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Abstract. In several application domains, the need arises of modeling and rea-
soning about meta-concepts and meta-properties. This is the case, for example,
with information system interoperability, where a description of the data schema
(or, the ontology) of one system should co-exist with the specification of the ap-
plication domain described by the data schema itself. In logic, higher-order con-
structs are needed for a correct representation of concepts and properties at the
meta-level. Current research on Description Logics mainly focuses on their abil-
ity for specifying the domain of interest, while the issue of devising suitable ex-
tensions to these logics for representing and reasoning about meta-level elements
is largely unexplored. In this paper, we present the first results of our investigation
on extending DL-Lite with higher-order capabilities. We show that basic higher-
order constructs can be safely added to DL-lite while keeping all the reasoning
tasks tractable, including answering conjunctive queries mixing object-level and
meta-level elements.

1 Introduction

In many applications, the need arises of modeling and reasoning about meta-concepts
and meta-properties. Roughly speaking, a meta-concept is a concept whose instances
can be themselves concepts, and a meta-property is a relationship between meta-
concepts. Meta-concept representation is needed, for example, for information system
interoperability, where a description of the data schema (or, the ontology) of one sys-
tem should co-exist with the specification of the application domain represented by the
data schema itself. Another context where meta-level knowledge is important is formal
ontology, where specific meta-properties (e.qg., rigidity) are used to express relevant as-
pects of the intended meaning of the elements in an ontology. Meta-properties in such
scenario typically impose constraints on the taxonomic structure of the concepts and the
roles represented in the object-level part of the ontology [5], and reasoning about meta-
properties can be useful for checking whether the ontology is “correct” with respect to
specific methodological criteria.

The idea of representing concepts and properties at the meta-level is an old one in
Knowledge Representation and Computer Science. Semantic networks, early Frame-
based and Description-based systems incorporated specific mechanisms for represent-
ing concepts whose instances are themselves concepts [9, 1]. Conceptual modeling lan-
guages proposed in the 70’s, such as TAXIS [11], provided both the notion of meta-
class, and suitable facilities for describing properties of operators on meta-classes. The



notion of meta-class is also present in virtually all object-oriented languages, including
modern programming languages (see, for instance, the Java class “class”).

It is well-known that in logic, higher-order constructs are needed for a correct rep-
resentation of concepts and properties at the meta-level. However, current research on
Description Logics mainly focuses on their ability of specifying the domain of inter-
est, and the issue of devising suitable extensions to these logics for representing and
reasoning about meta-level elements is largely unexplored.

In this paper, we present the first results of our investigation on extending Descrip-
tion Logics of the DL-Lite family [4] with higher-order capabilities. The DLs belonging
to this family are tailored towards capturing basic conceptual and ontological modeling
constructs while keeping reasoning, including conjunctive query answering, tractable
and first-order reducible (i.e., LOGSPACE in ABox complexity). The main outcome
of our investigation is that basic higher-order constructs can be safely added to DL-lite
while keeping all the reasoning tasks tractable, including answering conjunctive queries
mixing object-level and meta-level elements. Specifically, we present the following con-
tributions:

— We illustrate a proposal for extendirilL-Liteg! with meta-level constructs. In
the resulting logic, calletliDL-Lite, the distinction between objects, concepts and
roles, is blurred, as every element of the ontology can be viewed in these three
ways. Also, concepts and roles may occur in membership assertions as arguments
(a position that is normally reserved to objects only), with no limitations on the
instantiation strata. The notion of conjunctive query is also extended to accomodate
atoms mixing the object-level and the meta-level.

— We describe an algorithm for answering conjunctive queriesidil2k -Lite knowl-
edge bases. The algorithm actually works for a fairly general class of conjunctive
queries, called ISA-ground, where all variables appearing as arguments of ISA-
atoms are free. We show that the complexity of the algorithm is polynomial with
respect to the size of the knowledge base, and LOGSPACE with respect to the size
of the pure membership assertions (i.e., membership assertions on the elements of
the ontology that are not used as predicates).

