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Abstract
With a constantly increasing amount of encrypted network traffic and a new type of attack (“zero-day”), network traffic anomaly
detection shows significant benefits over traditionally used signature-based packet inspection methods for cybersecurity
attack detection. Using NetFlow or similar protocols is an attractive approach to providing accounting information about
network communications due to its simplicity and applicability in a real-life network environment. Even though the basic set
of information in flow data is not sufficient for efficient machine learning techniques, they are quite suitable for the application
of entropy-based anomaly detection techniques. In this paper, we present comprehensive work in research, development
and implementation of network traffic anomaly detection solutions based on the entropy of flow data. Starting from the
well-known entropy-based approach, we reveal the results of our methodic work in solving the main challenges in designing
an efficient anomaly detection solution empowered with the original classification method. Since the proof of concept was
achieved in the laboratory environment using offline datasets, the solution has been implemented relying on the existing
NetFlow Analyzer software product NetVizura. Even at the minimum viable product stage, the application confirms high
performances and great applicability of the anomaly detection and classification method in real-life network environments.
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1. Introduction
The modern enterprise network environments face the
necessity to respond adequately to the increased multi-
heterogeneity needs, reflected through a range of differ-
ent user devices, a variety of existing applications, ser-
vices, and various data in different formats and through-
puts, that need solid storage and real-time processing
available. The rise of the global need for bringing office
functionality to remote working personnel has addition-
ally contributed to the need for the development and im-
plementation of technologically mainstream-based net-
work infrastructures, but also causing the appearance
of new categories of cybersecurity threats. These chal-
lenging circumstances lead to the need for the adoption
of a range of novel network security approaches, basing
its strengths on the adoption of the „zero trust“ security
foundations as the main principle (“never trust, always
verify”).

The current cyber threat landscape indicates several
interrelated activities starting from the intruder attempts
to infiltrate, scanning, and collect data and infrastruc-
ture vulnerability information, intending to proceed with
more severe attack routines. It relates to further data/in-
frastructure compromise and negative repercussions to
operational abilities, productivity, privacy abuse, seri-
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ous financial threats (ransomware), service provisioning
issues, etc.

The European Union Agency for Cybersecurity, ENISA
annually publishes reports on the cybersecurity land-
scape situation, and for 2022 the prime identified in-
trusions correspond to ransomware, social engineering
threats, malware, intrusions targeting data and user pri-
vacy, attacks to the data and service availability (Denial
of Service and Internet threats), disinformation attacks,
encompassing the misinformation and the supply-chain
attacks [1]. On the other side, the Nexus Guard 1HY
2022 report indicates a 75.6% of increase in the average
attack size, with the maximum size values reaching more
than 230 Gbps. There is a notable increase in UDP-based
attacks (77.53%), application attacks (330%), and ampli-
fication attacks (106.65%) [2]. The predominant attack
vector types correspond to the UDP group of activities,
which contributed to almost 40% of all the detected at-
tacks, while there was a large portion of the activity
related to the HTTPS Flood intruders, with 16% of over-
all malicious activity. It is also noticed, that TCP ACK
attacks had a relatively high part in these activities, with
6.5% of performed attacks. The rest corresponds to the
TCP SYN, IP Fragmentation, UDP, DNS, L2TP, and SNMP
amplification attacks. If analyzing attacks by category,
the volumetric Direct Flood attacks contributed to 68%
of the total attacks, while there was a noticeable increase
of 330% of the application attacks activity, forming 17.5%
of all the 2022 cyberattack landscape. The volumetric
amplification attacks were also present, while in lower
amounts than the other two categories.
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As reported by Truesec, the total number of cyber at-
tacks increased by 160%, with the highest percentage for
ransom (34%), access harvesting (32%), resource hijack-
ing (12%), business email compromise (8%), data theft
(7%). 40% of the attacks in the analyzed period originated
from publicly accessible and vulnerable systems, with
a noticeable rise of zero-day exploits and ransomware
attacks [3].

