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Abstract. Finite satisfiability in Description Logics and in UML class
diagrams is the problem of deciding whether a concept (a class) has a
finite, non-empty extension in some model. The problem is known to
be hard. Standard DL reasoners do not reason about finite satisfiability.
In this article we introduce class diagram translations for major opera-
tors in description logics, and extend a previous UML finite satisfiability
decision algorithm to handle these translations.

The contribution of this article is in presenting an efficient method for
deciding finite satisfiability in atomic, primitive knowledge bases of pop-
ular description logics, using a translation to UML class diagrams. The
method applies to class hierarchies that do not include cycles with dis-
joint or complete constraints. The scope can be determined in a pre-
processing step. The suggested method is valuable since standard DL
reasoners do not reason about finite satisfiability,
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1 Introduction

Finite satisfiability in Description Logics (DLs) is the problem of deciding whether
a knowledge base has a finite, non-empty model. The problem is known to be
hard: EXPTIME-complete for the ALCQI DL [1, 2, 3]. Standard DL reasoners
do not reason about finite satisfiability.

Class based representations, like UML class diagrams and Entity-Relationship
(DL) diagrams, have a similar finite satisfiability problem: Whether a diagram
has a finite and non-empty instance! Figure 1-a, presents a small ontology in

* Supported by the Lynn and William Frankel center for Computer Sciences.

! The problem requires that for every class there is an instance in which it has a finite,
non-empty extension. But it can be shown that for UML class diagrams, this implies
having a legal instance in which all class extensions are finite and non-empty [4, 5, 6].
Such instances are called finite, non-empty instances.



the Molecular Biology domain (deliberately spoiled to create a finite satisfia-
bility problem). It includes a multiplicity and hierarchy constraint cycle that
involves the classes Chemical, Reaction, CatalyzedReaction, Enzyme and Pro-
tein. Instances of Chemical must be related to Reaction instances, which are
also instances of CatalyzedReaction, whose instances must be related, each, to
two Enzyme instances, which are also instances of Protein and of Chemical.
Careful analysis reveals that in every non-empty finite instance of this diagram,
the number E of Enzyme instances and the number R of Reaction instances,
must satisfy the relationships £ = 2R and F < R. Indeed, the class diagram is
consistent, i.e., has a non-empty instance?, but in every instance, Reaction and
Enzyme denote either empty or infinite sets, implying that the class diagram is
not finitely satisfiable.
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Fig. 1. A Class Diagram with a Finite Satisfiability Problem

Berardi et al. [7], provide finite model preserving reductions of the ALC
description logic into UML class diagrams, and of a restricted version (minor
restrictions) of the latter into the description logic ALCQI Therefore, finite
satisfiability of UML class diagrams is also EXPTIME-complete.

Nevertheless, there are several methods for deciding finite satisfiability in
fractions of UML class diagrams. There are two main approaches for reason-
ing about finite satisfiability of class diagrams: The linear inequalities approach
and the graph based approach [4, 8, 9, 10]. The first approach reduces the fi-
nite satisfiability problem to the problem of finding a solution to a system of
linear inequalities. The second approach detects infinity causing cycles in the
diagram, and possibly suggests repair transformations. All methods apply only
to fragments of UML class diagrams. Deciding finite satisfiability unrestricted
class diagrams is still an open issue.

The fundamental work in the linear inequalities approach is that of [4, §]
It applies to Entity-Relationship (ER) diagrams with binary multiplicity con-

2 The problem requires that for every class there is an instance in which it has a
non-empty extension. But it can be shown that for UML class diagrams this implies
having a legal instance in which all class extensions are non-empty. Such instances
are called non-empty instances.



straints. The method transforms the multiplicity constraints into a system of
linear inequalities whose size is polynomial in the size of the diagram. Calvanese
and Lenzerini, in [11], extend this method to apply to diagrams with class hi-
erarchy constraints. However, the size of the resulting system of inequalities is
exponential in the size of the class diagram.

Maraee and Balaban also extend the [4] method to handle class diagrams
with class hierarchy constraints and generalization set constraints [5, 6]. This
method, termed the FiniteSat algorithm, has a polynomial complexity, but its
scope is limited to class hierarchies without undirected cycles with disjoint or
complete constraint. This scope can be determined by a preprocessing procedure.

