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Abstract. In several application domains, the need arises of modeling and rea-
soning about meta-concepts and meta-properties. This is the case, for example,
with information system interoperability, where a description of the data schema
(or, the ontology) of one system should co-exist with the specification of the ap-
plication domain described by the data schema itself. In logic, higher-order con-
structs are needed for a correct representation of concepts and properties at the
meta-level. Current research on Description Logics mainly focuses on their abil-
ity for specifying the domain of interest, while the issue of devising suitable ex-
tensions to these logics for representing and reasoning about meta-level elements
is largely unexplored. In this paper, we present the first results of our investigation
on extending DL-Lite with higher-order capabilities. We show that basic higher-
order constructs can be safely added to DL-lite while keeping all the reasoning
tasks tractable, including answering conjunctive queries mixing object-level and
meta-level elements.

1 Introduction

In many applications, the need arises of modeling and reasoning about meta-concepts
and meta-properties. Roughly speaking, a meta-concept is a concept whose instances
can be themselves concepts, and a meta-property is a relationship between meta-
concepts. Meta-concept representation is needed, for example, for information system
interoperability, where a description of the data schema (or, the ontology) of one sys-
tem should co-exist with the specification of the application domain represented by the
data schema itself. Another context where meta-level knowledge is important is formal
ontology, where specific meta-properties (e.g., rigidity) are used to express relevant as-
pects of the intended meaning of the elements in an ontology. Meta-properties in such
scenario typically impose constraints on the taxonomic structure of the concepts and the
roles represented in the object-level part of the ontology [5], and reasoning about meta-
properties can be useful for checking whether the ontology is “correct” with respect to
specific methodological criteria.

The idea of representing concepts and properties at the meta-level is an old one in
Knowledge Representation and Computer Science. Semantic networks, early Frame-
based and Description-based systems incorporated specific mechanisms for represent-
ing concepts whose instances are themselves concepts [9, 1]. Conceptual modeling lan-
guages proposed in the 70’s, such as TAXIS [11], provided both the notion of meta-
class, and suitable facilities for describing properties of operators on meta-classes. The



notion of meta-class is also present in virtually all object-oriented languages, including
modern programming languages (see, for instance, the Java class “class”).

It is well-known that in logic, higher-order constructs are needed for a correct rep-
resentation of concepts and properties at the meta-level. However, current research on
Description Logics mainly focuses on their ability of specifying the domain of inter-
est, and the issue of devising suitable extensions to these logics for representing and
reasoning about meta-level elements is largely unexplored.

In this paper, we present the first results of our investigation on extending Descrip-
tion Logics of the DL-Lite family [4] with higher-order capabilities. The DLs belonging
to this family are tailored towards capturing basic conceptual and ontological modeling
constructs while keeping reasoning, including conjunctive query answering, tractable
and first-order reducible (i.e., LOGSPACE in ABox complexity). The main outcome
of our investigation is that basic higher-order constructs can be safely added to DL-lite
while keeping all the reasoning tasks tractable, including answering conjunctive queries
mixing object-level and meta-level elements. Specifically, we present the following con-
tributions:

– We illustrate a proposal for extendingDL-LiteR1 with meta-level constructs. In
the resulting logic, calledHiDL-Lite, the distinction between objects, concepts and
roles, is blurred, as every element of the ontology can be viewed in these three
ways. Also, concepts and roles may occur in membership assertions as arguments
(a position that is normally reserved to objects only), with no limitations on the
instantiation strata. The notion of conjunctive query is also extended to accomodate
atoms mixing the object-level and the meta-level.

– We describe an algorithm for answering conjunctive queries overHiDL-Lite knowl-
edge bases. The algorithm actually works for a fairly general class of conjunctive
queries, called ISA-ground, where all variables appearing as arguments of ISA-
atoms are free. We show that the complexity of the algorithm is polynomial with
respect to the size of the knowledge base, and LOGSPACE with respect to the size
of the pure membership assertions (i.e., membership assertions on the elements of
the ontology that are not used as predicates).

