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Abstract
LFIT is a well known declarative machine learning framework able to generate propositional logic twins
of complex systems. It needs discrete input data. It has been successfully applied in further works to
explain biases in different domains. This work aims to extend and improve LFIT capabilities on numeric
domains.
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1. Motivation

Machine learning algorithms, specially deep learning approaches, have been successfully applied
to an increasing number of different areas and applications and have become a de facto standard
in many domains. In this context, the term machine learning is a rather metonymical use to
stand for numerical or statistical machine learning models. These algorithms feed on huge
amount of data to learn how to get answers similar to those of the data seen, when facing
unseen new data. They mimic, in this way, the process implicit in the data and, the only reason
that they usually provide to explain their decisions is that they choose the ones with higher
probabilities among all the options. But, to mimic the process implicit in the available data
implies to reproduce it, including unfair biases, regarding gender or ethnicity, for example.
There exist domains in which, due to ethical or legal constraints, this skewed behaviour is not
acceptable as, for instance, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] reported.

Not only the scientific community is concerned by this issue, governmental initiatives have
been also taken such as [15].
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This scenario describes one of the main motivations for the emerging area that is being called
explainable artificial intelligence or XAI [16]. In the last years, several conditions have been
described to consider that a machine learning model is able to explain its decisions. Traditional
opaque algorithms have been extended, enriched or sometimes wrapped in techniques to
increase their explainability. [17] is one of the more complete surveys on this topic.

By the other hand, approaches based on discrete and declarative learning models coined, back
in the late eighties [18], the terms strong and ultra strong to stand for essentially explainable
(also called interpretable or transparent) machine learning models. Logic programming is one
of the most powerful declarative paradigms that better fits for the ultra strong category.

Learning from interpretation transitions (LFIT [19]) is a very powerful declarative machine
learning approach able to induce a propositional logic theory equivalent to the data which
it feeds on. Its original goal was to produce a declarative (propositional logic) twin to some
biological complex systems (metabolic pathways). The help of experts in Biology was needed
to properly discretize the datasets describing the low-level chemical behaviour of the pathways.
This contribution continues previous works of the authors ([20, 21]) as we describe in the proper
section.

Both, pure statistical or pure declarative approaches are not the only option. Mixed approaches
try to take advantage of the best characteristics of both of them. From our perspective and
interests the most relevant are those that produce the representation of the knowledge learned
by the algorithm with highest level of abstraction. One of these approaches is PSyKE [22].
PSyKE takes a step further than other previous approaches to extract knowledge from data
sets by unifying them and translating them into first order (Prolog) theories. Its theoretical
basis and guarantees rely on those of the underlying models, and most of them belongs to the
statistical realm. Although we are mainly interested in declarative approaches PSyKE is focused
in the unification of the extraction procedure to be expressed as first order logical theories what
shares our general purpose approach.

One of the areas of interest for this work is the automatic assessment of personal profiles
such as, for example, in automatic recruiting and hiring processes. Several recent works were
focused on XAI for this domain [23, 24, 25, 26, 27].

Statistical machine learning models do their best on numerical data and usually need to
transform categorical attributes into numeric, while declarative ones do the opposite. The
benefit, or rather need, to discretize data before applying declarative models has been already
reported, long time ago, such as in [28].

Our goal in this work is to improve the performance of LFIT for managing biases in automatic
assessment of personal profiles and, by the other hand, to extend LFIT with some general
purpose discretizers to be used in case of facing numerical information as it is the case in these
scenarios.

The rest of the paper is organized as follows:
Section 2 describes the context of this research, paying special attention to how LFIT can be

used to explain biases; available methods to design a general purpose discretizer for LFIT, both,
unsupervised (biometric hashing) and supervised (CAIM); and a brief and intuitive description
of LFIT. This section includes all the needed references.

Section 3 summarizes the main contributions of this paper that is focused on testing the
viability of adding a general purpose discretizer to LFIT and improving its ability to handle



biases in demografic and biometric datasets, by means of this new module and by extending
LFIT to overcome issues found in previous works.

Section 4 describes the steps taken, decisions made and experiments run to test the viability
of adding a general purpose discretizer with CAIM and biometric hashing. In each case it has
been checked that LFIT ability to explain biases is not worsen. Specific experiments have been
designed to fully control and analyse each step to incorporate a complete version of biometric
hashing to LFIT.

Section 5 is devoted to explain how LFIT itself has been extended to improve the accuracy of
its explanations in general, but specially in demografic and biometric domains.

And finally section 6 summarizes the main conclusions of this research and describes our
future plans and open lines.

2. State of the art

2.1. Explaining biases by symbolic XAI: LFIT

The authors of this contribution had some successful previous experience in explaining biases
by means of LFIT [29, 20]. In this preliminary works, LFIT was applied for the first time for this
purpose and some limitations and advisable further research lines were identified.

2.2. Discretizaton of numeric information in machine learning scenarios

The difficulty of handling numeric (continuous) information in some machine learning scenarios
has been reported long time ago [30]. It is always possible to follow a naive approach and split
numeric attributes with some ad-hoc technique. There exist several contributions that describe
different approaches to discretization such as [31, 32, 33, 34, 35, 36, 37, 38, 39, 40] and some
review on this topic, [41]. In these papers more systematic and automatic approaches are intro-
duced, considering, for example, from rather simple equal width / frequency intervals to more
sophisticated unsupervised and supervised approaches; some of them consider discretization as
a special case of clustering; some others take into account statistical information drawn from
the values of the numeric attributes as the aforementioned Chimerge [38] and its extension
𝐶ℎ𝑖2 [39] that proposes the 𝜒2 test to relate the values of the attributes; other approaches are
based on the Shannon’s entropy concept, such as [40], that has been used for discretizing the
inputs to TILDE [28], an ILP system used back in the late 90’s. Entropy is a concept widely used
in these domains by systems as ID3 [42] or FUSINTER [43].

To get a really general purpose discretizer for LFIT we have to include options both for
supervised and unsupervisded scenarios.

The next two sections explain our choices.

2.2.1. Unsupervised discretizers: biometric hashing

The most interesting unsupervised discretizer for this work is biometric hashing that was
introduced, proposed and tested by some of the authors of this contribution in [44]. Although
its goal is different from that of this paper, it has characteristics very important for us.