In this article we extend the ALC to class diagrams translation of [7] to
include multiplicity constraint operators in description logics, and extend the
FiniteSat algorithm [5] to handle association class constraints. The extended
version handles all of the constraints used in the description logic translations.
Therefore, the extended FiniteSat algorithm can be used to decide finite satisfi-
ability in description logic knowledge bases, provided that their class hierarchies
fall in the scope of FiniteSat.

The contribution of this article is in presenting an efficient method for de-
ciding finite satisfiability in atomic, primitive knowledge bases of popular de-
scription logics, using a translation to UML class diagrams. The method applies
to class hierarchies that do not include undirected cycles with disjoint or com-
plete constraints. The scope can be determined in a preprocessing step. The
suggested method is valuable since standard DL reasoners do not reason about
finite satisfiability.

Section 2 describes a finite model preserving reduction of a DL knowledge
base into a UML class diagram. Section 3 describes an extension of our previous
work, for deciding finite satisfiability in UML class diagrams with constrained
generalization sets and association classes. Section 4 points to future extensions.

2 DLs-to-UML

Berardi et al., in [7], showed that deciding consistency of UML class diagrams
is EXPTIME-complete. The proof is obtained by providing reductions to/from
hard Description Logics. They show that the description logic ALC can be en-
coded by class diagrams, and class diagrams can be encoded in the description
logic DLR;fq. The reductions preserve consistency, finite satisfiability and log-
ical implication. For the purpose of this work, we are interested in reductions
from description logics into UML class diagrams.

The ALC into UML reduction of 7] is based on a translation of an atomic
primitive ALC formula into class diagrams (“atomic” means that the subsumed
concept in a formula is atomic, and “primitive” means that there is no operator
nesting). The formulae translated in [7] are: A C =B, A C By UBy, AL
VR.B, A C JR.B. The reduction cannot be easily extended to non-atomic or
non-primitive formulae since it is not compositional: The translation is applied
to formulae, which cannot be composed (as opposed to concepts or roles).



The ALC operators do not include multiplicity constraints. Since finite sat-
isfiability problems are caused by cycles of multiplicity constraints, non-finite
satisfiability in ALC is caused by inconsistency, i.e., lack of non-empty models,
and not by lack of finite models. Therefore, we develop consistency and finite
satisfiability preserving translations of atomic, primitive DL formulae with mul-
tiplicity constraints, and show how our method can be applied for deciding finite
satisfiability in description logics that include these operators.

Translation of atomic, primitive DL formulae involving multiplicity
constraints and role inverse operators: The translations are inspired by
the translations in [7].

1. A C Bj M By: The translation is given in Figure 2-a.

2. AC< nR (A C> nR, A C= nR): These formulae state that the concept
A is subsumed by the concept of all entities that are related via the role R
to at most (at least, exactly) n entities. The translation in Figure 2-b splits
the R association class, that stands for the R role, into disjoint sub-classes,
R_Aand R_ A, that cover R and identify all R pairs that start in A, and in
A, respectively. Every A entity has at most n R links since the pairs in R_ A
do not start in A entities. In order to account for the > and the = operators,
the multiplicity constraint on the R_A association should be changed to
n..x and n, respectively.

B, B,
A i oomplete i
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Fig. 2. The Transformation of A C B; M Bz and A C< nR to UML

3. AC< nR.B (A C> nR.B, A C= nR.B): These formulae state that the
concept A is subsumed by the concept of all entities that are related via the
role R to at most (at least, exactly) n entities in B. The translation in Figure
3 splits the association class R_A in a similar way as above. R_ A is split
into disjoint sub-classes, R_AB and R__AB, that cover R_ A and identify
all R_ A pairs that end in B, and in B, respectively. Every A entity has at
most n R links in B since the pairs in R_AB do not end in B entities. In



order to account for the > and the = operators, the multiplicity constraint
on the R__AB association should be changed to n..x and n, respectively.
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Fig. 3. The Transformation of A C< nR.B to UML

4. R™:In order to account for the R~ operator, there is a need to translate the
above multiplicity constraint formulae with respect to R~. The translations
are given by the above UML class diagrams, with the single modification
that the multiplicity constraints are moved to the A class association end.