This dynamic emergence of new-generation attacks,
and the newly identified vulnerability targets, made per-
fect conditions for the increase in zero-day attacks, and
different forms of amplification and application attacks,
with persistent use of cryptography for the attack traffic
generation. As a response, a large number of research
groups and individuals are developing advanced and orig-
inal solutions for accurate, efficient, and real-time intru-
sion detection. As there is no exclusive, all-encompassing
solution for every incident case, network environment,
or user need, the goal is to find specific prevention and
detection methods that would fulfil the general range of
modern network security requirements.

In anomaly detection, a considerable part of the re-
search community is now directed toward the analysis
of traffic behaviour and its characteristics, both struc-
tural and informative, searching for the correct identi-
fication of the anomalous from the normal instances.
The traditional solutions rely on the use of firewalls
configured for protection against well-known threats,
which are usually combined with signature-based secu-
rity models. However, new conditions and circumstances
require additional measures which could bring intelli-
gence, stronger analytics, and the highest possible re-
sponse while processing massive volumes of relevant
data. These techniques mostly rely on entropy-based and
machine-learning algorithms.

In this paper, we present the work resulted from the
project “Network Traffic Anomaly Detection system
based on NetFlow data analysis – TRADE”, under the
European EUREKA programme. The main project goal
was to develop a competitive market-ready cybersecurity
threat detection solution. To achieve this goal, initial
requirements were defined for the conducted research
and the associated software development as follows:

• Rely on unlabelled input data which should be
easily collected in real-time

• A high data rate (tens of thousands of data items
per second)

• High and reliable detection performances
• Raw data persistence
• Root cause analysis and deep drill-down data in-

spection
• Configurable, flexible and scalable solution.

The rest of the paper is organized as follows: the sec-
ond section highlights the most relevant scientific work

in this field. The third section presents the main solution,
while section four discusses other important details and
solutions in the proposed methodology, demonstrating
the experimental results. Finally, the paper is concluded
by summarizing the main achievements and results, and
discussing further development.

2. Related work
Being one of the most significant research fields, cyber-
security and privacy provisioning have raised high stan-
dards for the accepted and applied techniques and ap-
proaches. Available literature provides access to signifi-
cant research work focused on anomaly and cybersecu-
rity attack detection, the so-called Intrusion Detection
Systems (IDS). These papers are mostly published in the
area of machine learning algorithms and are oriented
towards the techniques for extracting the network traffic
pattern’s behaviour.

The most common solutions are usually based on spe-
cific custom-made algorithms and procedures for inspect-
ing network traffic and further detection and identifica-
tion of network anomalies [4]. This category of IDSs
relates to the analysis and proper results generation con-
sidering the specificities of the network traffic structure,
patterns, and routines.

The very attractive research approach in designing
and implementing real-time anomaly detection solutions
is founded on the processing of flow-based data instances.
When compared to the packet-inspection algorithms, this
is in some aspects assumed as less accurate, but the expe-
rience indicates that these techniques, when combined
with some additional methods can more easily and effi-
ciently deliver accurate results.

In IDS, the entropy-based approach is easily imple-
mented by relying on flow-based data and it has found a
large portion of usability in situations when anomalous
traffic appears with high intensity and volumes. In that
case, it appears with weighty spikes in data distribution
and does not leave these intrusions hidden [5, 6]. Some
distinguished studies enforce the conception of the dom-
inance of the parametrized entropies over the standard
Shannon [7].

Still, our previous research results found that the pub-
lished results in a high portion depend on the used detec-
tion techniques, data characteristics, and the choice of
the analyzed features, thus we claim these conclusions
groundless, as there is no possibility of their generaliza-
tion [8, 9]. Nevertheless, the entropy-based techniques
are powerfully useful in traffic stability analysis, chal-
lenging outlier detection, as well as in DDoS security
provisioning [10, 11, 12].

Despite some statements that flow-based analysis re-
lies on insufficiently detailed information, asserting the



fact that these are only the basic information of network
communications collected and exported by routers, the
flow-based detection approach has gained strong enough
approval among the research communities [13, 14].

The main issue with the application of entropy-based
technics is some intrinsic deficiencies, being the most
stumbling the fact that these techniques are eligible
only when network traffic structure significantly changes
through the attack [15, 16]. Another study analyzes the
use of the real-time traffic behaviour profiling solution
developed for the needs of anomalies and attack detec-
tion [17]. With a goal to detect particular behaviour
patterns, the study is based on the analysis of traffic data,
previously preprocessed with a set of entropy-based and
data-mining techniques. This research relies on traffic
aggregation and evaluates two additional attributes, the
packet size and packet rate attributes.