As we said before, the issue of extending DLs with higher-order constructs is largely
unexplored. [2] is probably the first paper on this subject. The author studies “reifica-
tion of concepts”, which is a means to express meta-level classes, but the paper does
not address the issue of meta-properties, nor the issue of query answering. Our work
has connections with recent investigations on web languages, such as RDF and RDFS,
where meta-modeling is one important subject. In [10], the author addresses the issue
of decidability of reasoning on meta-properties in different fragments of OWL Full.
While some of the fragments are decidable, the paper does not deal with conjunctive
query answering. Moreover, the focus of [10] is not on tractability of reasoning. In [13],
an analysis of reasoning in RDFS is carried out. The main difference with our work,
however, is that in [13], the isa-predicate is interpreted under the “if” semanties (if
is a subclass of, then the extension afis a subset of the extension @, while our

! For the sake of simplicity, we ignofBL-Liter disjointness assertions in this paper, but they
could actually be safely included in our study.



semantics is based on the "exact” interpretation of the isa-predicate (i.e., the extension
of ¢ is a subset of the extension @fif and only if ¢ is a subclass of). Finally, com-

pared to F-logic [7], in our approach higher-order constructs are added to a logic where
incomplete information can be explicitly represented (as usual in DLs).

The paper is organized as follows. In Section 2 we introduce syntax and semantics
of HiDL-Lite. In Section 3 we illustrate some simple examples of its usage. In Section
4 we describe our reasoning techniques, and discuss their computational complexity.
Section 5 ends the paper with a brief description of future work.

2 HiDL-Lite

In this section we define the DHIDL-Lite, which can be seen as an extension of
DL-Liter [4] with meta-modeling capabilities.

2.1 Syntax ofHiDL-Lite

We assume to have an alphabet of symbdlscallednamesand an alphabet ofari-
ablesV (disjoint from A\'). Symbols inA U V are calledatomic elemenisthey si-
multaneously denote objects, (atomic) concepts, and (atomic) roles in traditional DL
terms. From\V and) we define the set aflement termsor simplyelementsas the set
E=EWN)UE(V), where

— E(N) is the set of expressions defined by the following abstract syntax:
E—A|A |34|34°

whered € N, and
— £(V) is the set of expressions defined by the above syntax in the case whete

Intuitively, an element term denotes an atomic element, the inverse of an atomic
element, or the projection of an atomic element on either the first or the second compo-
nent.

We can now turn our attention stomic formulasor simplyatoms over elements.
These are formulas built according to the following syntax (where egistan element
from &):

e1Ceex|er Ereg|er(er) ] er(ez, es)
In the case of atoms of the form (e3) ande; (e, e3), we call the position ot; the
predicate positionwhereas we call the positions &f, e3 argument positionsAlso, we
call ISA-atomsatoms of the forne; Ce e; Or ey T es, and we say that an atom is
groundif no variables occur in it.
A knowledge baséKB) is a finite set of ground atoms. A conjunctive query (CQ)
over a KB is an open formula of the form:

q(x) — Jy.p(x,y)

whereyp(x, y) is a conjunction of atoms whose variables range over the free variables
and the existentially quantified variablgsA CQ is Booleanif it has no free variables,
i.e.,r =e.



2.2 Semantics oHiDL-Lite

An interpretation domaim\ is a non-empty (possibly countably infinite) set. Given a
domainA, aninterpretation functiorover A is a tripleZ = (Z,,Z., Z,) where:

— 7, is a function that maps each elementdf\V') to a single domain object of;
— Z.is a function that maps eache A into a subset ofj;
— 7, is a function that maps eache A into a subset ofA x A.

The above functions are used to provide a triple interpretation for all elements in
E(N). In particular, each such elemenis interpreted as:

— asingle object ofA by Z,,,
— as a subset ofl through the composition of, with Z,,
— as a set of binary tuples from through the composition &f, andZ,.