Biometric hash is based on k-means [45] with which shares its best-known limitation: the
number 𝑘 of clusters has to be provided.

Biometric hashing proceeds as follows: it designs, the best possible grouping of the attributes,
with respect to its relevance, that have to be discretized among all their possible combinations,
including also groupings that exclude some irrelevant attribute and the possibility for the groups
to overlap by sharing some common subset of attributes. This optimization is delegated to an
adequate algorithm. In [44] for example, a genetic engine is considered. k-means is used in each
group and the group (its centroid) is labelled with Gray code to ensure that close groups differ
in few bits. Finally, each value of the discretized attributes is labelled with the concatenation of
the labels of its centroids of each groups. Biometric hashing generates, in this way, discrete
values that keep the semantics included in the original attributes: the codes of close centroids
differ in few bits. Keeping the semantics is the most important characteristic for us and it is
why we have chosen biometric hashing as the unsupervised algorithm for our general purpose
discretizer.

2.2.2. Supervisded discretizers: CAIM

CAIM (Class-Attribute Interdependence Maximization) [31] locally maximizes the inter depen-
dency between classes and attributes, and hence, it reduces the number of intervals needed to
discretize. This is done by means of the definition of the CAIM criterion that normalizes this
dependency between classes and attributes: the higher the criterion, the higher interdependency
between class and attribute.

CAIM iterates, splitting the domains in each iteration, following the optimization of this
criterion until no further improvement is accomplished.

CAIM is one of the discretizer better ranked in surveys such as [46] and, although it has
been recently extended [37] and other models are also interesting, it still can be considered
as a classic de facto standard supervised discretizer. We have chosen CAIM for our general
purpose discretizer as a good option without any other experimental tests that could support
and guarantee a better performance in any domain. Future experiments and developments
will cope with this question. The goal of the current paper is to test the viability of a general
purpose approach.

2.3. LFIT

Learning from interpretation transition (LFIT) [47] has been proposed to induce propositional
logic twins of complex dynamic systems from the observation of its state transitions. From data
captured from the domains of the systems, some discretization on them is needed to finally feed
LFIT.

The LFIT framework actually includes a family of algorithms with their implementations that
come from several extensions, generalizations and performance improvements: for memory-less
deterministic systems [47], for systems with memory [48], for probabilistic systems [49], and
for their multi-valued extensions [50, 51], for continuous data[52], and for learning system
dynamics no matter their update semantics [53, 54]. LFIT can be used, then, to learn an
equivalent propositional logic program that provides explanations for each given observation,



and thus, our bet has been to incorporate LFIT as an alternative to explain the decisions of
opaque machine learning processes.

Another suggestive feature of LFIT is its ability to get in some way minimal propositional
theories (programs) equivalent to the data seen. The rules learned by LFIT are prime implicant,
all their condition a necessary to explain the outcome, making them the best candidates for actual
causality explanation. In XAI scenarios, the relevance of explanations is an essential feature.
Logical equivalence ensures relevance. Minimality ensures efficiency. Being the programs
learnt by LFIT equivalent and minimal to the data, these programs’ size and structure could be
considered a metric of the complexity of the semantics implicit in the data.

From the family of LFIT algorithms, GULA [53, 54] and PRIDE [55] are the ones that we have
chosen. In particular PRIDE that improves GULA’s performance while keeping its theoretical
properties we are interested in.

In the examples used to introduce PRIDE, the description of the census [56] dataset included
in table 1 will be used. LFIT shares its logical notation with Prolog.

Rougly speaking we can consider that LFIT initially creates a clause to represent each single
row of the dataset. The values of its input attributes are translated into the clause’s body and
the target generated into its head.

Listing 1 shows an example of LFIT rules for the census dataset.

Listing 1: Prolog version of rules learnt by LFIT in the case study related to Table 1

𝑐𝑙𝑎𝑠𝑠(0) : −𝑎𝑔𝑒(3), 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛(6), 𝑚𝑎𝑟 𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠(0), 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛(0).
𝑐𝑙𝑎𝑠𝑠(0) : −𝑎𝑔𝑒(4), 𝑤𝑜𝑟𝑘𝑐𝑙𝑎𝑠𝑠(0), 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛(1), 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛(8), 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝(0), 𝑛𝑎𝑡𝑖𝑣𝑒𝐶𝑜𝑢𝑛𝑡𝑟𝑦(0).

𝑐𝑙𝑎𝑠𝑠(1) : − 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛(7), 𝑚𝑎𝑟 𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠(5).
𝑐𝑙𝑎𝑠𝑠(1) : −𝑎𝑔𝑒(2), 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛(8), 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛(10).
𝑐𝑙𝑎𝑠𝑠(1) : −𝑎𝑔𝑒(1), 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛(3), 𝑚𝑎𝑟 𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠(2), 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛(9).

The key concepts of the learning engine of LFIT are satate matching and rule dominance.
Informally, LFIT uses these two concepts to remove from the theory those rules that are more

specific than others that includes them.
After iterating on the set of examples and ensuring that all of them are covered, LIFT gets

the set of minimal rules equivalent to the set of examples. It is minimal because it includes the
more general rules and also because all the conditions of their bodies are needed, that is, if any
of them is removed, some examples end up not covered by the theory.

Formal and detailed explanations of LFIT and all these concepts can be found in the afore-
mentioned literature. We will explain them by means of examples:

In Listing 2 you can see how clause 𝑅1 dominates 𝑅2 because they have the same head
(𝑐𝑙𝑎𝑠𝑠(0)) and 𝑅1’s body is contained in that of 𝑅2.

Listing 2: Example of rule domination

𝑅1 ∶ 𝑐𝑙𝑎𝑠𝑠(0) : − 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛(6), 𝑚𝑎𝑟 𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠(0).

𝑅2 ∶ 𝑐𝑙𝑎𝑠𝑠(0) : −𝑎𝑔𝑒(3), 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛(6), 𝑚𝑎𝑟 𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠(0), 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛(0).



We have informally used so far the expression a clause covers an example. From a formal
viewpoint examples are considered states, clauses and rules are synonymous and to cover is
formally expressed as n state and a rule match.

Listing 3 shows an example of rule-state matching: state 𝑠1 and rule 𝑅1 does because 𝑠1 is
contained in 𝑅1’s body.

