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Abstract
Human-to-human communication is greatly influenced by micro-gestures. The actions of a person
inherently reveal information about their true sentiments and potential intentions. Micro-gestures are
non-verbal cues that indicate a person’s true feelings and intentions; however, they become more chal-
lenging to recognize than normal gestures because micro-gestures are subtle and appear for milliseconds.
In this work, we propose a graph-encoding convolutional network to extract intrinsic joint represen-
tations from skeletons using a self-attention graph convolution module in the spatial domain. The
multi-scale temporal convolution module extracts the temporal representation in the time domain and
sends it to the classification module to recognize micro-gestures. We evaluate the proposed framework
using two micro-gesture datasets, SMG and iMiGUE, and achieve state-of-the-art results.
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1. Introduction

Micro-gestures (MGs) play an important role in human-to-human communication [1, 2, 3]. The
person’s acts aid in understanding by naturally revealing information such as actual feelings
and possible intentions. MGs are subtle movements that reveal a person’s actual emotions and
intentions. Recently, there has been a lot of interest in empowering intelligent machines with
the same capabilities for understanding human behaviors [4, 5], which is essential for natural
human-computer interaction and many other useful applications [6].

In recent times, modern sensor technology and human position estimation algorithms have
made it considerably simpler to extract human 2D and 3D skeletons [7, 8]. Skeletons are
tempting for MG recognition tasks because they are small in size, robust, and resistant to
changes in viewpoint and cluttered backgrounds [9, 10]. Skeletons are commonly used for
action and MG recognition via Graph convolutional networks (GCNs) [11, 12]. GCNs are an
ideal technique for extracting topological data from skeletons due to their lightweight nature
and the fact that joints and bones naturally form graphs in the human body.
However, there are still some limitations with skeleton data. One notable issue is the lack

of critical interactive elements and contextual information within the skeleton representation,
which makes it difficult to distinguish between comparable activities.
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Figure 1: The proposed GE-CN framework architecture

To address the aforementioned issue, we present a Graph-Encoding Convolutional Network
(GE-CN) with an attention layer that can learn spatial-temporal contextual representations to
recognize MGs. The proposed framework consists of the embedding, encoding and classification
module as shown in Figure 1. The embedding module takes input skeleton sequences, integrates
them with the position embedding of joints and passes the skeleton representation for feature
extraction to the embedding module. The embedding module consists of a self-attention module
that extracts spatial representation and captures intrinsic relationships among joints in the
spatial domain and a multi-scale temporal module to extract temporal features. The learned
latent representations are forwarded to the classificationmodule to recognize the learned gesture
categories. In summary, we have the following contributions:

• We proposed a Graph-Encoding Convolutional Network (GE-CN) framework for various
skeleton topologies using a self-attention graph convolution.

• We analyze the insight of latent space encoding by using the distribution visualization to
find the semantic features.

• We achieved state-of-the-art results on the two datasets.

2. Related work

Recently many researchers have employed skeleton-based methods for action and gesture
recognition, which are classified as unsupervised and supervised methods.

2.1. Skeleton-based unsupervised methods

Zheng et al. [13] utilized unsupervised representation learning to capture global motion
dynamics. The generative adversarial network (GAN) is used as an encoder-decoder to model
motion dynamics and acquire discriminative features for action recognition. Similarly, Su
et al. [14] leverage encoder-decoder recurrent neural networks (RNN) for learning features
for action recognition. Lin et al. [15] used an unsupervised Bidirectional-Gated Recurrent
Unit (Bi-GRU) encoder to learn more generalized representations by combining jigsaw puzzles,



motion prediction, and contrastive learning. Li et al. [16] utilized data without labels for
learning view-invariant action and predicting 3D motion by combining RGB and depth images.
Many researchers have also utilized contrastive learning; likewise, Zhou et al. [17] added a
contrastive learning module to the framework to distinguish between confident and ambiguous
action samples. Lin et al. [18] Proposed actionlet-based contrastive learning method where a
motion-adaptive transformation strategy was designed to learn semantic consistency in actionlet
regions.

2.2. Skeleton-based supervised methods

In skeleton data, joints and bones naturally form graphs in the human body; therefore, most
researchers adopted GCNs. Yan et al. [11] presented a spatial-temporal GCN (STGCN) to capture
complex features from a human skeleton. Long short-term memory (LSTM) was used by Si et
al. [19] with the conjunction of convolutional networks to improve performance by employing
more discriminatory spatial and temporal features. Liu et al. [20] proposed a multiscale spatial
graph convolutional operator (MSG3D) to disentangle the skeleton, which removes redundant
features from the skeleton and aggregates effective graph relationships. Shi et al. [21] proposed
a two-stream adaptive graph convolutional network (2s-AGCN) for action recognition. Chi et al.
[22] presented the Infogcn framework, which consists of self-attention-based graph convolution
and representation learning to capture complementary features for action recognition.