As we said before, the issue of extending DLs with higher-order constructs is largely
unexplored. [2] is probably the first paper on this subject. The author studies “reifica-
tion of concepts”, which is a means to express meta-level classes, but the paper does
not address the issue of meta-properties, nor the issue of query answering. Our work
has connections with recent investigations on web languages, such as RDF and RDFS,
where meta-modeling is one important subject. In [10], the author addresses the issue
of decidability of reasoning on meta-properties in different fragments of OWL Full.
While some of the fragments are decidable, the paper does not deal with conjunctive
query answering. Moreover, the focus of [10] is not on tractability of reasoning. In [13],
an analysis of reasoning in RDFS is carried out. The main difference with our work,
however, is that in [13], the isa-predicate is interpreted under the “if” semantics (ifc
is a subclass ofd, then the extension ofc is a subset of the extension ofd), while our

1 For the sake of simplicity, we ignoreDL-LiteR disjointness assertions in this paper, but they
could actually be safely included in our study.
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semantics is based on the ”exact” interpretation of the isa-predicate (i.e., the extension
of c is a subset of the extension ofd if and only if c is a subclass ofd). Finally, com-
pared to F-logic [7], in our approach higher-order constructs are added to a logic where
incomplete information can be explicitly represented (as usual in DLs).

The paper is organized as follows. In Section 2 we introduce syntax and semantics
of HiDL-Lite. In Section 3 we illustrate some simple examples of its usage. In Section
4 we describe our reasoning techniques, and discuss their computational complexity.
Section 5 ends the paper with a brief description of future work.

2 HiDL-Lite

In this section we define the DLHiDL-Lite, which can be seen as an extension of
DL-LiteR [4] with meta-modeling capabilities.

2.1 Syntax ofHiDL-Lite

We assume to have an alphabet of symbolsN , callednames, and an alphabet ofvari-
ablesV (disjoint fromN ). Symbols inN ∪ V are calledatomic elements; they si-
multaneously denote objects, (atomic) concepts, and (atomic) roles in traditional DL
terms. FromN andV we define the set ofelement terms, or simplyelements, as the set
E = E(N ) ∪ E(V), where

– E(N ) is the set of expressions defined by the following abstract syntax:

E ← A | A− | ∃A | ∃A−

whereA ∈ N , and
– E(V) is the set of expressions defined by the above syntax in the case whereA ∈ V.

Intuitively, an element term denotes an atomic element, the inverse of an atomic
element, or the projection of an atomic element on either the first or the second compo-
nent.

We can now turn our attention toatomic formulas, or simplyatoms, over elements.
These are formulas built according to the following syntax (where eachei is an element
from E):

e1 vC e2 | e1 vR e2 | e1(e2) | e1(e2, e3)

In the case of atoms of the forme1(e2) ande1(e2, e3), we call the position ofe1 the
predicate position, whereas we call the positions ofe2, e3 argument positions. Also, we
call ISA-atomsatoms of the forme1 vC e2 or e1 vR e2, and we say that an atom is
groundif no variables occur in it.

A knowledge base(KB) is a finite set of ground atoms. A conjunctive query (CQ)
over a KB is an open formula of the form:

q(x) ← ∃y.ϕ(x, y)

whereϕ(x, y) is a conjunction of atoms whose variables range over the free variablesx
and the existentially quantified variablesy. A CQ isBooleanif it has no free variables,
i.e.,x = ε.
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2.2 Semantics ofHiDL-Lite

An interpretation domain∆ is a non-empty (possibly countably infinite) set. Given a
domain∆, aninterpretation functionover∆ is a tripleI = 〈Io, Ic, Ir〉 where:

– Io is a function that maps each element ofE(N ) to a single domain object of∆;
– Ic is a function that maps eachd ∈ ∆ into a subset of∆;
– Ir is a function that maps eachd ∈ ∆ into a subset of∆×∆.

The above functions are used to provide a triple interpretation for all elements in
E(N ). In particular, each such elemente is interpreted as:

– a single object of∆ by Io,
– as a subset of∆ through the composition ofIo with Ic,
– as a set of binary tuples from∆ through the composition ofIo andIr.

An interpretation is a pair〈∆, I〉 where∆ is an interpretation domain andI is
an interpretation function〈Io, Ic, Ir〉 over ∆ such that, for every nameA ∈ N , the
following conditions hold:

– ((∃A)Io)Ic = {〈d〉 | 〈d, d′〉 ∈ (AIo)Ir};
– ((∃A−)Io)Ic = {〈d′〉 | 〈d, d′〉 ∈ (AIo)Ir};
– ((A−)Io)Ir = {〈d′, d〉 | 〈d, d′〉 ∈ (AIo)Ir}.

