
Conceptual basics of semantic comparison texts in social
networks

Olena Chebanyuk
1,2, Vitalii Velychko

2, Olexander Palahin
2 and Sergiy Gnatyuk

1

1 National Aviation University, Lubomyr Huzar Ave., 1, Kyiv, 03058, Ukraine
2 V. M. Glushkov Institute of Cybernetics of the NAS of Ukraine, Ave. Glushkov, Kyiv, 03187, Ukraine

Abstract
A well-known direction to define similarities of texts is based on considering matching

fragments of texts (also called plagiarism) allows for defining narrow aspects of text

similarities. But, the fact, that texts have the same semantics and can use, for example,

synonyms or a set of other words to express the same idea left in the other hand of the many

working software systems, that are aimed to define plagiarism. The paper is devoted to the

representation of conceptual basics explaining how to define whether different texts are equal.

Such conceptual basics are grounded on the idea of extracting facts from texts and using

ontologies and growing pyramidal networks to match whether texts are equal.

Keywords 1
Growing pyramidal network, ontology, semantic cooperation, text, natural language

processing, graph

1. Introduction

The growing values of text information require principally new approaches for information

processing. One of the important conditions is to implement new practical approaches allowing to

process of big values of textual information. On the other hand, social networks (Figure 1) are the

sources of a very big amount of information that can be duplicated in different tweets, posts, pages, and

boards.

Figure 1: Most used social media

CMiGIN 2022: 2nd International Conference on Conflict Management in Global Information Networks, November 30, 2022, Kyiv, Ukraine
EMAIL: chebanyuk.elena@gmail.com (O. Chebanyuk); aduisukr@gmail.com (V. Velychko); palagin_a@ukr.net (O. Palahin);

s.gnatyuk@nau.edu.ua (S. Gnatyuk)

ORCID: 0000-0002-9873-6010 (O. Chebanyuk); 0000-0002-7155-9202 (V. Velychko); 0000-0003-3223-1391 (O. Palahin); 0000-0003-

4992-0564 (S. Gnatyuk)

©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

Different users can be customers for defining simulates of textual information with different aims.

For example, a researcher using social networks such as ResearchGate or ScienceDirect can define the

best papers contain the best explanation of facts towards their interests. Tourist can find the best hotel

and places to see according to their requires. The developer can optimize the procedure of

documentation search. Many other practical tasks and practical approaches can be solved in this

direction. The owner of the mailing list can define spam. Also, there are many other applications for

this task.

2. Review of systems processing data from social networks

Consider working systems, allowing to processing of textual information from social networks. IBM

Watson Services-based systems [1]. IBM provides a complex of systems supporting cloud technologies

allowing analyzing initial information with the aim of understanding and supporting conversation by

means of artificial intelligence.

One of the tasks of such a system is to classify a user request according to topic. Using such a system

one can classify news, and spam or assume that text is touching on some specific topic (for example

information about disaster). The procedures below must be followed in order to train the classifier

before using the Natural Language Classifier service in your application: assemble the training set of

data; develop and train the classifier; Inquire about the trained classifier; assess the outcomes; and

update the data [1].

Figure 2: News classification schema [2]

The diagram's steps are listed as follows:

1. The user inputs news information as text into the web interface and selects the Classify Text

button to have it categorized.

2. The program (enterprise back end) receives the news text for processing.

3. To determine which category of news is the greatest match for the supplied text, the business

application (web service) contacts the Watson Natural Language Classifier service.

4. The enterprise application receives the answer from the Natural Language Classifier service.

5. The web application front-end receives the answer from the business application.

6. The user may examine the response thanks to the web interface, which also controls the data

information and carries out certain front-end processing.

7. The user feedback request is forwarded from the web application front end to the web

application back end.

8. To persist the input, the back-end of the web application contacts the IBM Cloudant® noSQL

DB service.

9. The database responds to the enterprise application with the results of the insert operation.

10. The web front-end receives the answer from the business application.

11. The user interface shows the user the findings.

Take into account other instances when such a classifier has been used while working with spam

systems.