An interpretationis a pair(A,Z) where A is an interpretation domain arid is
an interpretation functionZ,, Z., Z,.) over A such that, for every namgd € A/, the
following conditions hold:

= (F4)%)* = {(d) ] (d,d) € (A%)"});
= (3A7) )% = {{d) | (d. d) € (A%)"};
= ((A7)F)E = {(d',d) | (d,d') € (AT*)*"}.

With a little abuse of notation, in the following we will denote an interpretation by its
interpretation function.

Besides interpretations, we need assignments to interpret elemef(tg ofGiven
an interpretatiofl, anZ-assignmenis a functionu : £(V) — A such that the following
conditions hold:

— for every variabler € V, u(3z)% = {d | (d, d’> w(z)tr }
— for every variabler € V, u(3z~)% = {d \ (d', > w(x)tr};
— for every variabler € V, pu(z~)% = {{d,d’) | < ,d) € p(x)t}.

Satisfaction of an atom with respect to an interpretafi@nd anZ-assignment: is
defined as follows:

— for each element € E(N) U E(V), if e € EN) theneor = eZo, otherwise
Tt = )

~ Tk er Ce enlit ()7 C ()7,

~ Tk e Cr et (f"#) T C (3277

— I, = ex(ea) iff e7”" € (32",

— T eilea,e) f (0 ") € (7).

Notice that ground atoms are independent offkessignment:, so we simply say
that a ground atom is satisfied byZ (without mentioningu).

A KB K is satisfied by iff all (ground) atoms inC are satisfied b{ . As usual, the
interpretationg such thatC is satisfied by are called thenodelsof K.

A KB K is satisfiable if and only if it has at least one model. We say/hiaigically
implies an atomic formulay, if and only if « is satisfied by all models of. The
following property immediately follows from the previous definitions.



Proposition 1. Every HiDL-Lite KB is satisfiable.

Given a Boolean CQ of the formg « Jy.p(y), an interpretatiorf and anZ-
assignment:, we say that is satisfied irZ andy if and only if all atoms inp(y) are
satisfied byZ, p.

Given a Boolean C@ and a KBK, we say thay is logically implied by (de-
noted byK |= ¢) if and only if for each modef of K there exists af-assignmen:
compatible such thatis satisfied byZ and .

Given a non-Boolean CQ of the form ¢(x) <« 3Jy.o(x,y), with x =
(x1,...,2n), agrounding tupleof ¢ is a tupleE = (F;, ..., E,) of ground elements
from £(N) such that ifz; occurs in an atom of the for@w; in ¢, then the elemeng;
is of the formA or A~ with A € N. We denote by <+ Jy.o(E, y) the Boolean CQ,
obtained fromy by substitutinge with E. The set otertain answerso ¢ in X (denoted
by ans(g, K)) is the set of grounding tupleB that makeyg — Jy.¢(E, y) logically
implied by K.

3 Examples of meta-modeling irHiDL-Lite

In this section, we illustrate the modeling capabilitiedHdDL-Lite through examples.
Let us consider the following simple KB, expressed iDL-Litex:

IMember Ec Employee
dMember™ Ce Dept
Employee Ceo AMember
Director Er Member
dDirector E¢ Manager
Dept Ce ADirector™
Manager E¢ Employee
Director(John, Research)

Interesting queries that we can posekip by using the constructs dfliDL-Lite
include, for example:

— Return all roles/ohn participates in as first component:
q(x) «— Jy.x(John,y)
which returnsDirector, Member.

Suppose now that we want to describe the above knowledge base in terms of a set
of meta-concepts and meta-properties, specified by the folloMibg-Lite knowledge
baselCs:



Concept C¢ Element
Role C¢ Element
RoleDomain Cgr Concept
RoleRange Cr Concept
JdHasName Ce Concept
dHasName™ Ce Name
dRN C¢ Name

dRN~ C¢ Name

SY Cr RN

HY Cr RN

RT Cr RN

Note that/C, includes usual meta-level concepts (such as the concept “concept”),
as well as concepts and relationships used to model a set of lexical terms. In particular,
lexical relations of interest téCs are thesynonym (SYYhe hyperonym (HY,)and the
related-term (RT)elations.