The goal of our research was to propose a solution that
makes the most of entropy-based techniques advantages
and flow data collected in real-time while providing a
high level of detection accuracy and efficiency, demon-
strated through practical implementation.

3. Proposed solution

3.1. Flow-based approach
The access to network traffic provides a reach set of in-
formation for the analysis and anomaly detection, which
includes both packet header and payload. However, this
approach is not scalable and flexible enough, since it
requires direct access to network resources. Also, it gen-
erates a huge amount of data, which requires high pro-
cessing power for real-time analysis.

A more flexible approach is achieved by the Cisco Net-
Flow protocol, where routers keep track of each network
communication, counting the transferred bytes and pack-
ets, and exporting this information to an external server.
A large number of the collected data is treated as real-
time logs about the communication activities, identified
by the source and destination IP and port numbers, as
well as the protocol used. Despite a lack of packet pay-
load, these logs provide an excellent source of data for
the analysis of network communication. The success of
this approach was confirmed by a great acceptance by
users and adoption on the market. Many other vendors
proposed similar protocols, such as Jflow by Juniper Net-
works, Cflow by Alcatel-Lucent, NetStream by Huawei,
Rflow by Ericsson, while IEEE has standardized IPFIX
protocol [18].

So-called NetFlow Analyzer software collects the data,
processes it and provides statistics about the traffic struc-
ture at the interfaces level, router level or in the whole
network. Statistics are produced in bits per second, pack-

ets per second and flows per second metrics, given in
a break-down structure of top contributors, such as the
most intensive hosts, protocols, services etc. Additionally,
NetFlow Analyzer keeps the logs in the internal database
allowing manual drill-down analysis and data forensics.
Therefore, network traffic anomalies can be efficiently
investigated, but still hardly detected, with an exception
of very intensive volumetric anomalies, such as DDoS
attacks.

3.2. Entropy-based approach
To detect anomalies in network traffic the collected flow
data must be first processed and transformed into a sim-
pler form and metrics that provide a possibility to pro-
file normal behaviour. Then, significant changes to nor-
mal behaviour are treated as an anomaly. Two main
approaches to completing this task relate to machine
learning and entropy calculation techniques.

Supervised machine learning is a very popular ap-
proach in the research literature, but the fact that it relies
on labelled data gives very limited options for practical
implementation in a real-time environment. Unsuper-
vised machine learning for anomaly detection, mostly
based on clustering methods, is more feasible for practical
usage, but still very complex and demanding in data pro-
cessing. For these reasons, the entropy-based approach
attracts the interest of both the research community and
industry. In the context of anomaly detection techniques
entropy is a single value that can be interpreted as the
measure of the evenness of a data distribution. A signifi-
cant change in a data distribution causes a change in the
entropy value, which is considered anomalous behaviour
of network traffic and the indication of security threats.

Data distribution is obtained through the aggregation
process using a selected attribute as an aggregation key
and counting or summarizing other attributes from raw
flow data. For instance, summarizing the total bytes or
packets received by each destination IP address during a
short period, the so-called epoch, will produce a corre-
sponding data distribution. Typically, some addresses are
more active than others, resulting in uneven data distribu-
tion and certain entropy values. In case of a DDoS attack,
a targeting destination host receives a huge amount of
traffic which cause a high peak in the data distribution
and a significant change of the entropy value.

The flow data is identified by a flow tuple, which con-
sists of the source and destination IP addresses, protocol
type and source and destination port numbers. These
identification attributes are good candidates for the ag-
gregation keys and we will shortly label them as 𝑆, 𝐷,
𝑃 , 𝑠 and 𝑑 respectively.

