CEUR-WS.org/Vol-3526/paper—-08.pdf

SPARQLGEN: One-Shot Prompt-based Approach for
SPARQL Query Generation

Liubov Kovriguina®?**, Roman Teucher?, Daniil Radyush’ and Dmitry Mouromtsev’

"metaphacts GmbH, Daimlerstrafle 36, 69190, Walldorf, Germany
2Fraunhofer IAIS Dresden, Schloss Birlinghoven 1, 53757, Sankt Augustin, Germany
3ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg, 197101, Russia

*TIB - Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitdtsbibliothek, Welfengarten 1B,
30167 Hannover, Germany

Abstract

In this work, we present a one-shot generative approach (further referred to as SPARQLGEN) for
generating SPARQL queries by augmenting Large Language Models (LLMs) with the relevant context
within a single prompt. The prompt includes heterogeneous data sources: a question itself, an RDF
subgraph required to answer the question, and an example of a correct SPARQL query for a different
question. In the experiments, GPT-3, a popular pre-trained language model from OpenAl, was leveraged,
but it is possible to extend the approach to any other generative LLM. We evaluate, how different types
of context in the prompt influence the query generation performance on QALD-9, QALD-10 and Bestiary
dataset (BESTIARY), which was created to test LLM performance on unseen data, and provide a detailed
error analysis. One of the findings is that providing the model with the underlying KG and a random
correct query improve the generation results. The approach shows strong results on QALD-9 dataset,
but doesn’t generalize on QALD-10 and BESTIARY, which can be caused by memorization problem.

Keywords
Knowledge Graphs Question Answering, SPARQL query generation, Augmented Large Language Models,
Prompt Template Design

1. Introduction

In the current paper, we propose a one-shot approach for generating SPARQL queries with
prompting LLMs, further referred as SPARQLGEN. Our approach lies in augmenting LLMs [1]
with a knowledge graph fragment, required to construct the query, and a question-subgraph-
query example, randomly sampled from the training set. Assembling all the context, required to
generate a query, in a single prompt, is performed via loosely coupled heterogeneous structured
information snippets, further referred as prompt elements. The prompt element is represented as
a structure, having description and source and a set of pre-processing methods (i.e. for sampling,
serializing to string, ranking, linearizing), that are specific to the prompt element and allow to
combine heterogeneous data sources within a single prompt (Fig. 1). This allows to quickly and
flexibly build custom prompt templates with an arbitrary order and number of elements.

SEMANTICS 2023 EU: 19th International Conference on Semantic Systems, September 20-22, 2023, Leipzig, Germany
*Corresponding author.

& Ik@metaphacts.com (L. Kovriguina); roman.teucher@iais.fraunhofer.de (R. Teucher); daniil.radyush@gmail.com
(D. Radyush); d. muromtsev@gmail.com (D. Mouromtsev)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

=== CEUR Workshop Proceedings (CEUR-WS.org)

mailto:lk@metaphacts.com
mailto:roman.teucher@iais.fraunhofer.de
mailto:daniil.radyush@gmail.com
mailto:d.muromtsev@gmail.com
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

The experiments, implemented by now, pursue two main goals: (i) leverage LLM for SPARQL
query generation in one-shot / zero-shot setup without fine-tuning, (ii) estimate the impact of
different prompt elements on the query generation task and how the model attends to them:
i.e., does the model focus on reasoning over the provided contextual information, rather than
retrieving what it already knows, at the inference step. Since memorization is a known problem
of LLMs [2], we created an extra dataset on a fantasy bestiary topic, following the QALD format,
to evaluate the method on the data, which could not be seen during LLM training’.

Main contributions of the paper are the following:

« SPARQLGEN, a one-shot method for SPARQL query generation with prompting LLMs,
that can be quickly adapted to other datasets and knowledge graphs,

+ unseen BESTIARY dataset, that can be particularly useful for evaluating reasoning capa-
bilities of LLMs,

« detailed error analysis of LLM generated queries across QALD-9, QALD-10 and BESTIARY
datasets.

2. Related Work

There are several recent approaches for generating SPARQL queries from natural language
queries based on neural architectures. Soru et al. [3] designed a sequence-to-sequence system
that utilizes bi-directional LSTM for generating SPARQL templates. Using a rule-based approach,
the SPARQL query is then created from the generated templates. However, this translational
approach cannot handle out-of-vocabulary tokens. Rony et al. [4] propose SGPT, an approach
using a stack of Transformer encoders to embed linguistic features from natural language
questions, as well as entity and relation information, to the GPT-2 model. While entities and
relations representations are fed to the model in SGPT, providing their connections in the
underlying KG is missing. Thus, generating correct triple sequences in the final SPARQL queries
is error prone due to unknown graph structures. Another strong approach was introduced in [5],
where authors improve on the state of the art KGQA? by train the T5 model to generate skeleton
SPARQL gueries and truncated KG embeddings, that are used to fetch candidate entities for
the skeleton query. However, all these approaches assume training or fine-tuning an existing
model, whereas SPARQLGEN doesn’t require any training.

