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Abstract. In this paper we consider the extensions of description logics
that were proposed to represent uncertain or vague knowledge, focus-
ing on the fuzzy and possibilistic formalisms. We compare these two
approaches and comment on their differences concentrating on the con-
sistency issue of knowledge bases represented in these extended frame-
works. We present a classification of existing algorithms and describe a
new method for the possibilistic case that yields an inconsistency degree
and not only a binary answer to the consistency question. The proposed
algorithm is based on a direct extension of the tableau algorithm to the
possibilistic case, for which we introduce appropriate clash and comple-
tion rule definitions.
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1 Introduction

Description logics (DLs) constitute a knowledge representation framework equip-
ped with tools to automatically infer implicit information present in a knowledge
base: they belong to a subset of first order logic, which endows them with theo-
retically well-founded and computationally efficient methods.

Being based on classic binary logic, description logics are not appropriate to
deal with imprecise or uncertain information, although the latter is frequently
observed. To overcome this limit, several extensions of DLs have been proposed
relying on various extensions of classic logic: there have been probabilistic [1, 2],
possibilistic [3, 4], and fuzzy [5–8] extensions that have fundamental differences
in terms of semantics and thus in the types of information they can model. In
a nutshell, as will be detailed in the following, the probabilistic and possibilis-
tic approaches capture uncertainty and make it possible to represent uncertain
information, whereas the fuzzy approach captures vagueness and allows to rep-
resent imprecise knowledge.

In this paper, we first present a survey of the fuzzy and possibilistic extensions
of DLs. We underline their semantic differences, as well as the consequences the
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latter imply. Focusing on the central inconsistency checking reasoning service,
we present a classification of the existing algorithms in three categories, detail-
ing and commenting each of them. We then describe a new method, based on a
direct extension of the tableau algorithm to handle the necessity degrees associ-
ated with possibilistic formulas. The proposed method does not only determine
whether the knowledge base is consistent or not, it computes an inconsistency
degree that quantifies the level of inconsistency of the knowledge base.

The paper is organised as follows: in Section 2 we recall the principles and
main characteristics of the fuzzy and possibilistic extensions of description logics.
In Section 3 we provide a structured survey of existing algorithms to check the
consistency of a knowledge base represented in the fuzzy or in the possibilistic
DL formalisms. Section 4 describes our extended tableau algorithm to compute
an inconsistency degree for a possibilistic description logic base. Lastly Section 5
concludes the paper and presents some perspectives.

2 Fuzzy and possibilistic DLs: extending DLs to deal

with vagueness and uncertainty

2.1 Motivation

Description logics constitute a theoretical framework to formalise and represent
knowledge. They rely on first order logic, which endows them with well-founded
reasoning and deduction capabilities for knowledge inference. We assume that
the reader is familiar with description logics and refer to [9] for a detailed pre-
sentation.

The fact that they are a subset of first order logic makes DLs appropriate
to model and deal with crisp information. Yet real world applications is often
tainted with uncertainty and/or imprecision or vagueness, which cannot be mod-
eled by classic DLs. In order to overcome these weaknesses, several extensions
have been provided, among which the fuzzy and possibilistic description logics we
detail in the following. They respectively rely on fuzzy logic [10] and possibility
logic [11].

It is to be underlined that although they share some syntactical features,
these two approaches present fundamental differences: in both cases, the logical
formulas of classic logic are enriched with numerical coefficients of the interval
[0, 1], but the meanings of these coefficients differ. Indeed, in the fuzzy case,
they are interpreted in terms of truth degrees, whereas in the possibilistic case,
they correspond to uncertainty degrees. For instance, in fuzzy DLs, the formula
(john:Tall, 0.6) means it can be asserted to the degree at least 0.6 that ”John
is tall”: the concept ”tall” is a vague one, and the truth value of the assertion
cannot be reduced to a binary notion. In the possibilistic case, the truth value of
the formula remains binary, but a degree of certainty is expressed, underlying a
possible lack of confidence in the assertion. It is to be noted that these differences
actually trace back to the properties and differences of the fuzzy and possibility
logic theories (see for instance [12]).
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In the following, we detail the differences at a more formal level, as well as
the main features of the corresponding languages.