The description ofC; in terms ofCy corresponds to the following set of member-
ship assertions expressecHIDL-Lite:

RoleDomain(Member, Employee)
RoleRange(Member, Dept)
RoleDomain(Director, Manager)
RoleRange(Director, Dept)
HasName(Employee, “Employee”)
SY (“Impiegato”, “Employee”)
HY (“Worker”, “Employee”)

RT (“Worker”, “Job”)

Now we can ask queries 16; U KC; mixing the meta-level, the linguistic level, and
the conceptual level. For example:

— Classify all concepts:
q(z1,22) < x1 Cc 22 A Concept(x1) A Concept(xz)
which returns the classification of the concepts explicitly namekldnnamely:
(Employee, Employee), (Manager, Employee), (Manager, Manger), (Dept, Dept).
— Return all pairs of equivalent roles to whidlahn participates:

q(z1,x2) — Fy.x1 Cr 29 Axo Cr 21 A z1(John,y) A Role(z1), Role(z2)

which in our case returns agai@irector, Director), (Member, Member).
— Return all synonyms of concepts:

q(z,z) < Jy.HasName(z,y) N SY (z,y)



— Return all concepts denoted by hyperonyms of the name of coizeployee:
q(x) < Jy1,y2. HasName(Employee,y1) AN HY (y2,y1) A HasName(x, y2)

— Return all pairs of subsumer-subsumee whose names are one the hyperonym of the
other:

q(z1,22) — Jy1,y2.21 Ce xoAHasName(x1, y1)ANHY (y2,y1)ANHasName(x2, y2)

— Return all pairs of elementsg, 5) such thatv is an instance of, and whose names
are one the hyperhonym of the other:

q(z1,x2) — Jy1, yo.x2(x1)NHasName(x1,y1 )NHY (ya, y1)ANHasName(xa, y2)

— Return all concepts whose names alated-term (RT)and are indeed linked by a
role in the ontology, returning the role as well:

q(z1, 2, x3) < Ty, y2. Ixs Ce 21 A dzg Te x2 A
HasName(x1,y1) A HasName(z2,y2) A RT (y1,y2)

4 Query answering

In this section we sketch query answering, and in fact other forms of reasoning, in
HiDL-Lite. Our aim is to provide upper bounds for reasoningliBL-Lite.

4.1 Reduction toDL-Liter

We provide a query answering technique based on reducing answering CQs in
HiDL-Lite to answering CQs ilDL-Liter. Our technique works for the class of ISA-
ground CQs, which is defined as follows: a @@ ISA-groundif all its ISA-atoms are
ground.

From now on, we assume that every CQ is ISA-ground. Moreover, and without loss
of generality, we assume that a CQ is a Boolean CQ.

Preliminary definitions Given a KBK, we denote byW'(K) the set of names occurring
in XC. Then, we callactive domain ofC (denoted byadon(X)) the set of elements
built over the alphabet/(K). Without loss of generality, from now on we assume that
adon(KC) is non-empty, i.e., thaC is non-empty (this condition can always be satisfied
by adding a trivial ISa-atom, e.g4 C. A).

Given a CQq, a variabler is ametavariableof ¢ if 2 occurs in a predicate position
in ¢. Otherwise is called arobject variable E.g., in the query(x) <« 3y, 2.C(x) A
x(y,z) N A C¢ z, the variables: andz are metavariables, whilgis an object variable.

We call a CQmetagroundf it does not contain metavariables.

Given a KBK and a CQq, we denote byMG(q, K) the set of conjunctive queries
corresponding to all the ground instantiations of meta-variableswith elements in
adon(K). Obviously, every CQ iMG(g, ) is metaground.

We are now able to establish an important property for ISA-ground CQs.

Proposition 2. For every KBKC and for every ISA-ground CQ K = ¢ iff there exists
q' € MG(g, K) such thatC = ¢'.