1. Using a web browser, the user navigates to the SPAM Classifier program [1, 3].

2. The input page is shown by the application controller.

3. The user completes and submits the input form by entering the letter topic or content [4].

4. When determining whether a message is spam or not, the application controller scans the topic

or content of the mail and asks the Natural Language Classifier.

5. The application controller gives the user a web response that includes the classification outcome

from the Watson Natural Language Classifier service.

6. The user offers input by indicating whether or not they agree with the categorization outcome

[5, 6].

7. To update the training data, the application controller records user feedback in a data store.

The training data for the classifier [1] must include a minimum of five records (rows), a maximum

of 20 thousand records, and a maximum of 3 thousand classes. The maximum total character count for

a text value is 1024.

Take language categorization as an example in an application that supports a Q and A procedure [1].

A web interface, application logic, the Watson Natural Language Classifier service, and the Node.js run

time make up the Healthcare Q and A application [1]. A categorization service is orchestrated by the

application logic. The category to which the given query belongs is classified by the Watson Natural

Language Classifier service. The Express framework serves as the integration mechanism between the

Watson Natural Language Classifier service and the Node.js runtime.

1. Through the online interface, a user asks a question about healthcare.

2. A web interface posts the query that was sent to the program.

3. The application integration platform, Node.js Express, receives the query via application logic.

4. After receiving the query, Node.js forwards it to Watson's Natural Language Classifier service

for classification.

5. Watson Natural Language Classifier service provides a response with the top class according

to the inquiry category.

6. Node.js responds to the application logic with a Natural Language Classifier answer.

7. The web interface page to be presented is determined by application logic based on the query

category returned from the Watson Natural Language Classifier service.

8. The web interface shows the page with the response to the query.

The following stage is to depict the structure of models that process text data and to define interaction

pipelines with these models. To do this, think of deep DeepQA.The following elements make up the

Minimum DeepQA pipeline, which takes a question as input and outputs a response along with a

corresponding confidence score [7]:

 Question analysis - To do this, break down the question into its component components of

speech and determine the many functions that each word and phrase in the sentence serve. The

purpose of question analysis, which is primarily a sort of natural language processing issue, is to

develop a thorough understanding of the question in terms of the entities involved, the relationships,

the potential categories of solutions, etc.

 Primary search - Finding a group of potential sources that originate from both structured and

unstructured data and contain the potential answers is the aim of the main search.

 Hypothesis generation - This stage aims to provide potential answers to the query from the

document collection that the primary search's results have produced. Candidate answers or

hypotheses are terms for solutions. Quantity now takes precedence over precision. In order to ensure

that the right response gets included, it is crucial to produce a huge number (thousands) of viable

replies such that recall is near 100%.

 Hypothesis and evidence scoring - DeepQA uses a variety of techniques to find supporting

information for each potential response. There is some proof to be found. Textual excerpts from

potential responses include more evidence. DeepQA initiates a vast number of analytics once the

information has been gathered, attempting to support and defend every hypothesis from every angle.

 Final merging and ranking - DeepQA's final step is to score each response according to its

level of confidence, which is determined by combining and analyzing many sources of information.

This is accomplished by utilizing machine learning strategies and historical data that provide hints

and their related solutions.

Consider another category of applications, namely the process of translation. Represent technology

stack for interaction with IBM BlueMix cloud [7]:

 BlueMix;

 Java development environment;

 Node.js development environment;

 Flow-based development tool Node-RED;

 Browser application;

 Language classifier;

 Language translator API.

Consider the pipeline of the language-translation process based on the represented technology stack [7].