Since network communications between two pears
mostly conduct in both directions, it is useful to pair two
corresponding originally unidirectional flow data into a



single bidirectional flow record [5]. The source address
and port number are associated with the initiator of the
conversation, while the destinate address and port num-
ber relate to the responding side. Consequently, the byte
and packet counts relate to the sending side, either source
or destination. These volumetrics attributes are labelled
with 𝑠𝐵, 𝑠𝐵, 𝑠𝑃 and 𝑑𝑃 respectively. In the above men-
tioned example, the total bytes sent to a destination host
is labelled as 𝑠𝐵[𝐷]. This metric, the so-called feature,
relates to the data distribution and the corresponding en-
tropy value for a certain epoch. During a time, epoch by
epoch, the process generates a time data series of entropy
values for each feature.

The Shannon entropy [19] is commonly used, while
some other authors propose the usage of Tsallis [20]
and Rényi [21] parametrized entropy types. For a given
feature data distribution with the total number of 𝑁
elements, where mi relates to the value of the element
𝑥𝑖 and 𝑝(𝑥𝑖) is the empirical probability, the Shannon
entropy is defined by the following equation:

𝐻𝑆 (𝑋) =
∑︁𝑁

𝑖=1
𝑝 (𝑥𝑖) log𝑏

1

𝑝 (𝑥𝑖)
(1)

where the empirical probability is given by:

𝑝 (𝑥𝑖) =
𝑚𝑖

𝑀
, 𝑀 =

∑︁𝑁

𝑖=1
𝑚𝑖. (2)

For an ideally even distribution with all equal elements,
Shannon entropy reaches the maximum value of log𝑏𝑁 ,
while more unevenness leads to lower, but always posi-
tive values. To always get the values between 0 and 1 it
is useful to use the scaling factor of 1/log𝑏𝑁 .

The next challenge is to detect the changes in the en-
tropy time-series values for any of the used features. To
do so, the trend of the time series entropy data must be
predicted based on the recent values, which is also known
as the baseline values. Then, the acceptable variation in
these values is calculated and set around the baseline and
used as thresholds. A simple approach is the window-
ing mechanism setting the lower and upper thresholds
by calculating the minimum and maximum values for
the last 𝑁 epochs. To make this accepted margin more
tolerant, these thresholds are further increased by some
scaling factor, usually by the value of 3.

Even though this approach dynamically adjusts the
thresholds to recent variations of the observed values,
a more advanced and flexible approach is based on the
Exponential Moving Average (EMA) technique for short
trend prediction [22], which provides better fine tuning
options to adapt more accurately.

With the EMA technique, the baselined value in epoch
𝑛, labelled as �̂�𝑛, is predicted recursively, considering
both entropy and baselined values in the previous epoch:

�̂�𝑛 = (1− 𝛼ℎ)�̂�𝑛−1 + 𝛼ℎ𝐻𝑛−1. (3)

The coefficient 𝛼ℎ, in the range between 0 and 1, is
a weighting factor, to adjust the influences of the input
values and make the baseline value more or less smooth.

The next step is to predict and baseline the standard
deviation (𝑆) of the entropy values, also using the EMA
approach:

�̂�𝑛 = (1− 𝛼𝑆)�̂�𝑛−1 + 𝛼𝑆𝑆𝑛−1. (4)

And finally, the lower and upper thresholds are set
relatively from the baselined entropy value �̂�𝑛, using
a multiplication factor 𝑘𝑡, the so-called threshold factor,
that makes the range wider:

T𝑛 = �̂�𝑛 − 𝑘𝑡�̂�𝑛 (5)

𝑇𝑛 = �̂�𝑛 + 𝑘𝑡�̂�𝑛 (6)

The thresholds define a margin for acceptable varia-
tions:

𝑇𝑛 =
[︀
T𝑛, 𝑇𝑛

]︀
(7)

The entropy values that fall into the margin 𝑇 are
considered regular, while the entropy value out of the
margin triggers an alarm as an indication of an anomaly:

𝐴𝑛 =

{︂
𝑇𝑟𝑢𝑒, 𝑖𝑓 𝐻𝑛 ∈ 𝑇𝑛

𝐹𝑎𝑙𝑠𝑒, 𝑖𝑓 𝐻𝑛 /∈ 𝑇𝑛
(8)

4. Other challenges and the
proposed solutions

The main benefit of the entropy-based approaches lies
in the fact that a complex data structure can be trans-
formed into a different domain of time series data for the
observed features that can be easier analyzed to detect
unusual behaviour.