2.2 Fuzzy description logics

The fuzzy logic theory was first introduced by Zadeh [10] to model vague and
imprecise concepts, and perform logical reasoning from them. The fuzzy exten-
sion to description logics was provided by [13–15] and later extensively studied
by several authors [6, 16, 7, 8], who present different extensions of the classic
definitions, leading to frameworks with different properties.

Syntax In fuzzy description logics, a formula is a couple of the type (φ ⊲⊳ α),
where φ is any classic DL formula, e.g., of the form C ⊑ D,C ≡ D, a : C, or
(a, b) : R, using the classic notations; ⊲⊳∈ {≤,≥, >,<}, and α is a numerical
value in the interval [0, 1]. It is interpreted as a formula associated with a lower
or upper bound on its truth value. Tresp and Molitor [15] consider the special
case where the coefficient associated with a formula equals its truth degree.

Semantics The formal semantics of fuzzy DLs are related to the fuzzy set
theory: given a domain of interpretation ∆I , the interpretation function ·I maps
each concept to a fuzzy subset of ∆I , or equivalently to a membership function
∆I → [0, 1]. Similarly, roles are mapped to fuzzy subsets of ∆I ×∆I , whereas
individuals are simply mapped to elements of ∆I as in classic DLs.

As a consequence the connectives are interpreted as operations on fuzzy sets:
the conjunction operator for instance corresponds to the computation of the
intersection of the fuzzy sets, for which any t-norm t can be used, defining ∀x ∈
∆I , (C⊓D)I(x) = t(CI(x), DI(x)). Likewise, the disjunction operation depends
on the choice of a t-conorm, the existential and universal quantifiers on the choice
of a fuzzy implication. The combined selection of these operators determines the
property of the induced logic, for instance the possible preservation of properties
such as the excluded-middle. A common choice is the min and max norms and
the Kleene-Dienes implication.

Regarding the extension of the inclusion axiom, several approaches have been
proposed: the direct method [6, 8] consists in considering that an interpretation
satisfies C ⊑ D iff ∀x ∈ ∆I , CI(x) ≤ DI(x), relying on the fuzzy set inclu-
sion definition. A fuzzy definition of concept inclusion has also been proposed
[15, 16]: it defines a degree of subsumption between two concepts C and D as
infx∈∆I i(CI(x), DI(x)) where i denotes the implication function.

Satisfiability and consistency Given a domain ∆I and operators for the
semantics of ⊓,⊔ and the implication, an interpretation ·I satisfies a formula
(φ ≥ α) if the truth value of φ in this interpretation, φI , respects the constraint
φI ≥ α. For a fuzzy logic formula with the other inequality constraints (≤
, <,>), likewise, the interpretation satisfies the formula if the truth degree it
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leads to verifies the constraint. A set of formulas is consistent if there exists an
interpretation that satisfies all formulas in the set.

Contradictory pairs Determining whether a knowledge base is inconsistent
or not can be seen as identifying pairs of incompatible formulas. In the fuzzy DL
formalism contradictory pairs are of the form [6]

{(φ ≥ α), (φ < β)} with α ≥ β

Three other contradiction types are obtained when considering the other com-
parison operators [6]. This is due to the fact that the truth degree x cannot
simultaneously verify the two constraints α ≤ x < β if α ≥ β.

Additional features It can be noticed that fuzzy DLs present other features
that are specifically adapted to the fuzzy logic framework and improve its ex-
pressiveness. The “∀” and “∃” quantifiers have for instance been generalised to
fuzzy quantifiers such as ”most”, ”some”, or ”usually”, leading to concepts like
”most R.C” [17]. Besides fuzzy modifiers were proposed like ”very” to define
new concepts from atomic ones, as for instance ”very C” [5, 15].

2.3 Possibilistic description logics

The possibilistic logic was introduced as a logical framework to handle uncertain
information and perform reasoning from it [11]. Its application to description
logics was first introduced by [3] and recently further studied by [4, 18].

Syntax In possibilistic DLs a formula is a couple of the type (φ,N, α) or
(φ,Π, α), depending on whether it is necessarily or possibly valued; φ denotes a
classic DLs formula, and α is a numerical value belonging to the interval [0, 1].