With a little abuse of notation, in the following we will denote an interpretation by its
interpretation function.

Besides interpretations, we need assignments to interpret elements ofE(V). Given
an interpretationI, anI-assignmentis a functionµ : E(V) → ∆ such that the following
conditions hold:

– for every variablex ∈ V, µ(∃x)Ic = {d | 〈d, d′〉 ∈ µ(x)Ir};
– for every variablex ∈ V, µ(∃x−)Ic = {d | 〈d′, d〉 ∈ µ(x)Ir};
– for every variablex ∈ V, µ(x−)Ic = {〈d, d′〉 | 〈d′, d〉 ∈ µ(x)Ir}.

Satisfaction of an atom with respect to an interpretationI and anI-assignmentµ is
defined as follows:

– for each elemente ∈ E(N ) ∪ E(V), if e ∈ E(N ) theneIo,µ = eIo , otherwise
eIo,µ = µ(e):

– I, µ |= e1 vC e2 iff (eIo,µ
1 )Ic ⊆ (eIo,µ

2 )Ic ;
– I, µ |= e1 vR e2 iff (eIo,µ

1 )Ir ⊆ (eIo,µ
2 )Ir ;

– I, µ |= e1(e2) iff eIo,µ
1 ∈ (eIo,µ

2 )Ic ;
– I, µ |= e1(e2, e3) iff 〈eIo,µ

1 , eIo,µ
2 〉 ∈ (eIo,µ

3 )Ir .

Notice that ground atoms are independent of theI-assignmentµ, so we simply say
that a ground atomα is satisfied byI (without mentioningµ).

A KB K is satisfied byI iff all (ground) atoms inK are satisfied byI. As usual, the
interpretationsI such thatK is satisfied byI are called themodelsof K.

A KB K is satisfiable if and only if it has at least one model. We say thatK logically
implies an atomic formulaα, if and only if α is satisfied by all models ofK. The
following property immediately follows from the previous definitions.
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Proposition 1. Every HiDL-Lite KB is satisfiable.

Given a Boolean CQq of the formq ← ∃y.ϕ(y), an interpretationI and anI-
assignmentµ, we say thatq is satisfied inI andµ if and only if all atoms inϕ(y) are
satisfied byI, µ.

Given a Boolean CQq and a KBK, we say thatq is logically implied byK (de-
noted byK |= q) if and only if for each modelI of K there exists anI-assignmentµ
compatible such thatq is satisfied byI andµ.

Given a non-Boolean CQq of the form q(x) ← ∃y.ϕ(x, y), with x =
〈x1, . . . , xn〉, a grounding tupleof q is a tupleE = 〈E1, . . . , En〉 of ground elements
from E(N ) such that ifxi occurs in an atom of the form∃xi in q, then the elementEi

is of the formA or A− with A ∈ N . We denote byqE ← ∃y.ϕ(E, y) the Boolean CQ,
obtained fromq by substitutingx with E. The set ofcertain answersto q inK (denoted
by ans(q,K)) is the set of grounding tuplesE that makeqE ← ∃y.ϕ(E,y) logically
implied byK.

3 Examples of meta-modeling inHiDL-Lite

In this section, we illustrate the modeling capabilities ofHiDL-Lite through examples.
Let us consider the following simple KBK1 expressed inDL-LiteR:

∃Member vC Employee
∃Member− vC Dept
Employee vC ∃Member
Director vR Member
∃Director vC Manager
Dept vC ∃Director−

Manager vC Employee
Director(John,Research)

Interesting queries that we can pose toK1 by using the constructs ofHiDL-Lite
include, for example:

– Return all rolesJohn participates in as first component:

q(x) ← ∃y.x(John, y)

which returnsDirector ,Member .

Suppose now that we want to describe the above knowledge base in terms of a set
of meta-concepts and meta-properties, specified by the followingHiDL-Lite knowledge
baseK2:
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Concept vC Element
Role vC Element
RoleDomain vR Concept
RoleRange vR Concept
∃HasName vC Concept
∃HasName− vC Name
∃RN vC Name
∃RN− vC Name
SY vR RN
HY vR RN
RT vR RN

Note thatK2 includes usual meta-level concepts (such as the concept “concept”),
as well as concepts and relationships used to model a set of lexical terms. In particular,
lexical relations of interest toK2 are thesynonym (SY), thehyperonym (HY), and the
related-term (RT)relations.