Listing 3: Example of rule-state matching

𝑠1 ∶ 𝑎𝑔𝑒(3), 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛(6), 𝑚𝑎𝑟 𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠(0), 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛(0)

𝑅1 ∶ 𝑐𝑙𝑎𝑠𝑠(0) : − 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛(6), 𝑚𝑎𝑟 𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠(0).

From the declarative viewpoint of LFIT, the focus is on the qualitative guarantee of learning
a logical version equivalent to the observed system. Regarding equivalence, the version is
equivalent or it is not. If the model fails in 1% of the examples, equivalence is lost in the same
way than if it had failed in 20% or 60% of the examples.

From the viewpoint of the statistical approaches it is very important to take into account
the amounts. For example, the output of deep-learning classifiers is based on a quantitative
criterion such as to choose the label with the highest probability.

It could seem that the qualitative behaviour of LFIT does not matter; but this is not exactly
true.

LFIT can easily collect qualitative information, such as how many states (input examples)
match each rule. This numerical information can be used as weights, both to better explain and
understand the process, but also to incorporate predicting capabilities to the declarative version.
This option has been explained and explored in [57, 58].

3. Contributions of this paper

Main contributions of this papers can be summarised in the following two points: to add to LFIT
a general purpose discretizer that improves its ability to explain hidden semantic relationships on
numeric domains; and extend LFIT itself to improve its expressiveness to explain demographic
and biometric datasets, for example, to detect biases. Being more specific we can reformulate
this two main goals in supporting or rejecting the following intuitive opinions or hypothesis:

• It is not clear that CAIM finds the best number of clusters (optimum) for any clustering
algorithm.

• It seems that supervised discretizers outperform unsupervised ones, but unsupervised
ones worth depending on the availability of the right number of clusters.

• It seems that the discretization used matters for LFIT

• It seems that biometric hashing used as a general purpose discretizer does not worsen
the expressive power of other ad-hoc discretizers.



Table 1
Names, values and codification of the dataset about incomes. Attributes of type C take integer or real
continuous values and they are uniformly discretised. Attributes of type D are originally discrete and
are numerically coded from 0 to the maximum needed value.

Attribute Meaning Type Codification

Age Age of the individual (years) C {0, 1, … , 7}
Workclass Work type (self employment, private, …) D {0, 1, … , 6}
Fnlwgt Demographic weight (row) from census D {0, 1, … , 14}

Education Highest academic degree D {0, 1, … , 15}
Marital status Civil status D {0, 1, … , 3}
Occupation Individual’s job sector D {0, 1, … , 13}
Relationship Present individual’s relationship D {0, 1, … , 5}
Ethnicity Ethnic group D {0, 1, … , 4}

Sex D {0, 1}
Capital gain Increase in individual’s capital asset C {0, 1, … , 9}
Capital loss Decrease in individual’s capital asset C {0, 1, … , 4}

Hours per week Spent on work (average) C {0, 1, … , 9}
Native country Country of origin D {0, 1, … , 40}
Income level Individual’s class of income (≤ 50, > 50) D {0, 1}

• It seems that extending LFIT by incorporating from the dataset under consideration,
some measure of the weights that actually each rule has, ends up in quantitatively more
accurate programs.

In this paper we have used tree datasets:
The UCI wine dataset [59]: a well-known labeled numeric dataset about some Italian wines’

characteristics. It contains thirteen continuous atributes: alcohol, malic acid, ash, alcalinity
of ash, magnesium, total phenols, flavanoids, nonflavanoid phenols, proanthocyanins, color
intensity, hue, OD280/OD315 of diluted wines, and proline; in addition to a categorical target
about wine’s quality that considers three different classes of wine.

The US 1994 census [56] that is described in table 1.
The FariCV db dataset detailed described in [29, 20].

4. General purpose discretizer for LFIT

Roughly speaking, from the machine learning viewpoint, any domain should be able to be faced
either from supervised or from unsupervised approaches (or even from both). We have, hence,
integrated with LFIT a general purpose discretizer that includes both options. The researcher
can select the one that fits its domain.

From the unsupervised viewpoint we take in this work the first steps to check the viability of
incorporating biometric hashing. From the supervised one we have choosen CAIM that could
be considered as a de facto standard.



Figure 1: Precision of CAIM vs reduced biometric hashing on wine dataset (test subset)

4.1. Supervised vs unsupervised discretization for LFIT

4.1.1. Rough comparison of raw precision of LFIT predictions

In order to compare CAIM and biometric hashing, labeled datasets are needed. We have chosen
the wine dataset [59]. We have, in addition, reduced biometric hashing to the standard grouping
(as many groups as attributes and with a single attribute in each group) in order to highlight
the differences with CAIM when separately discretizing each attribute. CAIM automatically
suggests the most adequate number of clusters for each attribute. In this experiment, CAIM
found that three clusters was the best number no matter which of the thirteen attributes. To
compare standard biometric hashing with CAIM all the combinations of different number of
clusters for each of the thirteen attributes should be checked. In this first proof of concept we
decided to take a preliminary look at the behaviour of the discretizers analyzing by hand as
many aspects as possible to be able to explain step by step what we find. We decided to mimic
in some way CAIM’s results using the same number of clusters for all the attributes and to
compare CAIM vs the reduced biometric hashing considering 2 to 10 clusters. The performance
of LFIT on the discretized dataset generated by each method was computed as the percentage
of hits when predicting the class on the test portion of the dataset. Figure 1 compares both
methods.

This prelimiary test supports the intuitive initial assertion: supervised clustering should
outperform unsupervised techniques, it is shown that, in some way, CAIM’s performance
sets an upper bound that of basic biometric hashing. By the ohter hand. CAIM’s results are 45
hits, of a total of 59 ( 76.27% of success) The other detailed values are provided in table 2. It
can also be seen that other of our hypothesis is also supported: unsupervised methods worth
when you find the right number of clusters. In this case, both 5 and mainly 2 are comparable
to CAIM. In the specific case of 2, both methods get the same performance.

A last consideration could be drawn from this experiment. Standard biometric hashing does
better for 2 and 5 clusters than for 3. CAIM algorithm automatically choses 3. So, some informal
evidence is provided against the aforementioned intuition: CAIM finds a global optimum
number of clusters useful for any other clustering algotirhm.