For necessarily valued formulas, the coefficient represents a lower bound on
the necessity degree of φ, i.e. a constraint of the form N(φ) ≥ α: the higher α,
the more certain the formula. For possibly valued formulas, the coefficient is an
upper bound on φ possibility degree, i.e. it expresses the constraint Π(φ) ≤ α.
Formulas subject to constraints like N(φ) ≤ α or Π(φ) ≥ β are not considered,
because they do not provide enough information [19].

It is to be noted that Π(φ) = 1−N(¬φ), and thus (φ,Π, β) is equivalent to
(¬φ,N, 1−β). Thus in the following, without loss of generality, we only consider
necessity-valued formulas, and simplify the notations to (φ, α).

Semantics The semantics associated with possibilistic DLs are formally very
different from the semantics associated with the fuzzy case: they rely on the
definition of a possibilistic distribution over the set of (classic) interpretations
[19, 3, 4]. Denoting Ω this set of interpretations, a possibility distribution on Ω is
a function π : Ω → [0, 1] that associates each interpretation with its possibility
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degree. It must moreover attain the value 1 for at least one interpretation. π
induces a possibility and a necessity measure for the formulas, defined asΠ(φ) =
sup{π(ω) : ω |= φ} and N(φ) = 1 −Π(¬φ).

It can be underlined that, contrary to the fuzzy case, there is no room for
selecting operators in the possibilistic case.

Satisfiability and consistency A possibility distribution π defined on Ω then
satisfies a formula (φ,N, α) if the necessity degree it implies, N(φ), verifies
N(φ) ≥ α. A set of possibilistic formulas is consistent if there exists a possi-
bility distribution that verifies all its formulas.

Moreover, in the case of possibilistic logic, the notion of consistency is ex-
tended to the definition of a level of inconsistency [19], defined as

inc(F) = max{α|F ⊢ (⊥, α)}

for a given set of formulas F , where ⊥ denotes the contradiction and ⊢ the
syntatic deduction. If inc(F) = 0, the knowledge base is consistent in the classic
sense, as there is no certainty about contradiction; if it is 1, contradiction is
certain, and the knowledge base is inconsistent in the usual sense.

Contradictory pairs For possibilistic logic, contradiction is derived from pairs
of the form

F = {(φ, α), (¬φ, β)}

Indeed from such a pair, using the definition of ∧ in possibilistic logic, one can
derive F ⊢ (φ ∧ ¬φ,min(α, β)) and thus F ⊢ (⊥,min(α, β)). This derivation
implies that the inconsistency degree associated with F equals min(α, β).

It is to be noted that in the fuzzy framework, such a pair is not necessary
contradictory: interpreting the necessity as an upper bound on the coefficient,
the corresponding formulas in the fuzzy framework are (φ ≥ α) and (¬φ ≥ β).
Now (¬φ ≥ β) ⇐⇒ (φ < 1 − β) which is consistent with (φ ≥ α) provided
α < 1 − β, i.e. α+ β < 1.

On the contrary, a contradictory fuzzy DL pair, {(φ ≥ α), (φ < β)} with
α ≥ β, is also inconsistent when interpreted in a possibilistic sense: considering
upper bounds as necessity constraints and lower bounds as possibility ones, the
pair corresponds to N(φ) ≥ α and Π(φ) < β. The latter implies that N(¬φ) ≥
1 − β, which leads to an inconsistency when combined with N(φ) ≥ α, with
degree min(α, 1 − β). It is to be noted that in the case of the fuzzy framework,
both α and β belong to the same scale of values whereas in the possibilistic one,
α belongs to the scale of necessity values and β belongs to the scale of possibility
values.

3 Algorithms for consistency checking for extended DLs

3.1 Principles

Given a knowledge base in the DL framework or in one of its extensions, the ob-
jective is to derive new information that are implicitly contained in the knowledge
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base. Several types of services can be considered, as for instance subsumption,
instantiation or role verification (see [9] for more details). Now these services can
be reduced as a consistency issue, applied to the knowledge base to which some
formulas are added. The fundamental reasoning service is therefore inconsistency
checking.