Claim. An atomic concept A is finitely satisfiable in an atomic primitive ALCQI
DL knowledge base, if and only if class A is finitely satisfiable in the UML class
diagram, constructed by the above translation.

3 Efficient Decision of Finite Satisfiability in UML Class
Diagrams

The Lenzerini and Nobili method [4] applies to Entity-Relationship (ER) dia-
grams with Entity Types (Classes), Binary Relationships®. (Associations), and
multiplicity Constraints. The method transforms the multiplicity constraints into
a system of linear inequalities whose size is polynomial in the size of the diagram:

1. For every entity or association type T, insert a variable ¢t and the inequality:
t>0.

2. For multiplicity constraints 7(rny : Cy[miny, mazi], rng : Co[ming, maxs)),
(imposed on an association r between classes C; and Cs, with roles named
rny and rng, respectively), insert the inequalities:

— For ming > 0: r > ming - ¢; and for maxs # x: r < maxs - c1.

3 They allow also n-ary relationships, but with non-standard (membership) semantics
for cardinality constraints.



— For miny > 0: r > ming - co and for maxy # x: r < maxy - co.

Calvanese and Lenzerini, in [11], extend the inequalities based method of [4]
to apply to diagrams with class hierarchy constraints. The expansion introduces
a variable for every possible class intersection among subclasses of a superclass,
and splits relationships accordingly. Therefore, the size of the resulting system
of inequalities is exponential in the size of the class diagram. The simplification
of [12] reduces the overall number of new class and association variables, but the
worst case is still exponential.

In this section we describe the FiniteSat efficient algorithm for deciding
finite satisfiability in UML class diagrams. The scope of the algorithm is de-
fined by the structure of the class hierarchy in a knowledge base, rather than
by a fragment of the language. First, we present an improved version of the
[5] algorithm, which applies to class diagrams with multiplicity constraints on
binary associations, class hierarchy constraints, and Generalization Set (GS)
constraints. Then, we extend the algorithm to handle also Association Class
(AC) constraints. Together with this extension, this algorithm can be used for
deciding finite satisfiability in atomic, primitive DL knowledge bases that include
formula with the operators that are translated in the previous section.

3.1 The FiniteSat Algorithm

The FiniteSat algorithm extends the algorithm of Lenzerni and Nobili [4] to
handle also class hierarchy constraints and GS constraints. The version presented
below improves the [5] version by having a single stage (omitting the intermediate
stage of [5]), and producing a simpler inequality system.

Algorithm 1 The FinitSat Algorithm

Input: A class diagram CD with binary multiplicity constraints, class hierarchy
constraints, and GS constraints.
Output: A linear inequality system
Method:

WCD

1. For every class, association, or multiplicity constraint, create variables and
inequalities according to the Lenzerini and Nobili method.

2. For every class hierarchy B < A constraint, B being the subclass with vari-
able b, and A being the super class with variable a, extend the inequality
system with the inequalities a > b.

3. For every GS constraint GS(C,C1,...C,; Const), C being the super-class,
C;s being the subclasses, and Const being the GS constraint, extend the in-
equality system, as follows:

— Const = disjoint: C > 37", C;

— Const = complete: C <", C;

— Const = incomplete: Vj € fl,n].C’ > Cj

— Const = overlapping: Without inequality

— disjoint, incomplete: C > 37 Cj.
disjoint, complete: C = 377, Cj.



— overlapping, complete: C < >."_, C;.
— overlapping, incomplete: Vj € [71, n].C > Cj.

Proving the correctness of the FiniteSat algorithm requires analysis of the
structure of class hierarchies. For that purpose, we consider the graph of class
hierarchy constraints alone, in which nodes represent classes and directed edges
represent .S A constraints, directed from superclasses to their subclasses (asso-
ciation lines are removed). We consider two versions of such graphs: Directed
and undirected. Three class hierarchy structures are analyzed:

1. Tree class hierarchy: The directed graph of the class hierarchy forms a tree,
as in Figure 1.

2. Acyclic class hierarchies: The undirected graph of the class hierarchy is
acyclic. In Figure 4-a, the directed class hierarchy is not a tree, as F is
a sub class of both C and D, but the undirected class hierarchy graph is
acyclic (a tree).