Table 2
Std. biometric hashing

std. biometric hashing

# de clusters Aciertos Total % de aciertos
2 45 59 76,27
3 42 59 71,19
4 38 59 64,41
5 44 59 74,58
6 36 59 61,02
7 40 59 67,80
8 39 59 66,10
9 39 59 66,10
10 37 59 62,71

Figure 2: NPs of each attribute, CAIM+LFIT vs basic biometric hashing+LFIT

4.1.2. Assessment of the explainability of discretizers

To compare the information retained by each discretizer we repeat the kind of analysis of [20]
based on 𝑁𝑃 with wine dataset. Figure 2 summarizes the results of this experiment. Remember
that all the NPs for the same method add up 1 and, hence, the total of blue columns is 1 (same
for the orange ones).

Figure 2 shows that both discretizers catch the most relevant set of attributes (alcohol, malic
acid, ash, alcalinity of ash and magnesium). But some relevant differences are also clear:

The relevance of some attributes such as total phenols and flavanoids is the opposit depending
on the discretizer.

Some other attributes disappear for CAIM (nonflavanoid phenols, proanthocyanins, color
intensity or proline).

So, this first proof of concept supports the aforementioned hypothesis: the discretizer used
matters



4.2. Discretization and biases detection by LFIT

The main goal of our work is to improve the way in which LFIT handles biases. Discretization
is important to tackle datasets with numeric attributes. But we have to ensure we do not worse
the already proven ability of LFIT to detect and explain biases.

To get it, we have reproduced the experiments run in [20] on the FairCV and US 1994 census
databases.

4.2.1. Biases on FairCV db with general purpose discretizers

[20] describes how LFIT can be used to identify gender and ethnic biases by performing simple
statistics comparing how many times these attributes increases and with which value between
biased and unbiased datasets.

In this case we have replaced the equal width approach by the basic biometric hashing.
[20] contains a detailed description of the FairCV dataset. Among its characteristics, the most

relevant for the current work is that it contains one numeric attribute (work experience) and
one numeric target (the score given to the CV). Three different targets (scores) are given: an
unbiased one, and two biased scores, respectively by gender and by ethnicity.

This characteristic (numeric targets) is incompatible with CAIM that requires discrete targets.
So, the only option included in our systems for this kind of data is biometric hashing.

In this case, with just a single numeric attribute, biometric hashing reduces to k-means with
Gray codes for the centroids.

The next decision in this case is the number of clusters. We have decided to use the same
number than in [20] (6 for the input attribute and 4 for the targets). For checking the relevance
of all the input attributes in the dataset, in [20] different scenarios were considered to include
an input attribute at a time (from 𝑠1 to 𝑠11, this last one considers all the input attributes).

The parameters 𝐴𝐼𝑃 (absolute increment percentage) were used. They, in fact, measure the
increment of the absolute frequency of an attribute (howmany times it appears in the conditions
of the clauses learnt by LFIT) between two LFIT programs (one unbiased and another biased)
with respect to the second one (the biased, in this case). The intuitive interpretation of these
parameters is that the higher the AIP the attribute is a more important cause of bias.

Figure 3: 𝐴𝐼𝑃 𝑠7
𝑛𝑠,𝑠 − 𝐴𝐼𝑃 𝑠11

𝑛𝑠,𝑠 wrt biased-gender Figure 4: 𝐴𝐼𝑃 𝑠1
𝑛𝑠,𝑠 − 𝐴𝐼𝑃 𝑠6

𝑛𝑠,𝑠 wrt biased-gender

Figures 4, 3, 6, 5 graphically show the 𝐴𝐼𝑃 of each attribute. They are very similar to those
in [20] and the interpretation is the same: the gender bias seems to be caused by the attribute



Figure 5: 𝐴𝐼𝑃 𝑠7
𝑛𝑠,𝑠 − 𝐴𝐼𝑃 𝑠11

𝑛𝑠,𝑠 wrt biased ethnicity Figure 6: 𝐴𝐼𝑃 𝑠1
𝑛𝑠,𝑠 − 𝐴𝐼𝑃 𝑠6

𝑛𝑠,𝑠 wrt biased ethnicity

gender and the ethnicity bias seems to be caused by ethnic group because they are those that
increment their presence the most as a condition in the clauses of the LFIT program comparing
the unbiased version with the biased one.

In [20] the relevance of each value of the attributes were also studied by means of the
parameter partial weight (𝑃𝑊) for every attribute, that accumulates how many times each
specific value of the attribute appears as argument in the conditions of clauses for every value of
the target in the head of the clauses. Figures 11 and 12 show the 𝑃𝑊s for gender and figures 13
and 14 show that of ethnic group. In figure 12, for example, 𝑃𝑊 for gender male and unbiased
score 4 counts how many clauses in the program learnt by LFIT from unbiased scores include
as condition 𝑔𝑒𝑛𝑑𝑒𝑟(𝑚𝑎𝑙𝑒) and as head 𝑠𝑐𝑜𝑟𝑒(4).

These figures express the same information explained in [20]: the higher values of each color
shows the specific score value for which the considered attribute value is more relevant. In
the case or data biased by gender: female for lower scores (2 and 1), and male for higher. In
the case of ethnic bias: lower scores (2 and 1) for ethnic groups different from Caucasian, and
higher for Caucasian. You can also see in these figures how the higher scores increase more
when biasing data for male and Caucasian ethnicity while lower scores does the same for male
and other ethnic groups.

4.2.2. Biases on US 1994 census with general purpose discretizers

A similar procedure has been followed on census. In this case (the target is discrete) both
approaches (CAIM and biometric hashing) are applicable.

[20] describes how LFIT can be used to identify gender and ethnic biases by performing
simple statistics counting how many times these attributes occurs for high and low earnings.

We have decided to compare CAIMwith standard basic biometric hashing on single attributes;
and to keep the same number of clusters used in [20], that is, 8 for age, 10 for capital gain and
hours per week; and 4 for capital loss. In this case 𝑁𝑃 parameter is used no normalize 𝑃𝑊s. This
dataset has no unbiased version so we keep the hypothesis of [20]: high or low income usually
are biased by gender and ethnic group.

Figures 7, 8, 9, and 10 show the same behaviour seen in [20]: hihger incomes are more
probable for Caucasian males.