1. Processing a text input (browser application)

2. Analysis of the text input source language (Java development environment)

3. Defining language (classifier)

4. Creation of the Language translator service instance

5. Authentication to Language Translator API

6. Translation of the inputted text (language translator API)

7. Output the result of processing in the form of the translated text

8. Output the result in the form of the source language and confidence score

3. Conclusion from the review

Described technologies, methods, and practical approaches represent a pipeline of performing some

tasks related to text processing operations. However, known industry systems do not open for cloud

developer algorithms and approaches to text processing [8, 9] and give no explanation of technologies

involved in the realization of software modules. For example, a relation database has limited

possibilities to proceed with big values of data effectively and within defined limits of time. We need

to change the database engine to work with graph databases and involve natural language processing

operations to save data quickly and effectively. Other aspects of function also are closed. That is why

the necessity to develop flexible methods, that support the possibility to perform different operations of

text processing is open. Using analytical methods with open mathematical apparatus allows the user to

develop their software models, and to defend themselves to any software license policy. In addition,

one can enrich such a module with different functionality that responds to peculiarities and specific

tasks.

4. Task

To propose conceptual basics of text processing that are composed of analytical representation of

tasks and approaches to text processing description. Provide the possibility to proceed with large

amounts of data. Satisfy the criteria of quick assess to text data.

5. Theoretical Foundation of Text Processing

Trie is a tree for storing strings that has one node for each prefix that is often used. Additional leaf

nodes are used to store the strings. A trie can be compared to an m-ary tree, where m is the total number

of alphabetic letters [10].

An m-way branch is used to follow the proper path in the trie, starting at the root, in order to do a

search by looking at the key one character at a time. For each letter of the alphabet, a possible child

exists at each node in the multi-way trie (Fig. 3). The three words BE, BED, and BACCALAUREATE

are contained in the multi-way trie shown below [11].

Figure 3: Example of multi-way trie [7]

Because they expressly presume that the keys are a sequence of values across a certain (finite)

alphabet rather than a single indivisible item, tries differ from other data structures. The processing of

variable-length keys is thus a situation where attempts excel. Because similar prefixes of words are

concatenated, attempts, when done properly, can also enable compression of the set represented because

words with the same prefix follow the same search route in the trie [12]. Trie [10] had utilized a list of

the top 31 English terms to demonstrate his point [11].

Figure 4: The 31 most common English words [13]

Figure 5: Linked trie for the 31 most common English words [13].

6. Proposed Conceptual Basics for Semantic Texts Comparison

Consider a general concept of knowledge processing that is presented in natural language texts.

Represent it in a notation of UML sequence diagrams.

1. Preliminary analysis of the natural language text is carried out using the defined rules of facts

extracted from the text. The knowledge formed from the information about the entities and

relationships between them is extracted from the text (messages 1.1 and 1.2 on Fig. 6. The purpose

of this step is to obtain preliminary information for an approximate estimation of the relevance of

the subject of the text to the themes of the classifier stored in the ontology repository.

2. The correspondence of the subject of the text to the classifier themes is set. This operation is

provided by means of matching subjects of the repository of ontologies (message 2 on Fig. 6) to text

entities. The ontology classifier is presented in the form of a tree, the branches of which are the

themes and subtopics of the ontology repository.

3. If the subject of the text corresponds to the subject of the classifier, then the ontology of the

text is built using the knowledge that was extracted from the text earlier (messages 3.1 and 3.2 on

Fig. 6). The ontology of the text is stored in the structure of a "growing pyramidal network".

(Message 3.3 on fig. 6).

4. The ontology, which is transformed into a growing pyramidal network (message 4.1 on fig. 6),

is stored in the repository of ontologies (message 4.2 on fig. 6). However, it can be stored as a

separate repository unit or combined with other ontologies, or certain components can be used to

refine existing ontologies. Note that this preserves the traces of tracing the components of the

ontology with the source text.

Entities2

and

relations

hips2

Text1 Clas-

sifier

know-

ledge

extrac-

tion

Entities

and

relations

hips1.1

ontolo-

gies

Growing

pyramidal

network

3.1 3.3

3.2

Ontolo

gy1

4.1

4.2 Text2

5.1

Ontolo

gy1
7.2

5.2

1.2

8

Repositoyr of ontologiesExtracting facts from the text
Structural and semantic

comparison

7.1

6

2

7.3

Figure 6: UML sequence diagram of natural language text processing

5. Another natural language text (denoted as Text2 in Fig. 6), which is the subject of processing,

is considered. Information about the entities and connections (messages 5.1 and 5.2 in Fig. 6) is

extracted from it using the rules of extracting knowledge from natural language texts.

