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Abstract  
Security experts are required to detect and determine appropriate countermeasures against 

modern computer attacks. Despite the increasing detection of exploits and vulnerabilities, 

methods of defense remain notably slower. However, this is still an open research issue. Our 

paper discusses our research in a specific field of network attack identification, leveraging 

neural networks, in particular a multilayer perceptron, to identify and predict future network 

security events based on previous observations. To ensure the quality of the learning process 

and to obtain the desired generalization of the model, 4 million records accumulated within 7 

days by the Canadian Institute of Cybersecurity were used. Our result suggests that neural 

network models based on multilayer perceptron can be used, after refinement, to identify and 

predict network security events. 
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1. Introduction 

Each year, 111 trillion lines are added to the total number of software code, with each line potentially 

likely to be a new vulnerability and, therefore, a zero-day attack can be implemented. At the same time, 

technologies used by attackers to attack computer systems and networks become more and more 

complex and advanced [1]. Several ways for solving this issue are being explored, including 

technologies that allow the creation of secure software [2]. For this purpose, for the automation of 

processes of controlling security events in info systems, traditionally Intrusion Detection or Protection 

System (IDS / IPS) are used, the main task of which is to automate the process of identifying attacks 

[3-5] or improper uses [6; 7]. These systems, depending on the technology used to detect attacks, are 

usually divided into two main groups: malicious user behavior detection systems; and systems for 

detecting abnormal behavior of a computer system. In the first case, comparing the attack pattern with 

the flow of events, the second one compares the pattern of the normal behavior of the system with the 

flow of events. In this case, it is generally believed that the task of detecting intrusions in TCP/IP 

networks is reduced to recognition tasks [8-10]: 

 structural signs (signatures) of known types of attacks; 

 invariant signs of the structure of correct computational processes; 

 correlation signs of the normal functioning of distributed computing systems. In the case of an 

issue with the recognition of network anomalies, there are some complexities that are mainly related 

to the increasing demand for identifying previously unknown attacks and destructive influences, 

which in its turn requires: 

1. construction of reference sets of a normal (semantically correct) profile of the system's behavior 

in conditions of uncertainty of environmental influences; 
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2. definition of necessary and sufficient informative features; 

3. construction of rules for determining anomalies. 

As a rule, the detection of network anomalies is carried out according to the scheme in which the 

following functional blocks are [11]: 

 analysis of the information contained in the headings of IP datagrams; 

 construction of the prognosticating; 

 search and estimation of anomalies; 

 response to anomaly; 

 filling and / or editing the IDS / IPS rules base. 

The collected statistical information is used for the construction of a mathematical model for 

forecasting traffic based on cyclic analysis of time series. This model allows you to predict the network 

load based on the frequency search in network traffic.  

In all cases, IDS might not be able to detect an intrusion, since they will not be able to distinguish it 

from the background white noise, which exists in any system due to weaknesses in the packet analysis 

tool or lack of signature of the corresponding attack, etc. 

Consequently, most of the typical ways of identifying attacks and countering them have low 

accuracy and speed and do not allow effective counteracting of both known attacks and zero-day 

attacks. Therefore, many different technologies are being developed to protect computer systems [12] 

and networks based on data mining technologies and neural networks [13-17]. This is due to the neural 

network structure's ability to solve tasks that are difficult to formalize, as well as its ability to learn, 

self-organize, and generalize. This approach allows us to obtain models that can quickly adapt to the 

environment and allow us to predict the development of the process based on the property of 

generalization [18; 19]. 

Artificial intelligence is a broad term based on the imitation of human abilities by computers: to feel, 

understand, and react. 

In the field of computer science known as machine learning, statistical techniques are frequently 

used to help computers "learn" (i.e., gradually improve their performance at a given job) [20]. 

Data Sciences – to apply (use) machine learning algorithms, it is necessary to define data sets, choose 

pertinent variables and metrics, and carry out a variety of information engineering tasks, such as looking 

for hidden dependencies, gathering data, training it, integrating it, visualizing it, and evaluating 

algorithm performance, among others. 

Each learning model should be based on a certain algorithm. These include classification, clustering, 

associative rules, in-depth learning, regression, and pattern matching. The choice of algorithm depends 

on the ultimate goal, which is set as a goal to achieve. The model of cybersecurity event identification, 

considered in this research, is based on supervised training and on classification algorithms of neural 

networks. 

2. Material and methods 

While solving the task of classifying events that occur in the process of network interaction, some 

issues arise, mostly associated with a need to account for unknown attacks and destructive influences, 

which in turn needs: building benchmark sets of normal (semantically correct) profile behaviors of the 

system in conditions of uncertainty of environmental influences, defining the necessary and sufficient 

informative signs and building rules for identifying anomalies [21; 22]. 