Tableau algorithms For classic DLs, consistency checking is usually performed
by the tableau algorithms [20]: this family of methods, whose variants depend
on the expressiveness of the considered connectives, basically consists in decom-
posing the formulas of the knowledge base into simpler ones, using completion
rules, i.e. consistency preserving transformation rules. The obtained transformed
knowledge bases are then tested for the presence of clashes. A clash is defined as
a contradiction, coming from the presence in a knowledge base of a formula and
its negation, i.e. of a pair {φ,¬φ} where φ is any DL formula. Indeed such a pair
shows that the knowledge base is not consistent. A more detailed description is
provided in [20].

Consistency checking for extended DLs For the various extensions of de-
scription logics, the problem of consistency checking must also be solved. As
mentioned in the previous section, the definition of consistency differs from one
extension to the other, several algorithms have thus been defined. For each exten-
sion, various solutions have been proposed, differing in the considered assump-
tions (e.g. expressiveness of the considered language, acyclic concept definitions),
in the algorithmic expression, or even the kind of the result (some algorithms
provide a binary decision concerning consistency, others compute a numerical
coefficient corresponding to an inconsistency degree).

We propose a classification distinguishing between three types of approaches,
from an algorithmic point of view: the first one relies on the application of the
classic tableau algorithm to crisp knowledge bases, derived from the extended
ones through an α-cut transformation. The second type of methods transposes
the completion rules to the numerical domain, associating each completion rule
with an inequality constraint on numerical coefficients. The third one provides a
direct extension of the tableau algorithm, so that it can handle numerical coeffi-
cients. This third approach has only been applied in the fuzzy case, we describe
in Section 4 a consistency checking algorithm for possibilistic DLs following its
principle.

3.2 Approach based on α-cuts

The α-cut-based approach [3, 4, 18] consists in exploiting the classic tableau al-
gorithm and applying it to crisp knowledge bases derived from the initial base.
It has been applied to the possibilistic DL extension and is based on the α-cuts
of the possibilistic base. Its theoretical foundations were studied by Hollunder
[3] who developed a new proof method for possibilistic logic and applied it to
descriptive logics. It relies on the following theorem [3]: given a possibilistic



Consistency checking for extended description logics 7

knowledge base Φ, α ∈ [0, 1] and Φα = {φ | (φ, α′) ∈ Φ∧α′ ≥ α} the α-cut of Φ,
the following equivalence holds:

Φ |= (φ,N, α) ⇐⇒ Φα |= φ

Hollunder [3] thus proposes to perform a dichotomic search to determine the
highest α value so that Φα is inconsistent: this not only indicates whether the
knowledge base is consistent or not, it also provides a numerical inconsistency
degree. Qi et al. [4, 18] extend this principle to address the entailment problem.
Moreover, they provide a linear order variant of their algorithm that makes it
possible to take into account formulas whose certainty degrees are higher than
the inconsistency degree to perform deduction.

3.3 Approach based on inequality constraints

The approach based on inequality constraints was first introduced by [15] in
the case of fuzzy DLs, and was later generalised by Haarslev et al. [21, 22] to a
general framework that can handle probabilistic, possibilistic, as well as fuzzy
DLs.

The underlying principle is to introduce a numerical variable for each formula
derived when applying the completion rules, retaining the constraints it is sub-
mitted to: the transformation of a formula leads, on one hand, to the creation of
a new formula associated with a variable corresponding to its coefficient, on the
other hand to the storage of the numerical constraints imposed on this coefficient
in a constraint set. For instance, if (a : C ⊓ D,α) is considered, two formulas
(a : C, x) and (a : D, y) are added. In the constraint set, one adds min(x, y) = α.
The constraint expressions are derived from the properties of the connectives in
the considered DL extension.

If the transformed set of formulas contains a contradiction, the knowledge
base is inconsistent; otherwise, an inequality solver is applied to solve the set
of constraints: the knowledge base is consistent if and only if a solution can be
found.