KB translation to DL-Liteg Given aHIiDL-Lite KB K, we define aDL-Liter KB
DL(K) as follows.

Let A\ be a set of names (disjoint froedonm(K)) such thai\'| = |adon{K)| and
letv : adon{K) — N be a bijective function. Then, we define the sets

N° = {n°|n = v(e) for somee € adon(K)}
N¢ = {n®|n=v(e) for somee € adon(K)}
NT™ ={n" | n =v(e) for somee € adon(K)}

and the functiong, : adom(K) — N°, v, : adomK) — N¢, v, : adom(K) — N7,
as follows:

— for eache € adom(KC), v, (e)
— for eache € adomK), v.(e)
— for eache € adomK), v,-(e)

n° wheren = v(e);
n® wheren = v(e);
n" wheren = v(e).

The DL-Liteg KB DL(K) = (7, .A) is defined over the alphabet of individual
names\°, the alphabet of concept nama&&’, and the alphabet of role nama&™ U
{isac,isar} as follows:

— for every assertion of the form (e2) € IC, ve(e1)(vo(e2)) € A;

— for every assertion of the form (eq, e3) € K, v,.(e1)(vo(e2), vo(e3)) € A;

— for every assertion of the forey C¢ e2 € K, ve(e1) C ve(es) € 7T,

— for every assertion of the formy Cr e € K, v-(e1) C v(e2) € T;

— for every named occurring inadon{ ), the following inclusion assertions belong
to7:

e 1. (3A) C Fv,.(A);

o 3v,(4) C v (34);

o v(3A7) C (v (4));
o (i (A)" CrGA7);
o (A7) E (n(A)
o (1, (4))" T, (A7),

— for each pair of elements, e-:

o if T Epi-Liter Ve(€1) E ve(eg), thenisac(vy(e1), vo(e2)) € A;
o if T Epi-Liter Vr(€1) C vy(e2), thenisag(v,(e1), vo(e2)) € A.

We remark that, in the above definition, the sympg), i, denotes entailment in the

description logidL-Liter .

Query translation to DL-Liter Finally, given a metaground Cg we denote by-(q)
the CQ obtained as follows:

replace every atom of the form (e2) with the atomv.(e1) (vo(e2));

replace every atom of the form (es, e3) with the atomv,.(e1) (v, (e2), vo(e3));
replace every atom of the form C¢ e; with the atomisac (v,(e1), vo(e2));
replace every atom of the form Cx es with the atomisag (v,(e1), vo(e2)).



Query answering algorithm We now present the algorithfntails, that decides en-
tailment of an ISA-ground CQ with respect tdiDL-Lite KB K. The algorithm re-
duces the above entailment to entailment of a conjunctive quddyihiter.

Algorithm Entails(/C, q)

Input: HiDL-Lite KB K, ISA-ground CQy

Output: true if K |= ¢, false otherwise

begin
if there existg’ € MG(q, K) such thaDL(K) =pi-Liter 7(¢")
then return true
else returnfalse

end

The following theorem states correctness of the above algorithm, which follows
from the above definitions and from Proposition 2.

Theorem 1. Given a HiDL-Lite KB X and an ISA-ground CQ, K E ¢ iff
Entails(g, K) returns true.

4.2 Complexity results

We now analyze complexity of query answeringHiiDL-Lite. Our aim is to show
that, for the class of queries considered in this sectiibL-Lite preserves the good
computational properties @fL-Liter.

Combined complexity We first establish the combined complexity (i.e., the complex-
ity with respect to the size of both the KB and the query) of answering ISA-ground
CQs inHIDL-Lite. The following property immediately follows from Theorem 1 and
from the fact that answering CQs ovBt-Liteiz KBs is NP-complete with respect to
combined complexity.

Theorem 2. Given a HiDL-Lite KBX and an ISA-ground CQ, deciding whether
K |= ¢ is NP-complete with respect to the sizekbéndg.