A similar and less complex task was performed for SQL (Structured Query Language) injection 

attacks [23]. An attack known as SQL injection involves changing database queries by taking advantage 

of weaknesses in online applications. A successful attack enables the attacker to collect, alter, or even 

delete sensitive information. 

To synthesize and analyze the SQL injection identification model, we prepared preliminary training, 

control, and test datasets. The training dataset contained the parameters of the training object, and the 

parameters were selected heuristically based on the analysis of significant attack features that may 

contain a URL. 

Artificial neural networks are mathematical models and their software or hardware implementations. 

The term was coined in the study of processes in the brain and attempts to model these processes. 



Interpreting sensory data using a kind of machine perception by labeling or grouping input data is the 

basic principle of building neural networks. Any data is translated into vectors containing recognized 

patterns, which are numerical [24]. 

In a neural network, each node has inputs and an output. A neuron has two modes: training and use. 

During training, the neuron learns to respond to specific input patterns. In use mode, the neuron 

responds to input and generates an output. If the input is unusual, the neuron uses its activation function 

to decide whether to activate itself or not. 

The relevant weight of each input signal is calculated based on the input data. If this value exceeds 

the threshold, the neuron is triggered. 

Neural models work exclusively with numerical data presented in a certain numerical range, so at 

the first stage of the study, a numerical URL classifier was developed. This subroutine converts the 

URL into a binary value and sets 1 (the logical value "true") if the parameter in the URL is related to 

the attack, and 0 (the logical value "false") otherwise. Thus, an input vector was generated for each 

URL, and the output vector can be represented as: 

, 

where n is the number of query parameters used in the SQL pattern of the URL. 

Thus, the neural network model will have n neurons as input. Each vector is defined by a value: 

Benign (0) means no attack, while Injection (1) means an attack. To divide the input vectors into two 

classes with values of 0 and 1, it is enough to have only one neuron at the output. 

As a result, we obtained a relative error of the simulated model of no more than 5% for both the 

control and test samples. So, we may apply such an approach to a wider range of security events and 

attacks. 

The purpose of this research is to study opportunities for using artificial neural networks, in 

particular, the perceptron of Rumelhart (a separate case of the perceptron of Rosenblatt) for the 

identification of network attacks and predicting events connected with network security [25; 26]. To 

ensure the quality of the training process and to obtain the desired generalization of the model's 

properties, it is necessary to have a significant number of implementation examples of the relevant 

attacks. For experimental purposes, 4 million records were collected that were accumulated within 7 

days by the Canadian Institute of Cybersecurity. The networking infrastructure of the attacker consisted 

of 50 machines. The victim organization consisted of 5 departments, and each of them used 420 user 

nodes and 30 servers. The dataset contains information about the intercepted network traffic and system 

logs of each machine of the victim organization. The data processing scheme is presented in Figure 1.  

 

 

Figure 1: The data processing scheme 
 



During the dataset mining, profile concepts were used: B-profile and M-profile. 

B-profile (Benign) – encapsulation of user behavior using various methods of machine learning and 

statistical analysis (such as K-Means, SVM, Random Forest, and J48).  

Encapsulated functions are the size distributions of protocol packets, the number of packets per 

thread, certain payload structures, the payload size, and the time-division request for the protocol.  

The model consists of the following stages: 

1. Collecting the network activity data, system logs, and event logs. 

2. Processing the preliminary data and bringing them to the required form. 

3. Training and testing of the neural network. 

4. Analyzing results. 

During the simulation, the following protocols were used: HTTP, HTTPS, SMTP, POP3, IMAP, 

SSH, and FTP. According to the results of the frequency analysis of the data, it was concluded that the 

bulk of the traffic is represented by HTTP and HTTPS packets. M-profile (Malignant) – an attempt to 

describe the attack scenario unambiguously. In the simplest case, people can interpret these profiles and 

then execute them. Ideally, stand-alone agents, together with compilers, will be used to interpret and 

execute these scenarios. Six different scenarios of attack implementation were considered: 

● In the case of network infiltration, a harmful file was sent through email to the target. Once the 

vulnerability on the target's computer was exploited, the backdoor was activated. This allowed 

the attacker to scan the internal network using the target's computer and search for any potential 

new mailboxes. 

