro-gestures are annotated from 359 long
video sequences and are captured in RGB modality and 2D skeletal joints collected from the
Open-Pose algorithm. The 2D skeletal joints consist of a total of 137 key points, including 25
body points, 42 hand points, and 70 face points. In the MiGA2023 challenge, only 2D skeletal
points are allowed to be used as model input.



Metric. The true positive (TP) per interval in one sequence is defined based on the intersection
between the spotted interval and the ground-truth interval. The spotted interval 𝑊𝑠𝑝𝑜𝑡𝑡𝑒𝑑 is
considered as TP if it fits the following condition:

𝑊𝑠𝑝𝑜𝑡𝑡𝑒𝑑
⋂︀
𝑊𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ

𝑊𝑠𝑝𝑜𝑡𝑡𝑒𝑑
⋃︀
𝑊𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ

≥ 𝑘 (5)

where 𝑘 takes 0.3, and 𝑊𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ represents the ground truth of the micro-gesture interval
(onset-offset). F1-socre is then used to evaluate the performance of the model, which is given
by:

𝐹1− 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(6)

where 𝐹𝑃 and 𝐹𝑁 represent the false positive and false negative, respectively.

3.2. Implementation Details

The hypergraph Transformer model is firstly trained using pre-segmented micro-gesture data
from the iMiGUE dataset with a total of 200 epochs trained. Then, the fully connected layer
of hypergraph Transformer is removed, and the model is utilized as the feature extractor for
detection network. In Fig. 1 (I), the number of layers 𝐿 in graph-convolution Transformer is
10. The length of one clip fed into feature extractor is 8, the overlap value is 2. We set the
length of the sliding window to 512. In local Transformer, the local window size is set to 8,
the overlap value is set to 4. The local Transformer and estimator are secondly trained for
200 epochs with a cosine learning rate schedule and 5 warmup epochs. We use Adam as an
optimizer, where the initial learning rate is 1𝑒− 4. The mini-batch size is 32, and the weight
decay is 5e-4. None-Maximum Suppression (NMS) [12] is used to remove the duplicated boxes
and obtain real results.

3.3. Experimental Results

As no baseline approach has been reported in the past, we only report the final performance on
iMiGUE to evaluate the influence of two important components, i.e., the hypergraph Transformer
and multiscale Transformer. Table 1 presents the performance of using other components to
replace the above two components for micro-gesture online recognition. When HD-GCN
[13] trained on iMiGUE is used as the feature extractor to observe the impact of hypergraph
Transformer, the result of using HD-GCN indicates that this model achieves worse performance
as it may be unable to accurately capture motion information. Subsequently, LSSNet [14], which
has demonstrated strong performance in micro-expression detection, is selected as the detection
network to observe the impact of multiscale Transformer. It also suggests that our model has
more effectiveness in interframe modeling.

The visualization results of micro-gesture online recognition are demonstrated through two
sets of skeletal sequences in Fig. 2. The first set shown in Fig. 2 (a) displays accurately spotted
micro-gesture, while the second set depicted in Fig. 2 (b) demonstrates micro-gesture that is
spotted incorrectly with an IoU value of 0.15. The results show that our method still faces
challenges in accurately locating some samples.



Table 1
The performance of using various modules.

Hypergraph Transformer Multiscale Transformer Replacement F1-score
✓ LSSNet 0.0797

✓ HD-GCN 0.0585
✓ ✓ - 0.1485

7493 7535
7501 7531

7490 7495 7525 7530 7535 75407500 7505
frames

752075157510

5669 5729

5718 5740

5720 5730 57405670 5680
frames

571057005690

...

...

Ground Truth Our Method

……

……

(a)

(b)

Figure 2: Visualization examples of micro-gesture online recognition by our proposed method.

4. Conclusion

In this paper, we proposed a Transformer based model for micro-gesture online recogni-
tion, which integrates graph-convolution and multiscale Transformers. Our proposed method
achieved excellent performance on the iMiGUE dataset, but it is important to note that the
development of micro-gesture online recognition is still in its early stages and there is much
room for improvement in terms of detection accuracy.
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