The description ofK1 in terms ofK2 corresponds to the following set of member-
ship assertions expressed inHiDL-Lite:

RoleDomain(Member ,Employee)
RoleRange(Member ,Dept)
RoleDomain(Director ,Manager)
RoleRange(Director ,Dept)
HasName(Employee, “Employee”)
SY (“Impiegato′′, “Employee”)
HY (“Worker′′, “Employee”)
RT (“Worker′′, “Job”)
· · ·

Now we can ask queries toK1 ∪K2 mixing the meta-level, the linguistic level, and
the conceptual level. For example:

– Classify all concepts:

q(x1, x2) ← x1 vC x2 ∧ Concept(x1) ∧ Concept(x2)

which returns the classification of the concepts explicitly named inK2, namely:
(Employee,Employee), (Manager ,Employee), (Manager ,Manger), (Dept ,Dept).

– Return all pairs of equivalent roles to whichJohn participates:

q(x1, x2) ← ∃y.x1 vR x2 ∧ x2 vR x1 ∧ x1(John, y) ∧ Role(x1),Role(x2)

which in our case returns again(Director ,Director), (Member ,Member).
– Return all synonyms of concepts:

q(x, z) ← ∃y.HasName(z, y) ∧ SY (x, y)
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– Return all concepts denoted by hyperonyms of the name of conceptEmployee:

q(x) ← ∃y1, y2.HasName(Employee, y1) ∧HY (y2, y1) ∧HasName(x, y2)

– Return all pairs of subsumer-subsumee whose names are one the hyperonym of the
other:

q(x1, x2) ← ∃y1, y2.x1 vC x2∧HasName(x1, y1)∧HY (y2, y1)∧HasName(x2, y2)

– Return all pairs of elements〈α, β〉 such thatα is an instance ofβ, and whose names
are one the hyperhonym of the other:

q(x1, x2) ← ∃y1, y2.x2(x1)∧HasName(x1, y1)∧HY (y2, y1)∧HasName(x2, y2)

– Return all concepts whose names arerelated-term (RT), and are indeed linked by a
role in the ontology, returning the role as well:

q(x1, x2, x3) ← ∃y1, y2.∃x3 vC x1 ∧ ∃x−3 vC x2 ∧
HasName(x1, y1) ∧HasName(x2, y2) ∧RT (y1, y2)

4 Query answering

In this section we sketch query answering, and in fact other forms of reasoning, in
HiDL-Lite. Our aim is to provide upper bounds for reasoning inHiDL-Lite.

4.1 Reduction toDL-LiteR

We provide a query answering technique based on reducing answering CQs in
HiDL-Lite to answering CQs inDL-LiteR. Our technique works for the class of ISA-
ground CQs, which is defined as follows: a CQq is ISA-groundif all its ISA-atoms are
ground.

From now on, we assume that every CQ is ISA-ground. Moreover, and without loss
of generality, we assume that a CQ is a Boolean CQ.

Preliminary definitions Given a KBK, we denote byN (K) the set of names occurring
in K. Then, we callactive domain ofK (denoted byadom(K)) the set of elements
built over the alphabetN (K). Without loss of generality, from now on we assume that
adom(K) is non-empty, i.e., thatK is non-empty (this condition can always be satisfied
by adding a trivial ISa-atom, e.g.,A vC A).

Given a CQq, a variablex is ametavariableof q if x occurs in a predicate position
in q. Otherwise,x is called anobject variable. E.g., in the queryq(x) ← ∃y, z.C(x) ∧
x(y, z)∧A vC z, the variablesx andz are metavariables, whiley is an object variable.

We call a CQmetagroundif it does not contain metavariables.
Given a KBK and a CQq, we denote byMG(q,K) the set of conjunctive queries

corresponding to all the ground instantiations of meta-variables inq with elements in
adom(K). Obviously, every CQ inMG(q,K) is metaground.

We are now able to establish an important property for ISA-ground CQs.