A closer comparison between CAIM and basic biometric hashing suggests that CAIM’s



discretization could allow LFIT to amplify in some way the relevant information under consid-
eration: in this case the role of gender and ethnic group to skew the incomes in US. This slightly
supports one of our hypothesis: supervised discretizers should outperform unsupervised
ones.

Figure 7: gender 𝑁𝑃, basic biom. hashing in census Figure 8: ethnic group 𝑁𝑃, basic biom. in census

Figure 9: gender 𝑁𝑃, CAIM in census Figure 10: ethnic group 𝑁𝑃, CAIM in census

Although more experiments have to be done, We can conclude that these results support
one of our hypothesis: biometric hashing used as a general purpose discretizer does not
worsen the expressive power of other ad-hoc discretizers.

Figure 11: 𝑃𝑊 for female gender in FairCV db Figure 12: 𝑃𝑊 for male gender in FairCV db



Figure 13: 𝑃𝑊 for other ethnic groups in FairCV db Figure 14: 𝑃𝑊 for Caucasian ethnic group in FairCV db

4.3. Biometric hash inspiration in the general purpose discretizer

Biometric hash’s advantages have been previously described. Although the domain in which
this recent technique has been proposed is different from ours, a general purpose discretizer
should include features such us to be unsupervised, to automatically search for the best grouping
of numerical attributes and to label the clusters’ centroids in such a way that similar labels
stand for close clusters. Regarding the first point, biometric hash is, in fact, based on k-means.
Regarding the second one, it is able to, even both: discarding irrelevant attributes, but also
considering overlapping groups to cope with complex relationships between them. Regarding
the third one, biometric hash concatenates the gray codes of the projection of each centroid’s
on each group to get a label that ensures that close centroids differ in few bits.

To check its viability as a general discretizer, we propose a method inspired by biometric
hashing adapting its features in this way:

In the basic case, a single numeric attribute is handled by biometric hash by applying k-means
and labeling each centroid with gray codes. This is the standard procedure already considered
in this work.

Biometric hashing includes a module to find the better grouping of characteristics. It is, in
fact, an optimization problem usually solved by means of search techniques. We have decided
to explicitly analyze all the possible groupings by hand in a proper dataset. In this first test, we
have adopted two assumptions: all the attributes in the dataset are relevant and independent
from each other. This implies some constraints to the grouping: all the attributes should belong
to any group of the grouping (relevance) and only to one (independence).

After designing the best grouping of attributes, the biometric hashing concatenates the codes
of all the centroids of each group in that grouping to generate a single label to each combination
of the grouped attributes. Our general purpose approach has to potentially cope with datasets
with lots of numerical attributes (as in the case, for example, of any scenario that includes
images) what eventually could, if the best grouping includes too many groups of attributes,
ends up with an attribute with lots of different values represented as large binary numbers,
and hence, from a practical viewpoint, this attribute will be indistinguishable from any other
numeric information. In this first proof of concept we have decided to keep each group in the
grouping separate and not to concatenate their labels.

To check the viability of biometric hashing as a general purpose unsupervised discretizer



Figure 15: Comparison of NP for each attribute vs each grouping (𝑔1, 𝑔2 and 𝑔3)

for LFIT, We have choosen the 1994 US census dataset [56] because it contains four numeric
attributes (age, capital gain, capital loss and hours per week) that can easily be reduced to three
by subtracting capital loss from gain to compute a single attribute (capital). If these three numeric
attributes are respectively named 𝑛1, 𝑛2 and 𝑛3, our two assumptions (relevance and indepence)
reduce, in fact, the possible combinations to the groups 𝑔1 = {{𝑛1}, {𝑛2}, {𝑛3}} (this is the reference
grouping to compare with), 𝑔2 = {{𝑛1, 𝑛2, 𝑛3}}, 𝑔3 = {{𝑛1, 𝑛2}, {𝑛3}}, 𝑔4 = {{𝑛1}, {𝑛2, 𝑛3}} and
𝑔5 = {{𝑛1, 𝑛3}, {𝑛2}}.

Once we have seen that k-means with the standard grouping catches the same bieses than
equal-width intervals used in [20] we have looked by hand for the best grouping among those
previously described. Figure 15 and 16 show the 𝑁𝑃 for each attribute compared with each
group. The best grouping should be at leat as good as 𝑔1. All the groupings seem to be useless
because they apparently put together information whose combination is incoherent with the
semantics of the dataset. In figure 16, nevertheless, you can see that 𝑔5 is a quite reasonable
grouping. 𝑔5’s behaviour is similar to that of 𝑔1 for all the attributes possible. In addition
𝑔5 is the only one that seems to accumulate the information contained in the attributes it
includes (age, and hours per week). The arrows in the figure show that NP for 𝑔5 accumulates
the information of both attributes (the height of its column seems tu accumulate the sizes of
the others). So, we can conclude that 𝑔5 is able to put together its attributes without loosing
information.

5. Improving biases detection by LFIT

The other main goal of this paper is to improve the ability of LFIT to handle biases extending
LFIT to specifically face datasets with the typical structure that of demographic and biometric
scenarios.

Our proposal takes advantage of a characteristic of the LFIT’s learning engine: each clause
added to the learnt program, reduces the positive examples set in those that it can explain. So,
it is possible to know how many examples are covered by each clause.

In addition, in biometric and demographic scenarios it is usual (and sometimes mandatory)
the inclusion of some final weight information that represents how many real cases is covered



Figure 16: Comparison of NP for each attribute vs each grouping (𝑔1, 𝑔4 and 𝑔5)

by each single row in the real dataset.
LIFT has been extended to accumulate the final weight of each row when the number of

actual examples covered by each rule is computed.
Once LFIT provides the researchers with this value, all the parameters and graphics shown

can be (re)calibrated to cope with the final actual weight that each clause has.
In this fist proof of concept the experiments in section 4.2.2 have been repeated with the

extended LFIT version.
Figures 17, 18, 19, and 20 shows the new version of the same figures of section 4.2.2

corresponding to the extended LFIT version re calibrated to take into account the actual weight
of each rule.

It is clear that the qualitative information about the origin of the biases is the same but the
quantitative values are much more accurate.

Although further experiments are needed, these preliminary results support one of our
hypothesis: extended versions of LFIT that allow to incorporate from the dataset under
consideration, some measure of the weights that actually each rule has, ends up in
quantitatively more accurate programs.