To be efficient for practical usage in real time envi-
ronment anomaly detection solution requires proper fea-
ture selection (the aggregation keys and the calculating
attributes) and solving other challenges related to the
specific domain of network behaviour analysis based on
collected flow data. In this section, we will demonstrate
and discuss these challenges and propose proper solu-
tions to them.

4.1. Baseline correction during the
anomaly

The baseline calculation, either using EMA or sliding
window techniques, takes into account previous values.
In the case of an anomaly, detected by a drop in the en-
tropy values, the unusually low entropy values gradually
lead to lowering the baselined values too and widening
the threshold margin. As a result, an anomaly could be
eventually treated as normal behaviour. Consequently,



Figure 1: Baseline change during an anomaly (dataset CIC-
IDS2017, trace Friday-PortScan, feature d[S]).

Figure 2: Baseline immutability during an anomaly (dataset
CIC-IDS2017, trace Friday-PortScan, feature d[S]).

when the anomaly stops, regular traffic could be treated
as anomalous. It will take time, sometimes tens of epochs,
for baseline and threshold values to get back into a nor-
mal range. This situation is demonstrated in Figure 1.

To get immune to the irregular entropy values dur-
ing the long-lasting anomalies, we must ensure that the
baseline of both entropy values, as well as the standard
deviation values, are not affected when an alarm is raised,
keeping the previous value unchanged, using the modi-
fied equations:

�̂�𝑛 =

{︂
(1− 𝛼𝑏) �̂�𝑛−1 + 𝛼𝑏𝐻𝑛−1, 𝐻𝑛−1 ∈ 𝑇𝑛

�̂�𝑛−1 𝐻𝑛−1 /∈ 𝑇𝑛

(9)
and

�̂�𝑛 =

{︂
(1− 𝛼𝑠) �̂�𝑛−1 + 𝛼𝑠𝑆𝑛−1, 𝐻𝑛−1 ∈ 𝑇𝑛

�̂�𝑛−1 𝐻𝑛−1 /∈ 𝑇𝑛

(10)
Figure 2 confirms that the proposed correction provides
a stable and reliable prediction of normal behaviour.

4.2. Feature selection
Many authors in the scientific literature for DDoS attack
detection propose entropy-based approaches that rely on
the volumetrics attributes only, such as total bytes and
packets number [23, 24, 25, 26]. However, our research
has shown very limited usability of those approaches,
mostly because regular traffic in today’s network usage
often assumes large data transfer, such as backup, data
download or torrent communications. These occasional
traffic loads cause a large variation in the correspond-
ing entropy values and consequently a large threshold

Figure 3: Large variations of the volumetric features (dataset
CIC-IDS2017, trace Friday-PortScan, feature sP[S]).

Figure 4: A wide threshold margin with a large initial stan-
dard deviation (dataset CIC-IDS2017, trace Friday-DDOS, fea-
ture s[D]).

margin, which is shown in Figure 3. In some cases, the
lower threshold can drop below the minimum value of
zero, which makes it useless even for the detection of a
high DDoS attack. Therefore, this kind of attack is easier
to detect by inspecting top contributors in the data distri-
bution, which is already achieved by NetFlow Analyzer
software.

For that reason, we propose using additional features
that represent the communication structure rather than
transferred data volume in bytes and packets. In addition
to the flow count attribute for a certain aggregation key,
with the second-level aggregation, we propose counting
the appearances of all distinct elements of other identifi-
cation attributes which are not used in the aggregation
key.

As an example, a large number of distinct destination
ports that some source IP address communicates with,
labelled as 𝑑[𝑆], indicates a port scanning attack. Since
these features represent the behaviour of network com-
munications, we will call them behaviour features.

4.3. Slow initial stabilization
At the beginning of the baselining calculation, there is
no history and previous data items to be used for the
prediction. The entropy prediction in the next epoch
can get the value of entropy in the current epoch, but
more importantly, it is needed to properly estimate the
standard deviation. A large initial standard deviation will
cause a slow convergence process until it gets stabilized,
which could keep some anomalies undetected (Figure 4).