Proposition 2. For every KBK and for every ISA-ground CQq, K |= q iff there exists
q′ ∈ MG(q,K) such thatK |= q′.
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KB translation to DL-LiteR Given aHiDL-Lite KB K, we define aDL-LiteR KB
DL(K) as follows.

LetN be a set of names (disjoint fromadom(K)) such that|N | = |adom(K)| and
let ν : adom(K) → N be a bijective function. Then, we define the sets

N o = {no | n = ν(e) for somee ∈ adom(K)}
N c = {nc | n = ν(e) for somee ∈ adom(K)}
N r = {nr | n = ν(e) for somee ∈ adom(K)}

and the functionsνo : adom(K) → N o, νc : adom(K) → N c, νr : adom(K) → N r,
as follows:

– for eache ∈ adom(K), νo(e) = no wheren = ν(e);
– for eache ∈ adom(K), νc(e) = nc wheren = ν(e);
– for eache ∈ adom(K), νr(e) = nr wheren = ν(e).

The DL-LiteR KB DL(K) = 〈T ,A〉 is defined over the alphabet of individual
namesN o, the alphabet of concept namesN c, and the alphabet of role namesN r ∪
{isaC , isaR} as follows:

– for every assertion of the forme1(e2) ∈ K, νc(e1)(νo(e2)) ∈ A;
– for every assertion of the forme1(e2, e3) ∈ K, νr(e1)(νo(e2), νo(e3)) ∈ A;
– for every assertion of the forme1 vC e2 ∈ K, νc(e1) v νc(e2) ∈ T ;
– for every assertion of the forme1 vR e2 ∈ K, νr(e1) v νr(e2) ∈ T ;
– for every nameA occurring inadom(K), the following inclusion assertions belong

to T :
• νc(∃A) v ∃νr(A);
• ∃νr(A) v νc(∃A);
• νc(∃A−) v ∃(νr(A))−;
• ∃(νr(A))− v νc(∃A−);
• νr(A−) v (νr(A))−;
• (νr(A))− v νr(A−).

– for each pair of elementse1, e2:
• if T |=DL-LiteR νc(e1) v νc(e2), thenisaC(νo(e1), νo(e2)) ∈ A;
• if T |=DL-LiteR νr(e1) v νr(e2), thenisaR(νo(e1), νo(e2)) ∈ A.

We remark that, in the above definition, the symbol|=DL-LiteR denotes entailment in the
description logicDL-LiteR.

Query translation to DL-LiteR Finally, given a metaground CQq, we denote byτ(q)
the CQ obtained as follows:

– replace every atom of the forme1(e2) with the atomνc(e1)(νo(e2));
– replace every atom of the forme1(e2, e3) with the atomνr(e1)(νo(e2), νo(e3));
– replace every atom of the forme1 vC e2 with the atomisaC(νo(e1), νo(e2));
– replace every atom of the forme1 vR e2 with the atomisaR(νo(e1), νo(e2)).
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Query answering algorithm We now present the algorithmEntails, that decides en-
tailment of an ISA-ground CQ with respect to aHiDL-Lite KB K. The algorithm re-
duces the above entailment to entailment of a conjunctive query inDL-LiteR.

Algorithm Entails(K, q)
Input: HiDL-Lite KB K, ISA-ground CQq
Output: true ifK |= q, false otherwise
begin

if there existsq′ ∈ MG(q,K) such thatDL(K) |=DL-LiteR τ(q′)
then return true
else return false

end

The following theorem states correctness of the above algorithm, which follows
from the above definitions and from Proposition 2.

Theorem 1. Given a HiDL-Lite KB K and an ISA-ground CQq, K |= q iff
Entails(q,K) returns true.

4.2 Complexity results

We now analyze complexity of query answering inHiDL-Lite. Our aim is to show
that, for the class of queries considered in this section,HiDL-Lite preserves the good
computational properties ofDL-LiteR.

Combined complexity We first establish the combined complexity (i.e., the complex-
ity with respect to the size of both the KB and the query) of answering ISA-ground
CQs inHiDL-Lite. The following property immediately follows from Theorem 1 and
from the fact that answering CQs overDL-LiteR KBs is NP-complete with respect to
combined complexity.