3. Clyclic class hierarchies: The undirected graph of the class hierarchy is cyclic.
Multiple inheritance is unrestricted, as the undirected induced graph can be
cyclic. In Figure 4-b, class F' has two I.SA paths to its superclass A. The
ISA path A, B, F,C, A forms an undirected I.SA cycle.

Fig. 4. Unconstrained Hierarchy Structures

The correctness of Algorithm FiniteSat is proved via a reduction of the
finite satisfiability of a class diagram C'D to the finite satisfiability of a class dia-
gram CD’, that does not include class hierarchies, and therefore, the [4] method
applies to it. C'D’ is created as follows: Initialize CD’ by C'D. Replace all class
hierarchy constraints with new regular binary associations (termed henceforth
15 A associations) between the superclass to the subclasses. The multiplicity con-
straints on these associations are 1..1 participation constraint for the subclass
(written on the super class end in the diagram) and 0..1 participation constraint
for the super class. Figure 1-b shows the reduced class diagram of Figure 1-a.

Lemma 1. Finite satisfiability of CD is reducible into the finite satisfiability of
CcD'.



Proof. (Sketched) The reduction is defined by bi-directional translations between
non-empty finite legal instances I and I’ of CD and CD’, respectively. The
translations rely on a mapping 7T (and its inverse 77!) from I’ to I, which
collapses a structure of IS A-linked objects in I’ into a single object in I. The
intuition is that C'D’ splits a single instance object of C'D into its components
in its ancestor classes.

A crucial property of the T translation is that 1.5 A-linked objects in I’ should
not include two objects from the same class. This property, termed the Single
Class property, ensures that the T mapping maps an instance I’ of CD’ to an
instance I of C'D. The main problem is showing that the mapping preserves
multiplicity constraints (otherwise, while collapsed into a single object in I, the
links of two objects are combined into links of a single one). Full proof in [6].

The reduction is proved by considering the three forms of class hierarchy
graphs. For trees and for acyclic hierarchies, the single class property holds for
every instance. For cyclic class hierarchies, it is shown that if a diagram is finitely
satisfiable, then it has an instance that satisfies the single class property.

Claim 1 (FiniteSat correctness — without GS constraints) A class dia-
gram with binary multiplicity constraints and class hierarchy constraints is finitely
satisfiable if and only if the inequality system constructed by Algorithm Finite-
Sat is solvable.

Proof. (Sketched) Given a class diagram CD, construct a class diagram CD’ as
above, to which the inequalities method of [4] is applied. Based on Lemma 1,
CD is finitely satisfiable if and only if the inequality system of [4] for CD’ is
solvable. It is not hard to show that this inequality system is equivalent to the
inequality system constructed by FiniteSat.

The results of this claim can be extended for class diagrams with GS con-
straints and acyclic class hierarchy structure, or cyclic structure in which class
hierarchy cycles do not include disjoint or complete constraints. The scope of
the FiniteSat algorithm is defined in the following claim:

Claim 2 (Partial correctness — GS constraints, cyclic hierarchy) A cl-
ass diagram with binary multiplicity constraints, class hierarchy constraints, and
GS constraints, in which class hierarchy cycles include disjoint or complete con-
straints, is not-finitely satisfiable if the inequality system constructed by Algo-
rithm FiniteSat is not solvable.

Proof. In cyclic class hierarchies, the disjoint or complete GS-constraints might
have an implicit global effect on other generalization sets in a cycle. Therefore, if
the inequality system does not have a solution, the corresponding diagram does
not have a legal finite non-empty instance, but a solution for the inequalities
might miss the implicit constraints.

Ezample 1. Consider the class diagram in Figure 5-a. The disjoint constraint
imposed on the generalization set {A, B, C, D} implies that in every instance,



the extension of E properly includes the extension of D. But, object members
of class E are mapped in a 1:1 manner to members of D, implying that the
sets have the same size as shown in Figure 5-b. The only solution for proper set
inclusion with equal size is that the sets are either empty or infinite. Therefore,
the diagram is not finitely satisfiable. Nevertheless, the FiniteSat Algorithm
yields a solvable inequality system, as shown in Figure 5-c. The reason for the
failure of FiniteSat lies in the projection of the disjoint constraint from the A
GS to the £ GS, which is not recorded in the inequality system.

azb azcazd

D =@
N - excezd
|E'f |:( DI| I:fI,I':F
a.b.r=0
a b c

Fig. 5. Finite Satisfiability Problem that is not Recognized by the FiniteSat Algo-
rithm

Claim 3 (Complexity of the FiniteSat algorithm) The construction of the
inequalities by FiniteSat, and their number is O(n), where n is the number of
constraints in the class diagram.