● In this scenario, an attack known as denial of service HTTP was implemented using Slowloris 

and LOIC. These tools are capable of making web servers completely inaccessible through one 

attack system. Slowloris initiates a full TCP connection with a remote server and keeps the 

connection open by sending valid, incomplete HTTP requests at specific intervals. This is done 

to avoid closing sockets. As web servers have a limited capacity to serve connections, it becomes 

a matter of time before all sockets are utilized, and no further connections can be accepted. 

● In this scenario, the Damn Vulnerable Web App (DVWA) was utilized to test security analysis 

skills. DVWA is designed specifically for security professionals. The initial step involves 

crawling the website using a web application vulnerability scanner, followed by executing 

different types of web-based attacks, which may include SQL injection, system command 

injections, and unprotected file upload capability. To detect software vulnerabilities against SQL 

injections, there are multiple methods such as functional testing (black/white box), phasing, 

static, dynamic, and manual analysis of the source code. In addition, WAF (web application 

firewall) is commonly used alongside vulnerability scanning in software applications. WAF 

offers two security models: signature-based and rule-based, each with its own advantages and 

disadvantages. However, both models are unable to detect zero-day threats, which means that 

the attack vector cannot be fully covered [27-30]. Therefore, typical approaches to protect 

against SQL injection attacks may not provide a sufficient level of security due to low 

identification accuracy and speed. To counteract known and zero-day attacks, many 

technologies are being developed based on data mining techniques and the use of neural 

networks to protect computer systems and networks effectively. 

● One common type of cyber attack is a brute-force attack. In this type of attack, hackers try out 

various combinations of usernames and passwords in order to break into a user's account. There 

are many tools available for conducting a brute-force attack, including Hydra, Medusa, Ncrack, 

Metasploit, and Nmap NSE modules. Additionally, there are tools for cracking password hashes, 

such as hashcat and hashpump. One particularly effective tool is the Python program Patator, 

which is both flexible and multi-threaded. Patator is able to save the results of each attack in a 

separate log file, making it easy to review and process later on. In our own testing, we used a 

password list with 90 million different words. 

● Recent attacks have exploited known vulnerabilities, which are severe flaws that can affect 

millions of servers or victims. These vulnerabilities can be repeatedly exploited and often takes 

several months to patch all the vulnerable software code. One of the most well-known 

vulnerabilities in recent years is Heartbleed. 

Details of the attacks which were identified, and the means used to implement them are presented 

in Table 1. 



Table 1 
Attacks performed on target systems 

 

3. The main results of the research 

There are two approaches to analyzing network attacks: one is based on analyzing network activity, 

and the other is based on analyzing packet content. In this study, we have focused on an approach based 

on the analysis of network activity. The analysis of network activity was performed using the 

specialized software CICFlowMeter. CICFlowMeter generates bi-directional streams, where sending 

the first packet determines the path to the destination source and back to the source system and allows 

you to get over 80 statistical network traffic attributes. For modeling goals, 67 parameters of network 

traffic in each thread were identified. 

While preparing the data, a new Label attribute was included to distinguish whether a thread 

represents a specific attack or the regular functioning of information services. As a result, all data was 

categorized with the following values: Benign, FTP-BruteForce, SSH-Bruteforce, DoS-GoldenEye, 

DoS-Slowloris, DoS-SlowHTTPTest, DoS-Hulk, DDoS attacks – LOIC-HTTP, DDoS-LOIC-UDP, 

DDOS-HOIC, Brute Force –Web, Brute Force –XSS, Infiltration, and Bot. 

We synthesized the neural network model based on a multilayer Rumelhart perceptron, which is a 

special case of Rosenblatt perceptron, where weights of neurons are adjusted by back-propagating error 

correction. The use of more than one layer (usually two or three) is a feature of the approach [24: 31]. 

The multilayer perceptron developed by Rumelhart served as the foundation for the synthesis of the 

neural network model. Rumelhart's multilayer perceptron is a particular instance of the Rosenblatt 

perceptron in which the error-reversing algorithm modifies the weight coefficients of the neurons. The 

existence of many layers (often two or three layers) is uncommon [24; 31]. The Rosenblatt perceptron-

based neural network divides input vectors into the classes 0 and 1, respectively. The input array X and 

the target array Y, which designate each of the input vectors to one of the two classes, are the two arrays 

that make up the training sequence. 

Input, output, and hidden layers were used in the investigation. The two stages of neural network 

back-propagation activities are forward and back-propagation. The input pattern is applied to the input 

layer during the forward propagation stage, and its impact spreads across the network layer by layer 

until the output value is attained. The error signal for each of the output nodes is calculated after the 

actual and predicted output values of the network have been compared. The output errors are sent back 

from the output layer to each node in the hidden (inner) layer, which influences the output layer, as all 

hidden nodes have more or less contributed to the discovered mistakes in the output layer. The error 

signal is used to determine the relative contribution of each node to the overall error. This process is 

repeated layer by layer until all nodes receive an error signal. 