3. Datasets

QALD-9 [6] is a small yet challenging multilingual question answering dataset based on DBpedia.
The dataset contains 150 questions in 3 to 8 different languages, for our experiments the test
data in English were used. QALD-10 is a multilingual question answering dataset based on
Wikidata. It contains 394 samples with questions in English, Chinese, Russian and German. The
dataset is more complex than QALD-9, for instance, by incorporating property paths instead

'The augmented data used for prompting, the BESTIARY dataset, as well as supplementary material, are uploaded to
the repository:https://github.com/danrd/sparqlgen
*https://github.com/KGQA/leaderboard

https://github.com/danrd/sparqlgen
https://github.com/KGQA/leaderboard

of only using single relations. BESTIARY dataset consists of 100 manually created queries
related to a custom Bestiary knowledge graph. This graph contains diverse information about
creatures from the Dungeons & Dragons fantasy role-playing game. The graph and dataset
description are presented in the supplementary material.

4. Architecture Description

SPARQLGEN is implemented as a modular architecture with the following business logic: (1)
retrieving context to populate prompt elements, (2) composing and executing the prompt, (3)
removing hallucinations and validating the query. At the preprocessing step, each datapoint
in the QALD-formatted dataset was augmented with the knowledge, represented as the mini-
mal subgraph, required to execute the query. To combine heterogeneous data sources in the
prompt, we designed an abstract structure, called prompt element, that is instantiated during
the experiment. Each prompt element has fields description and source, as well as methods for
pre-processing the source data (see prompt elements Example, Instruction, Question and Knowl-
edgeGraph in Fig. 1). A prompt in SPARQLGEN is a serialized sequence of prompt elements.
The implemented structure allows to configure experiments with minimal changes in the code
structure and quickly design custom prompt templates.

For one-shot prompting we created a set of guiding examples, which includes 20 question-
subgraph-query samples, selected from QALD-9 training set and representing different query
types (ASK or SELECT), patterns (number of hops), combinations of modifiers (FILTER, ORDER
BY, etc.). Guiding examples repeat the structure of prompt, but already provide the correct
answers (one-shot prompting).

The architecture of the SPARQLGEN pipeline is shown in Fig. 1. Firstly, for each datapoint in
QALD format, already augmented with a subgraph, a guiding example is randomly selected
(prompt element Example). Then the prompt builder constructs a prompt from the provided dat-
apoint and a guiding example with the order of the prompt elements, defined in the experiment
config, as shown in Fig. 1), and the serialized prompt is sent to the GPT-3 Completions endpoint.
The resulting query is validated and evaluated. Validation includes removing hallucinated
symbols (i.e. generated text prior the query, like System:, Query:, randomly inserted newlines,
etc.)

To investigate whether adding subgraph information to the model improves the performance,
we enriched each sample in the test sets of QALD-9, QALD-10 and BESTIARY with a subgraph
of the source RDF graph of that dataset. These subgraphs contain all the triples that are required
to answer the question correctly, but no irrelevant triples. First, we strip the ground truth
SPARQL queries from any modifiers leaving a simple SELECT * query. By doing that, we get all
possible bindings for the variables in the ground truth query. Second, we extract the individual
triples from the query. They contain entities, relations but also still the variables. Third, we take
the result bindings from the SELECT * query and replace the variables in the extracted triples.
The result is a set of triples, which is based on the original ground truth query, representing the
subgraph that is sufficient to answer the given query. Further, this subgraph is considerably
smaller than taking all triples from all the given entities and relations of the ground truth query
(see process diagram in supplementary material).