Even more negative effect is produced when the stan-
dard deviation is too small, making a narrow threshold



Figure 5: A narrow threshold margin with a small initial
standard deviation (dataset CIC-IDS2017, trace Friday-DDOS,
feature s[D]).

margin. Regular entropy values can easily fall out of the
margin triggering a false positive alarm. More impor-
tantly, since the baselined values stay unchanged during
alarms, this alarm could be locked for a longer period,
which is shown in Figure 5.

The solution to this problem, which happens in practi-
cal implementation when the application is restarted, is
to persist the last value of standard deviation calculated
before the application restarted and reuse it as an initial
value.

4.4. Entropy normalization
Feature normalization, such as linear transformation or
z-score, is a commonly used approach to scale entropy
values into a specific confidence interval to remove the
bias and make data comparable [4]. In our research we
use a linear transformation of entropy values, scaling
entropy values relative to the thresholds, as follows:

�̃�𝑛 =
𝐻𝑛 − T𝑛

𝑇𝑛 − T𝑛

(11)

After normalization, the range of acceptable values is
scaled into the interval [0, 1], where the entropy values
that are smaller than 0 or greater than 1 indicate anoma-
lies. The greater the difference from the thresholds, the
more reliable the alarm is.

4.5. Eliminating minor false positive
alarms

To further distinguish minor and short-lasting anomalies
from the more severe ones, illustrated in Figure 6, we
define the anomaly score as a measure of deviation from
the regular behaviour for each feature separately, taking
into account the time period when the alarm is active.
Obviously, higher deviation and longer alarm activation
periods indicate greater anomalies. The rationale behind
this is based on the fact that short spikes in entropy values
could present acceptable data variations, due to which
they are less important than deviations that last longer,
even if they are less intensive.

Figure 6: False positive alarms caused by minor entropy devi-
ations.

Figure 7: False positive alarms elimination by anomaly score.

To define the anomaly score, we first define the dis-
tance of the normalized entropy value from the thresh-
olds (0 and 1) in epoch 𝑖, denoted as ∆𝑖, as follows:

∆𝑖 =

⎧⎪⎪⎨⎪⎪⎩
⃒⃒⃒
�̃�𝑖

⃒⃒⃒
, 𝑖𝑓 �̃�𝑖 < 0⃒⃒⃒

�̃�𝑖 − 1
⃒⃒⃒
, 𝑖𝑓 �̃�𝑖 > 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(12)

Then, if the alarm is activated in epoch 𝑛, we define
the anomaly score 𝛿𝑛 as a cumulative sum of the metric
∆𝑖 in a sliding window during the last 𝑊 ′ epochs or
smaller, since the last alarm deactivation to avoid the
influence of the previously triggered alarm. However, if
the alarm is not active, a smaller sliding window is taken
into account, 𝑊 ′′, depending on how fast we would like
to reset the anomaly score, where 𝑊 ′ = 1 will reset it
immediately.

𝛿𝑛 =

{︃ ∑︀𝑊 ′

𝑖=1 ∆𝑛−𝑖+1 𝑖𝑓 ∆𝑛 < 0∑︀𝑊 ′′

𝑖=1 ∆𝑛−𝑖+1 𝑖𝑓 ∆𝑛 = 0
(13)

Figure 7 demonstrates the benefits of anomaly score
usage in eliminating false positive alarms.

4.6. Flow partitioning
Detection performances of entropy-based approaches
highly depend on the relative amount of anomalous activ-
ities in comparison to regular network behaviour for the
observed feature. If the network is heavily loaded with
regular traffic, the straightforward detection is limited
only to highly intensive anomalies, while less aggressive
malicious activities may remain undetected.

To address the above-mentioned issue, we propose the
partitioning of network traffic into smaller subgroups and



Table 1
16 typical communication patterns.

S s D d Example of risk

1 1 1 1 Single flow
1 1 1 N Port Scan
1 1 N 1 Network Scan
1 1 N N Diagonal Scan
1 N 1 1 Dictionary attack
1 N 1 N Port Scan
1 N N 1 Network Scan
1 N N N Diagonal Scan
N 1 1 1 Amplification DDoS (DNS)
N 1 1 N Amplification DDoS (NTP)
N 1 N 1 Multiple Network scan
N 1 N N Multiple Diagonal scan
N N 1 1 SYN flooding
N N 1 N DDoS
N N N 1 Multiple DDoS
N N N N Multiple DDoS

apply a detection technique to each subgroup separately.
This partitioning can be based on different criteria, such
as the protocol type (TCP, UDP, ICMP), service type (DNS,
email, web service, windows services etc.) or sub net-
working (user traffic, voice VLANs, data centre, branch
offices etc.).