Tresp and Molitor [15] provide completion rules of this form for the fuzzy ex-
tension of the ALC language, additionally considering fuzzy modifiers for the con-
cepts, and proposing the corresponding completion rules. In the general frame-
work presented by Haarslev et al. [21, 22], the values associated with the formula
can even be intervals. Abstract rules are defined, that can be instantiated ac-
cording to the aggregation functions chosen for the considered connectives and
thus specialised to the considered extension framework.

This inequality constraint method leads to binary results, indicating whether
the knowledge base is consistent or not. It can also be applied to the entailment
problem, providing the tightest bound on the degree with which a considered
formula can be derived from a given knowledge base.

3.4 Direct extension of the tableau algorithm

The third approach performs a direct extension of the tableau algorithm, to
directly associate the infered formulas with their coefficients. It has been applied
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to fuzzy extensions of DLs, such as fuzzy ALC [6] and fuzzy SHIN [8]. This
approach requires the definition of clashes and completion rules that integrate
the numerical coefficients associated with each formula.

The definition of clashes does not depend on the language expressiveness,
but only on the underlying logic. In the case of fuzzy DLs, considered both by
[6] and [8], they are defined as the contradictory pairs presented in Section 2.2.

The completion rules must be defined and justified for each connective [6]:
in the case of conjunction for instance, when considering a formula with upper
bound on the coefficient, (a : C ⊓ D ≥ α), the two formulas (a : C ≥ α) and
(a : D ≥ α) are added to the knowledge base [6].

4 Possibilistic direct extension of the tableau algorithm

The direct extension of the tableau algorithm described in the previous sub-
section has no counterpart in the case of possibilistic DLs. In this section, we
present such an extension for the case of the ALC (see also [23] for more algorith-
mic details). It relies on the proposition of new definitions for the clash notion
and for the completion rules, adapted to the possibilistic framework. One of its
characteristic feature is the fact that it does not only determine whether the
knowledge base is consistent or not, but also computes an inconsistency degree
that quantifies the level of inconsistency of the knowledge base.

4.1 Possibilistic clash definition

Regarding the definition of clash, we simply use the possibilistic contradictory
pairs presented in Section 2.3: a clash occurs if the transformed knowledge base
contains a pair of the form F = {(φ, α), (¬φ, β)}

The inconsistency degree is then defined as min(α, β), in agreement with the
possibilistic logic theory (see Section 2.3).

4.2 Possibilistic completion rules

The proposed completion rules are extensions of the classic rules [20] taking into
account necessity degrees. For each connective we present the associated rule
and justify it. In the case of the ⊓ and ⊔-rules we mathematically demonstrate
the derivations, we only give an idea of the demonstration for the ∀ and ∃-rules.

In all cases infered formulas are added to the knowledge base. It is to be
noted that they are only conditionally added, in order to avoid duplicating rules
in the knowledge base, as in the classic tableau algorithm: if a formula (φ, α)
is to be added and if φ already occurs in the knowledge base, say associated
with coefficient β, then a single exemplar of φ is maintained, namely the one
with the highest necessity degree. Indeed, according to possibilistic logic [19],
the following weight weakening property holds: for α ≥ β, (φ, α) ⊢ (φ, β) Thus
maintaining two copies of φ with different weights would be redundant as the
one with lower weight can be deduced from the other.
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⊓-rule : If B contains (a : C ⊓D,α), then add both {(a : C,α), (a : D,α)}
The proof of this rule validity must show that the consistency of the modified

knowledge base is the same as the initial base, i.e. that (a : C ⊓ D,α) ⇐⇒
{(a : C,α), (a : D,α)}. Now from the definition of the concept conjunction in
description logics, it can be proved that a : C ⊓D ⇐⇒ (a : C)∧ (a : D). Besides,
according to the definition of logical ”and” in possibilistic logic [19], for any
formulas φ and ψ, one has N(φ∧ψ) = min(N(φ), N(ψ)) Applying this property
to φ = a : C and ψ = a : D leads to

N(a : C ⊓D) ≥ α⇐⇒

{

N(a : C) ≥ α

N(a : D) ≥ α

which is equivalent to (a : C ⊓D,α) ⇐⇒ {(a : C,α), (a : D,α)} according to the
syntax of possibilistic logic.