KB complexity Then, we study complexity of answering ISA-ground CQs with respect
to the size of the KB only. We start from the following property.

Lemma 1. Given a HiDL-Lite KB/, DL(K) can be constructed in time polynomial in
the size ofC only.

Moreover, observe that the number of querieBl&(q, K) is polynomial in the size
of K, and the size of every CQ MG(q, K) is the same as the size @fThis fact and
the above lemma imply the following result.

Theorem 3. Given a HiDL-Lite KBX and an ISA-ground CQ, deciding whether
K |= ¢ is PTIME with respect to the size &f



Pure ABox complexity Finally, in order to compare the computational properties of
DL-Litex with respect to ABox complexity, we make the further assumption that the
HIiDL-Lite KB is divided in two parts: such a partition isolates the “purely extensional”
atoms, i.e., the atoms of the KB that are not ISA-atoms and whose arguments are “pure
objects” in the KB: informally, an elemeatis a pure object iiC if there exists no atom
in the KB that is not an ISA-atom and in which the name otcurs in a predicate posi-
tion. From the semantic viewpoint, such assertions constitute the part dfftheLite
KB K corresponding to the ABox in@L-Liter KB.

Formally, we define such partitioned KBs as follows.

First, we associate every elemerin £() with a name inV, as follows: ife has
the formA, 3A, 3A~, or A~, whereA € N, then the name af is A.

Moreover, we calmetanames of (denoted byMN(K)) the set of all namesdl €
N (K) such that there is an elementvith nameA occurring in a predicate position in
K.

Given a KB, we defineObjElen{K) as the set of all elementssuch thate €
adon(K) and the name of does not belong tMN(K). Then, given a KBC, we define
the sets of assertiomdj(X) andmetg ) as follows:

obj(KC) = {e1(e2) | e1(e2) € K andes € ObjElen(K)}U
{e1(ea,e3) | e1(ez,e3) € K andeq, e3 € ObjElem(K)}

metgkC) = K — obj(K)

Finally, we define partitioned KBs. partitioned HiDL-Lite KBis a pair(C 4, )
such that:

— K4 = Obj(/CA UK:]\,{);
- Ky = mete(lCA UICM);
— every name occurring in a predicate positiorkin also occurs irkC,,.

Notice that the last condition of the above definition can be always satisfied by adding
trivial ISA-atoms (e.g., by adding, for every nameoccurring in a predicate position
in IC 4, the ISA-atomA C. A).

We now analyze complexity of answering ISA-ground CQs over partitioned
HiDL-Lite KBs. In particular, we are able to provide the following upper bound with
respect to the size df 4.

Theorem 4. Given a partitioned HiDL-Lite KB 4, Ky) and an ISA-ground CQ,
deciding whethelC |= ¢ is LOGSPACE with respect to the sizetof.

The above theorem follows from the following properties: (i) answering CQs in
DL-Liter is LOGSPACE with respect to the size of the ABox; (ii) from the definition
of partitioned KB, it follows that the reduction to query answerindin-Litez shown
in the previous subsection is LOGSPACE with respect to the size,ofin particular,
observe thaMG(g, K) does not depend ofi4).

5 Conclusions

We have presented the first results of our investigation on extending DL-Lite with
higher-order capabilities. Our basic result is that higher-order constructs can be safely
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added to DL-lite while keeping all the reasoning tasks tractable, including answering
conjunctive queries mixing object-level and meta-level elements.

We are currently working on several extensions to the work reported here. First,
while we have considered only ISA-ground conjunctive queries in this paper, our goal
is to devise reasoning procedures and complexity characterization of general (non-ISA-
ground) conjunctive queries s, and also union of conjunctive queries. Second, we are
studying the impact of adding constructs that induce negative information such as func-
tional restrictions and disjointness assertions, in the spiboef.ite - [4] andDL-Lite 4
[12]. Finally, we are considering the addition0f andCx to the alphabet used in the
atomic formulas, similarly to RDFS [8, 6], with the goal of understanding the impact
on the decidability and the complexity of query answering.
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