3. Methodology

3.1. Framework Architecture

The GE-CN framework contains an embedding module followed by a stack of encoding modules
and a global average pooling layer and a classification module. The embedding module takes
a sequence of skeleton representation, converts it to initial joint representation and forwards
it to the encoder module, to capture complex spatio-temporal features. A reparametrization
step is employed that is commonly used in variational autoencoders [23]. A random noise (𝜖) is
introduced, followed by a normal distribution. The mean (𝜇) value is then added to the product
of a diagonal covariance matrix to sample a variable named 𝑍. This approach enables us to find
unbiased gradients and efficiently tune the model via gradient-based optimization strategies.
A classifier is added at the end with a single linear layer and soft-max function to convert the
learned features into class distribution categories.

3.2. Embedding module

The skeleton is represented as a graph 𝐺(𝑉 , 𝐸), with 𝑁 joints denoted as 𝑉 and bones as edges 𝐸.
Edges are represented as 𝑁 × 𝑁 dimensional adjacency matrix 𝐴, where element 𝐴𝑖,𝑗 reflects
the link between joints 𝑖 and 𝑗, 𝐴𝑖,𝑗 value is 1 if 𝑖 and 𝑗 joints are connected, otherwise 0. The
combination of skeletons makes a sequence of skeleton graphs, which is represented as a joint
feature 𝑋 ∈ 𝑅𝑇×𝑁×𝐶, where 𝑇 shows the number of frames and 𝐶 denotes the feature dimensions.



The input joint representations are linearly transformed by the embedding module into 𝐷(0)

dimensional vectors while adding the positional embedding (𝑃𝐸) to accommodate the joint
position information. The PE is transferable and learnable across many temporal channels.

𝜓 (0)𝑡 = 𝐿𝑖𝑛(𝑋𝑡) + 𝑃𝐸 (1)

where 𝜓 (0)𝑡 represents a hidden layer, 𝑃𝐸 ∈ 𝑅𝑁×𝐷(0)
, 𝐿𝑖𝑛(.) is a linear function and 𝑡 is time index.

3.3. Encoding module

The encodermodule consists of twomodules: Self-attentionGraph Convolution (S-GC) to extract
spatial representations and Multi-Scale Temporal Convolution (MS-TC) to extract temporal
features from the skeleton. The input joints are sequentially encoded via S-GC and MS-TC,
followed by normalization. The graph convolution updates the hidden representation via the
following rules:

𝜓 (𝑙+1)𝑡 = Θ(�̄�𝜓 (𝑙)𝑡 𝑊 (𝑙)) (2)

where �̄� is the normalized adjacency matrix, 𝑊 is the learned matrix and Θ(.) is the nonlinear
activation function. The S-GC uses the self-attention of joint features to determine the intrinsic
topology and employs the topology as a source of neighborhood vertex information for graph
convolution. The self-attention is a mechanism that links several joints of the body. S-GC takes
into account all the possible relations and estimates positive and bounded weights which are
known as self-attention maps that indicate how strong the connection is between joints. To get
self-attention maps the following mathematical definition is used:

𝑆(𝜓𝑡) = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(
𝜓𝑡𝑊𝑘(𝜓𝑡𝑊𝑄)𝑇

√𝐷
′

) (3)

where 𝑊𝐾, 𝑊𝑄 are learnable matrics of 𝐷
′
dimensions. Aside from the self-attention map, the

S-GC learns a topology �̈� shared over time. The self-attention map and shared topology employ
M multi-heads to enable the model to attend multiple representation subspaces at the same
time. To achieve intrinsic topology, the shared topology and self-attention maps are integrated.

�̈�𝑚 ⊗ 𝑆𝑚(𝜓𝑡) ∈ 𝑅𝑇×𝑁×𝑁 (4)

where ⊗ is the broadcasted element-wise product. S-GC utilizes the equation 4 as neighborhood
information, and the overall joint representation update rules are formulated as [22]

𝜓 (𝑙+1)𝑡 = Θ(
𝑀
∑
𝑚
(�̈�(𝑙)

𝑚 ⊗ 𝑆𝑚(𝜓
(𝑙)
𝑡 ))𝜓 (𝑙)𝑡 𝑊 (𝑙)

𝑚 ) (5)

After extracting the spatial intrinsic features the MS-TC block extracts the temporal features
using three parallel convolution branches with various kernel sizes.