Figure 17: Weig. gender 𝑁𝑃 biom. hash in census Figure 18: Weig. ethnic group 𝑁𝑃, biom. hash in census



Figure 19: Weig. gender 𝑁𝑃, CAIM in census Figure 20: Weig. ethnic group 𝑁𝑃, CAIM in census

6. Conclusions and further research lines

This paper represents a proof of concept for incorporating to LFIT a general purpose discretizer
that includes CAIM and biometric hashing respectively as supervised and unsupervised methods.
Experiments suggest that LFIT will be able to cope with general numeric datasets.

This research has also extended LFIT to improve the accuracy of its explanations when
dealing with demografic or biometric datasets that ususally include information of the final
weight that each row of the dataset actually has.

In addition, the experiments done have supported the answer to all the questions introduced
in section 3.

In the future we plan new experiments to deeply analyse all these questions and to apply the
new extended LFIT version to numeric domains already introduced:

• Does CAIM find the best number of clusters?

• Do supervised discretizers outperform unsupervised ones?

• Is the discretization used able to get different LFIT results?

• Does biometric hashing used worse the expressive power of other ad-hoc discretizers?

• To incorporate some measure of the weights that actually each rule has ends up in
quantitatively more accurate LFIT results?

Acknowledgments

Supported by project BBforTAI (PID2021-127641OB-I00MICINN/FEDER).

References

[1] A. Acien, A. Morales, R. Vera-Rodriguez, I. Bartolome, J. Fierrez, Measuring the gender
and ethnicity bias in deep models for face recognition, in: Proceedings of Iberoamerican
Congress on pattern recognition (IbPRIA), IbPRIA, 2018.



[2] P. Drozdowski, C. Rathgeb, A. Dantcheva, N. Damer, C. Busch, Demographic bias in
biometrics: a survey on an emerging challenge, IEEE Trans Technol Soc 1 (2020) 89–103.

[3] S. Nagpal, M. Singh, R. Singh, M. Vatsa, N. Ratha, Deep learning for face recognition: pride
or prejudiced?, CoRR abs/1904.01219 (2019). URL: https://arxiv.org/abs/1904.01219.

[4] J. Zhao, T. Wang, M. Yatskar, V. Ordońez, C. K., Men also like shopping: reducing
gender bias amplification using corpus-level constraints, in: Proceedings of conference
on empirical methods in natural language processing, Association for Computational
Linguistics, 2017, p. 2979–89.

[5] S. Noble, Algorithms of oppression: how search engines reinforce racism, NYU Press, 2018.
[6] L. Sweeney, Discrimination in online ad delivery: Google ads, black names and white

names, racial discrimination, and click advertising, Queue 11 (2013) 10–29. URL: https:
//doi.org/10.1145/2460276.2460278. doi:10.1145/2460276.2460278.

[7] M. Ali, P. Sapiezynski, M. Bogen, A. Korolova, A. Mislove, A. Rieke, Discrimination through
optimization: how facebook’s ad delivery can lead to skewed outcomes, in: Proceedings
of the ACM conference on human–computer interaction, Association for Computational
Linguistics, 2019, p. 2979–89.

[8] J. Angwin, J. Larson, S. Mattu, L. Kirchner, Machine bias, ProPublica, 2016.
[9] M. Evans, A. Mathews, New york regulator probes united health algorithm for racial bias

(2019).
[10] W. Knight, The apple card didn’t ’see’ gender—and that’s the problem (2019).
[11] J. Buolamwini, T. Gebru, Gender shades: intersectional accuracy disparities in commercial

gender classification, in: Proceedings of the ACM conference on fairness, accountability,
and transparency, Association for Computational Linguistics, 2018.

[12] M. Wang, W. Deng, Mitigating bias in face recognition using skewness-aware reinforce-
ment learning, in: IEEE conference on computer vision and pattern recognition (CVPR),
IEEE, 2020, p. 9322–31.

[13] I. Serna, A. Morales, J. Fierrez, M. Cebrian, N. Obradovich, I. Rahwan, Algorithmic
discrimination: formulation and exploration in deep learning-based face biometrics, in:
Proceedings of the AAAI workshop on SafeAI: CEUR Workshop Proceedings, AAAI, 2020,
p. 9322–31.

[14] G. Balakrishnan, Y. Xiong, W. Xia, P. Perona, Towards causal benchmarking of bias in face
analysis algorithms, in: European conference on computer vision (ECCV), Springer-Verlag,
2020, p. 547–63.

[15] B. Goodman, S. Flaxman, Eu regulations on algorithmic decision-making and a “right to
explanation.”, AI Mag 38 (2021) 50–57.

[16] D. Castelvecchi, Can we open the black box of ai?, Nature News 538 (2016) 20–23.
[17] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García,

S. Gil-López, D. Molina, R. Benjamins, et al., Explainable artificial intelligence (xai):
Concepts, taxonomies, opportunities and challenges toward responsible ai, Information
fusion 58 (2020) 82–115.

[18] D. Michie, Machine learning in the next five years, in: D. H. Sleeman (Ed.), Proceedings of
the Third European Working Session on Learning, EWSL 1988, Turing Institute, Glasgow,
UK, October 3-5, 1988, Pitman Publishing, 1988, pp. 107–122.

[19] T. Ribeiro, Studies on learning dynamics of systems from state transitions, 2015. PhD.

https://arxiv.org/abs/1904.01219
https://doi.org/10.1145/2460276.2460278
https://doi.org/10.1145/2460276.2460278
http://dx.doi.org/10.1145/2460276.2460278


[20] A. Ortega, J. Fierrez, A. Morales, Z. Wang, M. de la Cruz, C. L. Alonso, T. Ribeiro, Symbolic
ai for xai: Evaluating lfit inductive programming for explaining biases in machine learning,
Computers 10 (2021). URL: https://www.mdpi.com/2073-431X/10/11/154. doi:10.3390/
computers10110154.

[21] A. Ortega, J. Fierrez, A. Morales, Z. Wang, T. Ribeiro, Symbolic ai for xai: Evaluating lfit
inductive programming for fair and explainable automatic recruitment, in: Proceedings of
the IEEE/CVF winter conference on applications of computer vision, 2021, pp. 78–87.