6. It is determined whether the acquired knowledge corresponds to the subject of the ontology

repository, by means of comparing the knowledge of the text with ones in the classifier of the

ontology repository (message 6 on Fig. 6).

7. An ontology of the second text is formed, which is stored in the form of a growing pyramidal

network (messages 7.1, 7.2, and 7.3 in Fig. 6).

8. In the future, possible word processing operations are performed, which are based on operations

of comparing the ontologies of the repository and the processed text (obtaining answers to questions

on the text, structural comparison of texts, search for the closest texts by facts, etc.).

The formal representation of the task allows to prepare of a repository of ontologies

Denote a tree of ontology repository by the next

1 2{ , ,..., }nW w w w
,

where n – a number of the processes in problem domain.

Denote the nested processes by the following:

11 1,1 1,2 ,{ , ,..., }m nw w w w

In this example process is represented as a root process.

Initial information for composing the ontology repository consists from the triple of the next sources

of information that can be transformed into text using modern ways and approaches to get text

information from the audio and video content is denoted by the following: Т – texts in natural languages;

А – information from the audio resources; V – information from video resources, that is extracted from

audio tracks.

Denote a triple of source for ontologies designing for the process of ontology tree as the number i,

і=1, …, n, where n – is a number of problem domain processes as iinput . Then

{ , , }i i i iinput T A V
.

If some type of initial information is absent, corresponding iinput left empty.

The lower index defines the number of problem domain processes, for example iТ – natural

language text corresponding to process number i of the tree.

A full set of processes, containing all arrays of initial information from sources T,A, and V is denoted

by the following:

1 2{ , ,..., }nINPUT input input input
.

Represent ontology of repository corresponding to process number i of repository tree by the

following:

{ , }К R

i iR L GPN
,

(1)

where
КL – tracing links between growing pyramidal networks of repository and iinput ;

КGPN –

Growing Pyramidal Network of Repository.

Higher index R (Repository) defines the entities before performing of procedures of its filling, for

example,
К КL ,GPN .

A set of growing Pyramidal Networks of ontology repository is represented in the following way:

Denote a set of tracing links between ontologies and triple iinput as . Other words

:R A

i i iNL input GPN
.

Higher index A (Add) defines ontologies and Growing Pyramidal Networks that are designed in the

current operation of repository filling. (For example,
A A

i iGPN ,L).

Denotation that starts from the letter N (New) defines the content of growing pyramidal networks

after the procedure of repository ontologies filling. For example (
R R

i iNL ,NGPN).

The initial information for repository of ontologies filling is represented in the following way:

1 2

1 2

1 2

{ , ,..., }

{ , ,..., }

{ , , }, 1,...,

{ , ,..., }

{ , }, 1,...,

n

n

i i i i

n

R R

i i i

W w w w

INPUT input input input

input T A V i n

R R R R

R L GPN i n

 





 
 

   .

(2)

Denote an operation of filling unique information as  , for example adding to repository only

unique information to Growing pyramidal network is denoted by the following:
R R D

i i iNGPN GPN GPN 
.

Denote the resulting information after repository of ontologies filling by the next:

1 2

1 2

1 2

{ , ,..., }

{ , ,..., }, { , , }, 1,...,

{ , ,..., }, { , }, 1,...,

, 1,...,

, : { , , },

n

n i i i i

R R

n i i i

R R A

i i i

R R A R R R A A A

i i i i i i i i i

W w w w

INPUT input input input input T A V i n

NR NR NR NR NR NL NGPN i n

NGPN GPN GPN i n

NL L L NL NLGPN NLO T A V i



  

  

  

  1,...,n









 .