Question-Subgraph-
Query examples

random

X example
sampling

Preprocessed) Prompt N N
Datapoint Sampling _ Builder promp » OpenAl Playground
datapoint,

example

generated SPARCL guery

Prompt Elements Prompt Builder: Prompt Composing and Serializing |
Class Example(PE) description: "This is an example.”, Query Validator
source: ["Question: Which state of the United States has the highest density?",
+ description: str "Knowledge: <http://dbpedia.org/resource/Alberta= dbp:densityrank "6" .
+ source: str <http://dbpedia.org/resource/British_Columbia= dbp:densityrank "7" . ..",
"Query: SELECT DISTINCT ?uri WHERE { ?uri postprocessed SPARCOL guery
+ serialize() <http//dbpedia.org/property/densityrank> 7density } ORDER BY ASC(7density)
+ compose() = concatenate LIMIT 1"]
Class Instruction(PE) Executlon and
description: "Instruction”, Evaluation
+ description: st source: "Given the following user question and the RDF knowledge graph,
+ source: sir generate the corresponding SPARQL. query for the question. Pay attention to
the namespaces and the structure of the provided knowledge graph, when
+ serialize() generating the query. Do only generate the query, nothing else.”

+ compose() = concatenate

Class Question(PE)

+ description: str

description: "Question”,
+ source: str

source: "What were the names of the three ships by Columbus?"

+ serialize()
+ compose() = concatenate

Class KnowledgeGraph(PE) | |gescription: "Knowledge graph”,

L source: "@prefix determs: <http:/purl.org/deftermss>

+ desc"?"‘(’;f'lztf‘é " dor-Pinta_(ship) a dbo:Ship ;

+ Source: rdiiln.Grap dscterms:subject dbr:Christopher_Columbus,
dbr:Exploration_ships

dbr:Santa_Maria_(ship) a ...

+ serialize()
+ compose() = sample, linearize.

Figure 1: SPARQLGEN architecture and prompt composing in the prompt builder.

5. Experiments

During experiments, we addressed 2 research questions. RQ1: How do different types of
context (guiding example, knowledge graph, constraints, etc.), provided in the prompt affect
LLM inference for the SPARQL query generation? To answer this question, we ran experiments
on QALD-9 with different prompts templates: with and without the knowledge graph, with or
without guiding example, etc. The results are summarized in Table 1. RQ2: How well does the
method perform in one-shot setups across different datasets? To tackle this question, we took
the best configuration and ran it for 3 datasets with further error analysis. Evaluation results
are shown in Table 2 and error analysis is provided in supplementary materials. Results in the

Accuracy values in the table 1 are calculated on a smaller number of samples, than the available version of the
QALD-9 contains. This happened for the following reasons: 1) 37 of 150 samples, provided in QALD-9, are no
longer executable under the current DBPedia version in the endpoint https://dbpedia.org/sparql and we couldn’t
augment such samples with a subgraph; 2) when running the query generation for the first time, we didn’t take
into consideration, that adding the extracted subgraph to the prompt might make the prompt exceed the maximum
number of tokens (4097 with the completion) for GPT-3 (number of omitted samples due to too long input is given

Table 1
SPARQL query generation accuracy with different prompt configurations for on QALD-9°

Prompt Configuration Total Executed | Samples not | Accuracy
aug- correctly | processed
mented due to limited
samples input
Instruction + Question 113 14 0 0.1239
Instruction + Question + Subgraph | 113 28 26 0.3218
Instruction + Question + Subgraph + | 113 38 30 0.4578
Guiding example

Table 1 shows, that providing the subgraph to the model increases performance. This suggests
that the model can make use of the information and structure of the graph at inference step.
One-shot prompting increases the performance as well.

6. Evaluation and Results

We used F1-macro to evaluate the whole query generation as suggested in GERBIL benchmarking
system [7]. Results are reported in Table 2. On QALD-9 SPARQLGEN reaches 67.07, that
matches the performance of pre-trained SGPT system (67.82), which is currently at the top of
the leaderboard [8]. However, the approach doesn’t generalize well on the recent QALD-10 and
unseen BESTIARY.

Table 2
SPARQLGEN performance across datasets

Dataset Description
F1-macro | Knowledge graph Prompt configuration
QALD-9 67.07 DBPedia Example + Instruction + Question + Subgraph
QALD-10 28.75 Wikidata Example + Instruction + Question + Subgraph
BESTIARY 15.01 Bestiary graph Example + Instruction + Question + Subgraph

Objective evaluation with QALD F1-macro [7] has shown quite diverse results across the 3
datasets. Therefore, we tried to categorize the errors in a small set of categories, that cover
all types of errors witnessed during LLM inference. Error classification and distribution is
presented in the supplementary materials.