Table 1
The top-1% and top-5% accuracy of SMG and iMiGUE datasets with baseline results

Method Self-attention Dataset
Accuracy

Top-1% Top-5%

Baseline 7
iMiGUE 53.98 90.5
SMG 62.89 94.95

GE-CN 3
iMiGUE 56.12 90.01
SMG 64.26 95.23

4. Experiments

The proposed GE-CN framework is evaluated using two MG datasets. Both datasets contain
skeleton data, which is utilized in this work. In this work, we used an SGD optimizer with
a 0.9 moment coefficient, a frame size of 64 and a batch size of 32. We used maximum-mean
discrepancy loss borrowed from [22] and used the same experimental settings.

4.1. Datasets

Spontaneous Micro-Gesture (SMG) dataset [3, 1] contains 3,692 samples with 17 MGs. The
dataset is obtained from 40 individuals using Kinect [8] and 25 3D joints are collected while
they are narrating a fake and true story.
Micro-Gesture Understanding and Emotion Analysis (iMiGUE) dataset [2] contains 32

MGs extracted from the post-match press conference videos. The sample is collected in RGB
and skeleton modalities using OpenPose [7]. A total of 137 key points are collected, including
70 face points, 42 hand points, and 25 body joints. Following the protocol of [11, 20, 24], we use
the 3rd dimension of the OpenPose joint as a pseudo dimension.

4.2. Results

We evaluated the proposed framework using two MG datasets and the results are shown in
Table 1. We compare the results with the baseline method without a self-attention layer and use
accuracy as a metric of evaluation, with top-1% and top-5% accuracy. The first row of Table 1
shows the baseline results on both datasets without a self-attention layer. Using the baseline,
the iMiGUE dataset achieved a top-1 accuracy of 53.98% and a top-5 accuracy of 90.5%. Similarly,
the SMG achieved 62.89% and 94.95% accuracies of top-1 and top-5, respectively. The second
row shows the proposed method with a self-attention layer, where the iMiGUE dataset reached
top-1 accuracy of 56.12 and top-5 accuracy of 90.01%, which is a significant improvement as
compared to the baseline. Likewise, the SMG also improved its accuracy and reached 64.26 and
95.23, top-1 and top-5 accuracies, respectively. Both datasets show that the GE-CN method
improved the results notably. One of the reasons SMG results show better performance is
because most of the person’s action skeleton data is available with full-body joints; however,
for the iMiGUE dataset, only the upper body joints are extracted because almost all of those
skeletons are extracted while the person is sitting on a chair.
We compare the results with previous methods, as shown in Table 2. We achieved the best



Table 2
Comparison with other methods using iMiGUE and SMG datasets

Method
iMiGUE dataset SMG dataset
Top-1% Top-5% Top-1% Top-5%

ST-GCN [11] 46.97 84.09 41.4 86.07
2S-GCN [21] 47.78 88.43 43.11 86.90
Shift-GCN [25] 51.51 88.18 55.31 87.34
GCN-NAS [26] 53.90 89.21 58.85 85.08
MS-G3D [20] 54.91 89.98 64.75 91.48
TRN [27] 55.24 89.17 - -
TRN [28] - - 59.51 88.53
GE-CN (our) 56.12 90.01 64.26 95.23

(a) iMiGUE dataset (b) SMG dataset

Figure 2: Latent features visualization of four categories for each dataset

results both on the iMiGUE and SMG datasets. If we look at the MG-G3D method in the 5𝑡ℎ row,
we improved the performance significantly using the iMiGUE dataset and the top-5% accuracy
using the SMG dataset; however, we didn’t achieve the best results in the top-1% accuracy on
the SMG dataset and placed slightly below the MS-G3D method.

We visualized the latent features of all categories of iMiGUE and SMG datasets, as shown in
Figure 3, but for better visualization, we only visualized four categories from each dataset in
Figure 2. Both images show the clusters of classes in different color schemes. The target legend
reflects the number of classes in a dataset. The visualization was done using the T-SNE tool.
We transformed the high-dimensional latent features to two dimensions and used one epoch
samples for better visualization.

5. Conclusion

In this work, we introduced a graph-encoding convolutional network that extracts intrinsic
joint representation from skeleton data using a self-attention module in the spatial domain. The
extracted features are forwarded to the multi-scale temporal convolution module to extract
the temporal join relationship. The learned features are fed to the classification module for
micro-gesture classification. The proposed framework was evaluated on two micro-gesture



(a) iMiGUE dataset (b) SMG dataset

Figure 3: Latent features visualization of all categories of each dataset

datasets, SMG and iMiGUE, which achieved state-of-the-art results with top-1% accuracy of
64.26 and 56.12, respectively.
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