Proof. Every constraint contributes a constant number of inequalities.

Table 1 summarizes our results of the above claims.

|Graph Structure[With/ Without GS constraints |FiniteSat correctness

Acyclic Without correct
with correct
Cyclic Without correct

No disjoint or complete in cycles|correct
disjoint or complete in cycles sound for unsatisfiability

Table 1. The Scope of The FiniteSat Algorithm

3.2 Extension of FiniteSat to Handle Association Class Constraints

Association classes are classes whose instances are identified by tuples of the
associated associations. That is, in every instance of the class diagram, there is



a1l : 1 and onto mapping between the extensions of an association r and its
associated association class AC”. The semantics of UML dictates that a class
hierarchy constraint between association classes AC" < ACY requires that the
sub-association r satisfies all of the constraints imposed on the super-association
q (note that this does not necessarily enforces a subset constraint between r and
q). In particular, this applies to association multiplicity constraints*

Extending FiniteSat to account for association class constraints involves
the following addition of step (4), which accounts for the identification of the
association class with its association, and for the inheritance of the multiplicity
constraints:

FiniteSat Algorithm- Extension to Association Class:

4 For every association class AC™:

1. Extend the inequality system with the equality: AC” = r, assuming that
AC™ and r are the variables of AC" and of r, respectively.

2. For every association class ACY, such that AC" <* ACY, let r inherit
all the multiplicity constraints of ¢q. That is, if ¢ has the multiplicity
constraint q(gni : Ci[ming, max1], qng : Co[ming, maxs]), and r has
the constraint r(rn; : Ci[miny, max}], rng : Ci[mink, maz}]), where
the roles gni, gno correspond to the roles rni, rng, respectively, then,
add the new multiplicity constraint on r, 7(rn; : C{[mini, maz1], rng :
C[ming, mazs]), and apply the Lenzerini and Nobili construction to
the new constraint.

Claim 4 (Complexity of the extended FiniteSat algorithm) The const-
ruction of the inequalities by the extended version of FiniteSat, and their num-
ber is O(n?), where n is the number of constraints in the class diagram.

Proof. Each association class hierarchy constraints requires going over the whole
hierarchy.

Theorem 1 (FiniteSat correctness). A class diagram CD with binary mul-
tiplicity constraints, class hierarchy constraints, GS constraints, and association
class constraints:

1. If the class hierarchy structure does not include cycles with o disjoint or
complete, then CD is finitely satisfiable if and only if WP is solvable.

2. If the class hierarchy structure includes cycles with o disjoint or a complete
constraints, then CD is not-finitely satisfiable if WCP is not solvable.

* The logic based semantics that Berardi et al. [7] provide for UML class diagrams
seems to overlook the implication of association class hierarchy on their associated
associations. Their semantics requires only the 1 : 1 mapping between an association
class extension to its associated association extension. Therefore, for AC" < ACY,
the mappings AC" < r and AC? < ¢ might differ, implying that r links might not
satisfy the ¢ constraints. Consequently, their translations of UML class diagrams, to
DLR;q and to ALCQI, cannot infer inheritance of multiplicity constraints between
associations, whose association classes are constrained by class hierarchy.



4 Future Work

Using UML class diagrams for obtaining DL services is quite new. The more con-
ventional direction is the other way around. The translations, in both directions,
emphasize the representational merits of both languages.

An implementation for the FinitSat algorithm is on the way, and would
enable us to test the usability of the suggested approach. Still, in view of the
cumbersome translations, it makes sense to try and develop a direct DL version
of the FinitSat algorithm.

Another direction is to strengthen the DL to UML translation, to apply to
concepts and roles, rather than to formulae. Such a translation can be composi-
tional and apply to non primitive knowledge bases.
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