4.7. Communication patterns
Relying on the behaviour features rather than the vol-
umetric features provides better capturing of different
communication patterns. Considering the flow identifica-
tion attributes and their cardinality in the communication
(one or many occurrences), we developed 16 communi-
cation patterns. For example, the flows that present a
port scan attack use a single source and destination IP
addresses and many destination port numbers. Labelling
with the cardinality one (“1”) or many (“N”), in order:
source IP address, source port, destination IP address and
destination port, namely (“Ss-Dd”), we can describe this
port scan attack with the “11-1N” pattern. Consequently,
if the source port number is randomly chosen with many
occurrences (“N”), the communication pattern is “1N-1N”.
Using this labelling convention, all 16 communication
patterns, with the associated attacks are given in Table 1.

4.8. Anomaly modelling and classification
To analyze how different features are affected by dif-
ferent communication patterns, we have modelled the
anomalies by injecting synthetically generated flows into
a dataset of flows that correspond to normal traffic with
no anomalies. We have obtained regular flow data from
the public flow-based dataset CTU-13 [27], the trace “51“,

Figure 8: The entropy of the flow count feature aggregated
by the source port (f[s]) caused by the anomalies following
the N1-1N communication pattern.

by removing all flows associated with attacks and other
background anomalies. The modelled anomalies were
gradually increased to check the sensitivities of the fea-
tures.

Figure 8 shows the entropy drops caused by the anoma-
lies following the “N1-1N” communication pattern which
are detected with the flow count feature aggregated by
the source port (f[s]).

The results obtained from the thorough analysis of
which features are triggered by which anomaly type are
summarized in Table 2. Even a brief overview of the table
reveals that entropies behave differently for different
communication patterns, while some of them are not
affected by a particular anomaly at all (the empty cells in
the table). More importantly, the ways how the entropies
are affected by the modelled anomalies follow a very
specific pattern.

It can be observed that the entropy drop (labelled ‘X’)
occurs only when all features in the aggregation key have
a single occurrence in the model (marked with ‘1’). For
instance, aggregation by the source IP address causes an
entropy drop only in the first 8 models, since a single
host as a source of the anomaly greatly contributes to
the calculated distributions.

In addition to anomaly detection, analyzing the trig-
gered features can provide valuable information about
the communication pattern of the anomaly, indicating
the type of potential attack.

5. Implementation
When the research contributions were proven in the of-
fline laboratory environment using the commonly used
datasets, namely CTU-13 [27] and CIC-IDS2017 [28], the
next step was to implement the concept for usage in real-
life network communications. This section presents a
developed architecture and the implementation details.

5.1. Architecture
A high-level architecture of the proposed methodology,
illustrated in Figure 9, consists of the following main
building blocks:
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Features affected by the communication patterns.
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D[S] X X X X
s[S] X X X X
d[S] X X X X
f[S] X X X X X X X X

S[D] X X X X
s[D] X X X X
d[D] X X X X
f[D] X X X X X X X X

S[s] X X X X
D[s] X X X X
d[s] X X X X
f[s] X X X X X X X X

S[d] X X X X
D[d] X X X X
s[d] X X X X
f[d] X X X X X X X X

s[S.D] X X
d[S.D] X X
f[S.D] X X X X

D[S.s] X X
d[S.s] X X
f[S.s] X X X X

D[S.d] X X
s[S.d] X X
f[S.d] X X X X

S[D.s] X X
d[D.s] X X
f[D.s] X X X X

S[D.d] X X
s[D.d] X X
f[D.d] X X X X

S[s.d] X X
D[s.d] X X
f[s.d] X X X X

d[S.D.s] X
f[S.D.s] X X

s[S.D.d] X
f[S.D.d] X X

D[S.s.d] X
f[S.s.d] X X

S[D.s.d] X
f[D.s.d] X X

f[S.D.d.s] X



Figure 9: A high-level architecture.