Theorem 2. Given a HiDL-Lite KBK and an ISA-ground CQq, deciding whether
K |= q is NP-complete with respect to the size ofK andq.

KB complexity Then, we study complexity of answering ISA-ground CQs with respect
to the size of the KB only. We start from the following property.

Lemma 1. Given a HiDL-Lite KBK, DL(K) can be constructed in time polynomial in
the size ofK only.

Moreover, observe that the number of queries inMG(q,K) is polynomial in the size
of K, and the size of every CQ inMG(q,K) is the same as the size ofq. This fact and
the above lemma imply the following result.

Theorem 3. Given a HiDL-Lite KBK and an ISA-ground CQq, deciding whether
K |= q is PTIME with respect to the size ofK.
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Pure ABox complexity Finally, in order to compare the computational properties of
DL-LiteR with respect to ABox complexity, we make the further assumption that the
HiDL-Lite KB is divided in two parts: such a partition isolates the “purely extensional”
atoms, i.e., the atoms of the KB that are not ISA-atoms and whose arguments are “pure
objects” in the KB: informally, an elemente is a pure object inK if there exists no atom
in the KB that is not an ISA-atom and in which the name ofe occurs in a predicate posi-
tion. From the semantic viewpoint, such assertions constitute the part of theHiDL-Lite
KB K corresponding to the ABox in aDL-LiteR KB.

Formally, we define such partitioned KBs as follows.
First, we associate every elemente in E(N ) with a name inN , as follows: ife has

the formA, ∃A, ∃A−, or A−, whereA ∈ N , then the name ofe is A.
Moreover, we callmetanames ofK (denoted byMN(K)) the set of all namesA ∈

N (K) such that there is an elemente with nameA occurring in a predicate position in
K.

Given a KBK, we defineObjElem(K) as the set of all elementse such thate ∈
adom(K) and the name ofe does not belong toMN(K). Then, given a KBK, we define
the sets of assertionsobj(K) andmeta(K) as follows:

obj(K) = {e1(e2) | e1(e2) ∈ K ande2 ∈ ObjElem(K)}∪
{e1(e2, e3) | e1(e2, e3) ∈ K ande2, e3 ∈ ObjElem(K)}

meta(K) = K − obj(K)

Finally, we define partitioned KBs. Apartitioned HiDL-Lite KBis a pair〈KA,KM 〉
such that:

– KA = obj(KA ∪ KM );
– KM = meta(KA ∪ KM );
– every name occurring in a predicate position inKA also occurs inKM .

Notice that the last condition of the above definition can be always satisfied by adding
trivial ISA-atoms (e.g., by adding, for every nameA occurring in a predicate position
in KA, the ISA-atomA vC A).

We now analyze complexity of answering ISA-ground CQs over partitioned
HiDL-Lite KBs. In particular, we are able to provide the following upper bound with
respect to the size ofKA.

Theorem 4. Given a partitioned HiDL-Lite KB〈KA,KM 〉 and an ISA-ground CQq,
deciding whetherK |= q is LOGSPACE with respect to the size ofKA.

The above theorem follows from the following properties: (i) answering CQs in
DL-LiteR is LOGSPACE with respect to the size of the ABox; (ii) from the definition
of partitioned KB, it follows that the reduction to query answering inDL-LiteR shown
in the previous subsection is LOGSPACE with respect to the size ofKA (in particular,
observe thatMG(q,K) does not depend onKA).

5 Conclusions

We have presented the first results of our investigation on extending DL-Lite with
higher-order capabilities. Our basic result is that higher-order constructs can be safely
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added to DL-lite while keeping all the reasoning tasks tractable, including answering
conjunctive queries mixing object-level and meta-level elements.

We are currently working on several extensions to the work reported here. First,
while we have considered only ISA-ground conjunctive queries in this paper, our goal
is to devise reasoning procedures and complexity characterization of general (non-ISA-
ground) conjunctive queries s, and also union of conjunctive queries. Second, we are
studying the impact of adding constructs that induce negative information such as func-
tional restrictions and disjointness assertions, in the spirit ofDL-LiteF [4] andDL-LiteA
[12]. Finally, we are considering the addition ofvC andvR to the alphabet used in the
atomic formulas, similarly to RDFS [8, 6], with the goal of understanding the impact
on the decidability and the complexity of query answering.
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