The weighting values for each connection are updated using the error data after we have identified 

the error signal for each node, and this process continues until the network reaches a point where all 



training schemes can be encoded. Using a method known as the delta rule or gradient descent, the 

backpropagation algorithm looks for the least value of the error function in the weight space. For the 

training task, weights that reduce the error function are thought to be the best option [13; 14]. 

 

 

Figure 2: Neural network model 
 

When training, if a certain pattern is fed into the input layer, the weighted sum of the inputs to the 

jth node in the hidden layer is determined using the following formula: 

 
(1) 

(1) determines a neuron's total input. θ_j, a weighted shift node with a constant output value of 1, is 

one example. For each neuron in the hidden and output layers, the shift node functions as a "pseudo-

input" and is used to address issues when the value of the input pattern is zero. Without a shift node, 

the neural network may be trained if any input pattern contains zero values. 

The action 𝑁𝑒𝑡𝑗 potential value is supplied to the appropriate activation function, which uses it to 

determine whether or not to activate a neuron. The output of the neuron is determined by the value of 

the activation function, which also serves as the input for the corresponding neurons in the subsequent 

layers. 

For the back-propagation algorithm to work, the activation function must be differentiable. Thus, a 

commonly used function is the sigmoid equation. 

 

(2) 

There could be applied other types of functions for example hyperbolic. (1) and (2) are used to 

determine the initial value of the node k in the output layer. 

The synthesis of the model was based on the creation of its software that implements training and 

testing of the model. The basic mathematical algorithms used to normalize the data and the training of 

the model were performed using the Weka API (Application Programming Interface). Weka is open-

source software released under the GNU General Public License and contains a set of machine-learning 

algorithms for data mining tasks. It contains tools for data preparation, classification, regression, 

clustering, association extraction rules, and visualization. Weka contains API, which is written in Java 

and implements existing algorithms for training with minimal settings. The final training and validation 

module was written in the Java programming language. 



To identify the event with a given accuracy, it is required that the relative error does not exceed 4%. 

Due to a large amount of training data, it was divided into several blocks according to the type of attack 

and it was decided to synthesize a separate neural network model to identify each type of attack. 

 

 

Figure 3: Model learning process 
 

A special procedure with the following algorithm was created to classify attacks using the 

synthesized model: 

1. Loading training data. 

2. Determination of nominal values from numerical ones. 

3. The neural network represents numerical values in a certain relationship, weights are adjusted 

from the value of the magnitude. During the data normalization process, dependencies between 

certain attributes can be misinterpreted and confuse the learning process. For critical numeric 

attributes such as the port value (1-65565), you need to modify the presentation. To solve this issue 

the formatting of numeric values to nominal is used. 

4. Data normalization. 

5. Data normalization in neural networks is the process of optimizing the values of a dataset for 

numeric types from a large range into the range of values from 0 to 1 while maintaining 

proportionality. Normalized values significantly increase the learning rate of the model, but do not 

violate the correctness of its training. 

6. The classifier matches the output value of the neural network to the type of attack identified  

7. Validators describe the network output classes used to display the classification value to the 

user. 

8. Template classification based on the received response from the neural network. 

9. Determination of the network error. 



If transmitted data to the classifier contains match patterns, then you can calculate the relative error 

of the network. 

To ensure accuracy in endpoint identification, our training, validation, and test data must come from 

separate machines. Our model undergoes 100 epochs of training, with regular validation to assess its 

performance. We select the model that shows the best performance for validation data.  Detailed 

information on assessing the adequacy of the resulting model when presented with a test subset of data 

is presented in Table. 2. This sample reflects the different types of attacks and their relative error of 

identification when applied to a synthesized model. 

 
Table 2 
Test results of the model 

 

4. Conclusions 

Analysis of the received results shows that relative identification error when test samples are 

presented to the synthesized model varies significantly for different types of network attacks. As Table 

2 shows, such types of DoS attacks as GoldenEye, Slowloris, LOIC-UDP, Infiltration, and the HTTP 

Benign cannot be identified by the model. However, in general, further research of the opportunity to 

use this type of neural network for solving network attack identification issues are rather promising. 

Upon reaching acceptable results, the accuracy of the identification model will allow not only to identify 

network attacks but also to perform a network security event forecast based on retrospective data 

accumulated in the information system over a period and given to the neural network model for training. 
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