⊔-rule : If B contains (a : C ⊔D,α), then add {(a : C,α)} or {(a : D,α)}
A disjunction formula provides by far less information than a conjunction

one, due to the fact that the definition of the possibilistic logical ”or” only
states N(φ ∨ ψ) ≥ max(N(φ), N(ψ)) and there is no equality relation between
N(φ ∨ ψ), N(φ) and N(ψ).

Still, denoting K = {(φ∨ψ, α)}∪B, K1 = {(φ, α)}∪B and K2 = {(ψ, α)}∪B,
it holds that

inc(K) = min(inc(K1), inc(K2)) (1)

This follows from the fact that, for any interpretation ω, the possibility dis-
tributions induced by K, K1 and K2 respectively (as defined by [19]) verify
πK(ω) = max(πK1

(ω), πK2
(ω)), which can be shown by case disjunction on

whether ω is a model of φ, ψ, both of them, or none of them.
Equation (1) proves that the determination of the inconsistency degree of K

can be derived from that of K1 and K2: as in the case of the classic tableau
algorithm, the rule proposed for the ⊔ connective is a non-deterministic one,
that requires to examine two knowledge bases alternatively.

Thus, even if no equality relation between N(φ∨ ψ), N(φ) and N(ψ) exists,
one can derive information from a disjunctive formula: the possibility distribution
induced by a knowledge base follows the minimum specificity principle [11], i.e.
corresponds to the least specific possibility distribution compatible with the
formulas. Reasoning with this distribution is equivalent to the ”most cautious”
choice, the one that introduces the least unjustified additional information. It
suffices for the determination of the inconsistency degree.

∀-rule : If B contains (a : ∀R.C, α), then add {(b : C, γb)} for all b such that B
contains ((a, b) : R, β), with γb = min(α, β).

To justify this rule, we first remind that F = (a : ∀R.C) corresponds, in the
classic logic syntax, to ∀x(R(a, x) → C(x)). Now from the definition of modus
ponens in possibilistic logic [19], (φ → ψ, α), (φ, β) ⊢ (ψ,min(α, β)). Applied to
φ = R(a, b) and ψ = C(b) this implies that, for all b occurring in formulas of the
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type (R(a, b), β), the formula (C(b),min(α, β)) can be derived. Reciprocally, if
all such formulas are added, then F is verified, a model of the modified base is
also a model of the initial base. This justifies the proposed rule.

∃-rule If B contains (a : ∃R.C, α) and if there is no b such that B contains both
(b : C, β) and ((a, b) : R, γ) with min(β, γ) ≥ α, then add {(b : C,α), ((a, b) :
R,α)} where b is a constant that does not occur in B.

For the ∃-rule justification, we consider that the knowledge base B contains
the formula F = (φ, α), with φ = a : ∃R.C. In the classic logic syntax φ is
written ∃b(R(a, b) ∧ C(b)).

Now if B contains two formulas of the type F1 = ((a, c) : R, β) and F2 = (c :
C, γ) with β ≥ α and γ ≥ α, then F is redundant with F1 and F2 because their
conjunction implies (φ,min(β, γ)), which in turn implies F due to the weight
weakening property. Thus F can be suppressed as a redundant formula.

Otherwise, i.e. if B does not contain two such formulas, or if they are asso-
ciated with degrees such that min(β, γ) < α, then new formulas must be added
to rewrite the information contained in F . This requires to introduce a new in-
dividual, that does not occur in the current knowledge base, say b, and to add
the two formulas F1 = ((a, b) : R,α) and F2 = (b : C,α).

5 Conclusion

We considered in this paper the problem of consistency checking for extended de-
scription logics, providing an overview and a classification of existing approaches
and commenting on the differences between the fuzzy and possibilistic DL for-
malisms. We also described a new method based on a direct extension of the
tableau algorithm for which we provided and justified completion rules directly
taking into account necessity degrees. This method yields an inconsistency de-
gree characterising the knowledge base more finely than a binary consistency
decision.

Ongoing works concern the implementation of the provided method to allow
for a study of its computational performances. At a theoretical level, perspectives
aim at studying soundness, completeness and complexity issues and extending
the provided rules to more expressive possibilistic DLs, for instance taking into
account numerical constraints on the roles.
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