The experimental results show that the model struggles to deal with an unknown knowledge
graph. It is safe to assume that GPT-3 has encountered DBpedia as well as Wikidata information

in column 4); 3) for experiments in table 1 we didn’t fix hallucinations. When running the experiments on all 3
datasets (Table 2), we addressed these errors: 1) for QALD-9, from 37 samples with non-executable queries we
managed to fix 20 queries; 2) also, we added sampling of triples from the subgraph, so that the resulting prompt
could never exceed the token limit. Following the evaluation guidelines, suggested in GERBIL [7], if both reference
and generated query return empty set, QALD-F1 is set to 1.

in pre-training. This is visible in the overall better performance on the corresponding datasets,
as well as in the higher number of knowledge related errors in BESTIARY. Namespace errors,
incomplete triples and ignoring KG structure errors occur more frequently for BESTIARY. In
general, it seems beneficial to introduce the model to the KG in pre-training already.

7. Conclusion and Future Work

The performance of the one-shot SPARQLGEN approach on QALD-9 is only slightly below
the SGPT approach, that requires additional training of the stack of Transformer-encoders to
leverage the pre-trained GPT-2 model, and significantly outperforms the rest of the QALD-9
leaderboard. Assuming that SPARQLGEN can be adapted to a new dataset and KG faster than
approaches, requiring fine-tuning, continuing experimenting with prompt-based approaches in
KGOQA can be definitely a winning strategy. However, this approach doesn’t generalize perfectly,
given the evidence from QALD-10 and BESTIARY.

Memorization can be one explanation: QALD-10 is a recent dataset, which OpenAl models
might not seen, and BESTIARY dataset have never been used for training any model. BESTIARY
queries are based on the knowledge graph, that was designed specially for structuring the
Dungeons & Dragons domain, and this graph has been never made available to the GPT-3. The
availability of the unstructured data about Dungeons & Dragons on the Web doesn’t imply,
that the LLM can synthesize the knowledge graph, following by generating the adequate query.
Given that, we assume that a niche domain (for knowledge engineering) combined with an
unseen knowledge graph makes the model rely only on its reasoning skills, when querying
BESTIARY. The existence of these skills is questionable at its own: parallel research lines prove
that LLMs can and can not reason at full scale. However, during query generation against the
BESTIARY KG, GPT-3 copies entities and relations from the provided BESTIARY subgraph,
without large hallucinations from DBPedia and Wikidata, indicating that providing a subgraph
of domain-specific KGs can improve SPARQL query generation.

Future work is manifold. First of all, we would like to proceed with fine-tuning open source
LLMs on available train sets of QALD / LC-QuAD series and evaluate the generalization of
the fine-tuned model on more benchmarks. Another direction can be embedding the current
SPARQLGEN approach in a reinforcement learning pipeline.

References

[1] G.Mialon, R. Dessi, M. Lomeli, C. Nalmpantis, R. Pasunuru, R. Raileanu, B. Roziére, T. Schick,
J. Dwivedi-Yu, A. Celikyilmaz, et al., Augmented language models: a survey, arXiv preprint
arXiv:2302.07842 (2023).

[2] N. Carlini, D. Ippolito, M. Jagielski, K. Lee, F. Tramer, C. Zhang, Quantifying memorization
across neural language models, 2023. arXiv:2202.07646.

[3] T. Soru, E. Marx, A. Valdestilhas, D. Esteves, D. Moussallem, G. Publio, Neural machine
translation for query construction and composition, 2018. arxiv:1806.10478.

[4] M. R. A. H. Rony, U. Kumar, R. Teucher, L. Kovriguina, J. Lehmann, Sgpt: A generative

http://arxiv.org/abs/2202.07646
http://arxiv.org/abs/1806.10478

approach for sparql query generation from natural language questions, IEEE Access 10
(2022) 70712-70723. doi:10.1109/ACCESS . 2022.3188714.

[5] D. Banerjee, P. A. Nair, J. N. Kaur, R. Usbeck, C. Biemann, Modern baselines for sparql
semantic parsing, in: Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2022, pp. 2260-2265.

[6] N.Ngomo, 9th challenge on question answering over linked data (qald-9), language 7 (2018)
58-64.

[7] R. Usbeck, M. Roder, M. Hoffmann, F. Conrads, J. Huthmann, A.-C. Ngonga-Ngomo,
C. Demmler, C. Unger, Benchmarking question answering systems, Semantic Web 10
(2019) 293-304.

[8] A.Perevalov, X. Yan, L. Kovriguina, L. Jiang, A. Both, R. Usbeck, Knowledge graph ques-
tion answering leaderboard: A community resource to prevent a replication crisis, in:
Proceedings of the Thirteenth Language Resources and Evaluation Conference, 2022, pp.
2998-3007.

http://dx.doi.org/10.1109/ACCESS.2022.3188714

	1 Introduction
	2 Related Work
	3 Datasets
	4 Architecture Description
	5 Experiments
	6 Evaluation and Results
	7 Conclusion and Future Work