[22] F. Sabbatini, G. Ciatto, R. Calegari, A. Omicini, Symbolic knowledge extraction from
opaque ML predictors in PSyKE: Platform design & experiments, Intelligenza Artificiale 16
(2022) 27–48. URL: https://content.iospress.com/articles/intelligenza-artificiale/ia220141.
doi:10.3233/IA-210120.

[23] J. S. Black, P. van Esch, Ai-enabled recruiting: What is it and how should a manager use
it?, Business Horizons 63 (2020) 215–226. URL: https://www.sciencedirect.com/science/
article/pii/S0007681319301612. doi:https://doi.org/10.1016/j.bushor.2019.12.001.

[24] M. Bertrand, S. Mullainathan, Are emily and greg more employable than lakisha and
jamal? a field experiment on labor market discrimination, American Economic Review
94 (2004) 991–1013. URL: https://www.aeaweb.org/articles?id=10.1257/0002828042002561.
doi:10.1257/0002828042002561.

[25] M. Raghavan, S. Barocas, J. Kleinberg, K. Levy, Mitigating bias in algorithmic hiring: eval-
uating claims and practices, in: Conference on fairness, accountability, and transparency,
ACM, Association for Computing Machinery, 2020, p. 469–81.

[26] C. Schumann, J. Foster, N. Mattei, J. Dickerson, We need fairness and explainability in
algorithmic hiring, in: Proceedings of the 19th international conference on autonomous
agents and multiagent systems, International Foundation for Autonomous Agents and
Multiagent Systems, 2020, p. 1716–20.

[27] J. Sánchez-Monedero, L. Dencik, L. Edwards, What does it mean to ‘solve’ the problem of
discrimination in hiring? social, technical and legal perspectives from the uk on automated
hiring systems, in: Conference on fairness, accountability, and transparency, Association
for Computing Machinery, 2020, p. 458–68.

[28] H. Blockeel, L. De Raedt, Lookahead and discretization in ilp, in: Inductive Logic Program-
ming: 7th International Workshop, ILP-97 Prague, Czech Republic September 17–20, 1997
Proceedings 7, Springer, 1997, pp. 77–84.

[29] A. Ortega, J. Fierrez, A. Morales, Z. Wang, T. Ribeiro, Symbolic AI for XAI: evaluating
LFIT inductive programming for fair and explainable automatic recruitment, in: IEEE
Winter Conference on Applications of Computer Vision Workshops, WACV Workshops
2021, Waikola, HI, USA, January 5-9, 2021, IEEE, 2021, pp. 78–87. URL: https://doi.org/10.
1109/WACVW52041.2021.00013. doi:10.1109/WACVW52041.2021.00013.

[30] S. Kotsiantis, D. Kanellopoulos, Discretization techniques: A recent survey, GESTS
International Transactions on Computer Science and Engineering 32 (2006) 47–58.

[31] L. A. Kurgan, K. J. Cios, Caim discretization algorithm, IEEE transactions on Knowledge
and Data Engineering 16 (2004) 145–153.

[32] M. Boulle, Khiops: A statistical discretization method of continuous attributes, Machine
Learning (2004) 53–69. URL: https://doi.org/10.1023/B:MACH.0000019804.29836.05. doi:10.
1023/B:MACH.0000019804.29836.05.

https://www.mdpi.com/2073-431X/10/11/154
http://dx.doi.org/10.3390/computers10110154
http://dx.doi.org/10.3390/computers10110154
https://content.iospress.com/articles/intelligenza-artificiale/ia220141
http://dx.doi.org/10.3233/IA-210120
https://www.sciencedirect.com/science/article/pii/S0007681319301612
https://www.sciencedirect.com/science/article/pii/S0007681319301612
http://dx.doi.org/https://doi.org/10.1016/j.bushor.2019.12.001
https://www.aeaweb.org/articles?id=10.1257/0002828042002561
http://dx.doi.org/10.1257/0002828042002561
https://doi.org/10.1109/WACVW52041.2021.00013
https://doi.org/10.1109/WACVW52041.2021.00013
http://dx.doi.org/10.1109/WACVW52041.2021.00013
https://doi.org/10.1023/B:MACH.0000019804.29836.05
http://dx.doi.org/10.1023/B:MACH.0000019804.29836.05
http://dx.doi.org/10.1023/B:MACH.0000019804.29836.05


[33] K. M. Ho, P. D. Scott, An efficient global discretization method, in: X. Wu, R. Kotagiri,
K. B. Korb (Eds.), Research and Development in Knowledge Discovery and Data Mining,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 383–384.

[34] R. Kerber, Chimerge: Discretization of numeric attributes, in: Proceedings of the Tenth
National Conference on Artificial Intelligence, AAAI’92, AAAI Press, 1992, p. 123–128.

[35] Y. Yang, G. I. Webb, X. Wu, Discretization Methods, Springer US, Boston, MA,
2010, pp. 101–116. URL: https://doi.org/10.1007/978-0-387-09823-4_6. doi:10.1007/
978-0-387-09823-4_6.

[36] J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised discretization of
continuous features, in: A. Prieditis, S. Russell (Eds.), Machine Learning Proceedings
1995, Morgan Kaufmann, San Francisco (CA), 1995, pp. 194–202. URL: https://www.
sciencedirect.com/science/article/pii/B9781558603776500323. doi:https://doi.org/10.
1016/B978-1-55860-377-6.50032-3.

[37] A. Cano, D. T. Nguyen, S. Ventura, K. J. Cios, ur-caim: improved CAIM discretization for
unbalanced and balanced data, Soft Comput. 20 (2016) 173–188. URL: https://doi.org/10.
1007/s00500-014-1488-1. doi:10.1007/s00500-014-1488-1.

[38] R. Kerber, Chimerge: Discretization of numeric attributes, in: Proceedings of the Tenth
National Conference on Artificial Intelligence, AAAI’92, AAAI Press, 1992, p. 123–128.

[39] H. Liu, R. Setiono, Feature selection via discretization, IEEE Transactions on knowledge
and Data Engineering 9 (1997) 642–645.

[40] U. M. Fayyad, K. B. Irani, Multi-interval discretization of continuous-valued attributes for
classification learning, in: International Joint Conference on Artificial Intelligence, 1993.