(3)

The task of filling the repository of ontologies is solved in the following formulation:

from the tuple of source information INPUT, which contains different types of sources of source

information, sorted by processes of the ontology repository tree, to prepare a set of growing pyramidal

networks containing trace connections with

: { , , }, 1,...,R A A A

i i i i iNL input T A V i n
,

(where n is the number of tree processes),

including in the repository only such metamodels that do not contain duplicate information with existing

ones.

7. Conclusion

The paper contains the result of research aimed to propose a conceptual basics of semantic text

comparison based on facts, extracted from a text. It is proposed to use the RDF framework to support

non-relational databases, provide quick access to data, and a quick procedure for storing and reading

the information. The procedure of ontology designing allows us to perform the procedure of searching

facts in text effectively as well as find answers to questions with a given level of accuracy. Growing

Pyramidal Networks provide quick access to any entities and facts, allowing to adoption of technologies

of data processing to big data. Proposed conceptual basics allow to design of a flexible architecture and

software modules removing limitations of existing technologies of data processing.

8. References

[1] M. Manhaes, et al. Building Cognitive Applications with IBM Watson Services: Volume 4

Natural Language Classifier, IBM Redbooks, 2017.

https://www.redbooks.ibm.com/abstracts/sg248391.html.

[2] IBM Classification Module: Make It Work for You.

http://www.redbooks.ibm.com/redbooks/pdfs/sg247707.pdf.

[3] A. Ahraminezhad, M. Mojarad, H. Arfaeinia, An Intelligent Ensemble Classification Method

for Spam Diagnosis in Social Networks, International Journal of Intelligent Systems and

Applications 14(1) (2022) 24-31. doi: 10.5815/ijisa.2022.01.02.

[4] I. Alakbarova, Determining the interests of Social Network Users, International Journal of

Education and Management Engineering 13(4) (2023) 1-8, 2023.

doi:10.5815/ijeme.2023.04.01.

[5] T. Almutiri, F. Nadeem, Markov Models Applications in Natural Language Processing: A

Survey, International Journal of Information Technology and Computer Science 14(2) (2022)

1-16. doi: 10.5815/ijitcs.2022.02.01.

[6] I. Korobiichuk, S. Fedushko, A. Juś, Y. Syerov, Methods of determining information support

of web community user personal data verification system, Advances in Intelligent Systems and

Computing, volume 550, 2017, Springer, Cham, pp 144–150. doi: https://doi.org/10.1007/978-

3-319-54042-9_13.

[7] M. N. Omri, F. Fkih, Dynamic Editing Distance-based Extracting Relevant Information

Approach from Social Networks, International Journal of Computer Network and Information

Security 14(6) (2022) 1-13. doi:10.5815/ijcnis.2022.06.01

[8] A. Rahman, A. Nayem, M. Amjad, S. Siddik, How do Machine Learning Algorithms

Effectively Classify Toxic Comments? An Empirical Analysis, International Journal of

http://www.redbooks.ibm.com/redbooks/pdfs/sg247707.pdf

Intelligent Systems and Applications 15(4) (2023) 1-14, 2023. DOI:10.5815/ijisa.2023.04.01.

[9] G. Alfio, et al. Building Cognitive Applications with IBM Watson Services, Getting Started,

IBM Redbooks, volume 1, 2017.

[10] K. Markov, et al. Natural Language Addressing, IBS ISC, Kyiv, Madrid, Sofia, 2015.

[11] F. Pfenning, Lecture Notes on Tries, in: Principles of Imperative Computation, 2012.

http://www.cs.cmu.edu/~fp/courses/15122-f12/lectures/21-tries.

[12] S. Sahni, Tries, in: Handbook of data structures and applications, D. P. Mehta, S. Sahni (Eds.),

Chapman & Hall/CRC computer & information science, 2005.

[13] F. Liang, Word Hyphenation by Computer, PhD thesis, Department of Computer Science,

Stanford University, Stanford, California 94305, 1983. http://www.tug.org/docs/liang/liang-

thesis.pdf.