• Flow Preprocessing – Two unidirectional flows
from both directions between two peers are
paired into a single record, the so-called bidirec-
tional flow, which gives more information and
ensures greater detection efficiency.

• Flow partitioning – Bidirectional flows are fil-
tered by protocols, services or IP addresses, and
divided into different sub-gropus, which are ana-
lyzed separately.

• Aggregation – Flow data during an epoch are
aggregated based on the identification features,
calculating additional behaviour features. The
results are data distributions for each aggregation
key and feature used.

• Entropy calculation – Entropy is calculated
over each data distribution in each epoch, gener-
ating time series entropy values for every feature.

• Entropy change detection – A significant
change in the entropy value indicates a change
in network communication behaviour. The chal-
lenge is to accurately recognize changes resulting
in anomalies and distinguish them from normal

traffic variations.
• Multivariate Analysis – Alarms triggered by

entropy changes are mutually analysed to pro-
vide a proper anomaly classification with higher
detection accuracy.

• User interface – For practical implementation
and usage in real-life networks, the obtained re-
sults need to be properly presented and managed,
which includes simplified and meaningful visual-
isation, root cause analysis to extract anomalous
data, efficient alarming, and root cause analysis
with raw data inspection, including system con-
figuration.

5.2. System implementation
The proposed architecture is implemented as a new mod-
ule within the NetVizura solution, working in synergy
with the NetVizura NetFlow Analyzer module [29]. Both
modules can work on the same server as a monolith appli-
cation, while in the case of higher traffic load they can be
deployed on separate nodes, but still sharing the common
user interface on the primary node. The backend applica-
tion is developed in Java programming language, while
the frontend user interface is developed in Javascript Re-
act framework combined with the legacy Google Web
Toolkit elements.

Elasticsearch is used as a database for the entropy time-
series data, top contributors in the data distributions used
to calculate entropies, as well as raw flow data. As a
non-SQL database, it is highly optimised and efficient for
real-time data inserting at a high rate, as well as fast data
retrieving.

A typical use case is when the user notices a single
alarm containing the most relevant information, such
as the anomaly class indicating the attack type. In a
separate tab, shown in Figure 10, a user can inspect the
entropy values in the recent period for a selected feature,
while the individual elements that mostly contribute to
the entropy changes are shown in a separate time chart.
Click on any of these elements opens a new tab which
shows raw data associated with the selected element.
Users can further filter and aggregate the flow attributes
and the resulting data are visualized at the throughput
or volume chart (Figure 11).

The current version of the anomaly detection module
is demonstrated in an operational environment (TRL-7 de-
velopment level) achieving performances of 15 K flows/s
on a server with 16 CPU cores and 32 GB RAM and using
the Elasticsearch database on a separate server. Current
development is focused on memory optimisation which
appears to be the major bottleneck for a higher flow pro-
cessing rate, expecting to achieve up to 50 K flows/s on a
single server.



Figure 10: NetVizura Anomaly Detection - Entropy inspec-
tion.

Figure 11: NetVizura Anomaly Detection - Raw data forensic.

6. Conclusion
In this paper, we have presented a comprehensive method
for entropy-based network traffic anomaly detection and
classification that relies on flow data. The method brings
several novelties and improvements important for practi-
cal implementation.

Firstly, we developed a generalized concept of be-
haviour features based on the aggregation of the second
degree, which better reflects the structure of network
communications using only basic flow attributes. Based
on these features, we have modelled 16 traffic patterns
associated with anomalies that follow a wide range of
security attacks. Secondly, we improved the entropy
change detection process and reduced many false posi-
tive alarms by introducing the anomaly score metrics.

Thirdly, the comprehensive experiments have shown
that different anomalies trigger alarms on different fea-
tures, which can be interpreted as a characteristic sig-
nature that can be additionally used for anomaly classi-
fication. And finally, the applicability of the method is
demonstrated through the implementation and real-time
usage in real-life network environments.

The current work is oriented to performance optimiza-
tion and improved usability, while further research is
focused to the consolidation of multiple alarms using
unsupervised machine learning.
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