[41] H. Liu, F. Hussain, C. L. Tan, M. Dash, Discretization: An enabling technique, Data mining
and knowledge discovery 6 (2002) 393–423.

[42] J. R. Quinlan, Induction of decision trees, Machine learning 1 (1986) 81–106.
[43] D. A. Zighed, S. Rabaséda, R. Rakotomalala, Fusinter: a method for discretization of

continuous attributes, International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 6 (1998) 307–326.

[44] M. R. Freire, J. Fierrez, J. Galbally, J. Ortega-Garcia, Biometric hashing based on genetic
selection and its application to on-line signatures, in: Advances in Biometrics: International
Conference, ICB 2007, Seoul, Korea, August 27-29, 2007. Proceedings, Springer, 2007, pp.
1134–1143.

[45] J. MacQueen, Classification and analysis of multivariate observations, in: 5th Berkeley
Symp. Math. Statist. Probability, University of California Los Angeles LA USA, 1967, pp.
281–297.

[46] S. Garcia, J. Luengo, J. A. Sáez, V. Lopez, F. Herrera, A survey of discretization techniques:
Taxonomy and empirical analysis in supervised learning, IEEE transactions on Knowledge
and Data Engineering 25 (2012) 734–750.

[47] K. Inoue, T. Ribeiro, C. Sakama, Learning from interpretation transition, Machine Learning
94 (2014) 51–79.

[48] T. Ribeiro, M. Magnin, K. Inoue, C. Sakama, Learning delayed influences of biological
systems, Frontiers in Bioengineering and Biotechnology 2 (2015) 81.

[49] D. Martínez Martínez, T. Ribeiro, K. Inoue, G. Alenyà Ribas, C. Torras, Learning proba-
bilistic action models from interpretation transitions, in: Proceedings of the Technical

https://doi.org/10.1007/978-0-387-09823-4_6
http://dx.doi.org/10.1007/978-0-387-09823-4_6
http://dx.doi.org/10.1007/978-0-387-09823-4_6
https://www.sciencedirect.com/science/article/pii/B9781558603776500323
https://www.sciencedirect.com/science/article/pii/B9781558603776500323
http://dx.doi.org/https://doi.org/10.1016/B978-1-55860-377-6.50032-3
http://dx.doi.org/https://doi.org/10.1016/B978-1-55860-377-6.50032-3
https://doi.org/10.1007/s00500-014-1488-1
https://doi.org/10.1007/s00500-014-1488-1
http://dx.doi.org/10.1007/s00500-014-1488-1


Communications of the 31st International Conference on Logic Programming (ICLP 2015),
2015, pp. 1–14.

[50] T. Ribeiro, M. Magnin, K. Inoue, C. Sakama, Learning multi-valued biological models
with delayed influence from time-series observations, in: 2015 IEEE 14th International
Conference onMachine Learning and Applications (ICMLA), 2015, pp. 25–31. doi:10.1109/
ICMLA.2015.19.

[51] D. Martınez, G. Alenya, C. Torras, T. Ribeiro, K. Inoue, Learning relational dynamics of
stochastic domains for planning, in: Proceedings of the 26th International Conference on
Automated Planning and Scheduling, 2016.

[52] T. Ribeiro, S. Tourret, M. Folschette, M.Magnin, D. Borzacchiello, F. Chinesta, O. Roux, K. In-
oue, Inductive learning from state transitions over continuous domains, in: N. Lachiche,
C. Vrain (Eds.), Inductive Logic Programming, Springer, 2018, pp. 124–139.

[53] T. Ribeiro, M. Folschette, M. Magnin, O. Roux, K. Inoue, Learning dynamics with syn-
chronous, asynchronous and general semantics, in: International Conference on Inductive
Logic Programming, Springer, 2018, pp. 118–140.

[54] T. Ribeiro, M. Folschette, M.and Magnin, K. Inoue, Learning any semantics for dynami-
cal systems represented by logic programs, 2020. URL: https://hal.archives-ouvertes.fr/
hal-02925942, working paper or preprint.

[55] T. Ribeiro, M. Folschette, L. Trilling, N. Glade, K. Inoue, M. Magnin, O. Roux, Les enjeux de
l’inférence de modèles dynamiques des systèmes biologiques à partir de séries temporelles,
in: C. Lhoussaine, E. Remy (Eds.), Approches symboliques de la modélisation et de l’analyse
des systèmes biologiques, ISTE Editions, 2020. In edition.

[56] R. Kohavi, Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid, in:
Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining, 1996.

[57] T. Ribeiro, M. Folschette, M. Magnin, K. Inoue, Learning any memory-less discrete seman-
tics for dynamical systems represented by logic programs, Machine Learning (to appear)
(2021).

[58] O. Iken, M. Folschette, T. Ribeiro, Automatic modeling of dynamical interactions within
marine ecosystems, International Conference on Inductive Logic Programming (to appear
as Late-breaking abstracts and poster) (2021).

[59] S. Aeberhard, M. Forina, Wine, UCI Machine Learning Repository, 1991. doi: https://-
doi.org/10.24432/C5PC7J.

http://dx.doi.org/10.1109/ICMLA.2015.19
http://dx.doi.org/10.1109/ICMLA.2015.19
https://hal.archives-ouvertes.fr/hal-02925942
https://hal.archives-ouvertes.fr/hal-02925942
https://doi.org/10.24432/C5PC7J
https://doi.org/10.24432/C5PC7J

	1 Motivation
	2 State of the art
	2.1 Explaining biases by symbolic XAI: LFIT
	2.2 Discretizaton of numeric information in machine learning scenarios
	2.2.1 Unsupervised discretizers: biometric hashing
	2.2.2 Supervisded discretizers: CAIM

	2.3 LFIT

	3 Contributions of this paper
	4 General purpose discretizer for LFIT
	4.1 Supervised vs unsupervised discretization for LFIT
	4.1.1 Rough comparison of raw precision of LFIT predictions
	4.1.2 Assessment of the explainability of discretizers

	4.2 Discretization and biases detection by LFIT
	4.2.1 Biases on FairCV db with general purpose discretizers
	4.2.2 Biases on US 1994 census with general purpose discretizers

	4.3 Biometric hash inspiration in the general purpose discretizer

	5 Improving biases detection by LFIT
	6 Conclusions and further research lines

