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Abstract
Motivated by emerging strength of Knowledge graphs as an integrated information representation and repository that
interlinks heterogeneous data from different domains and the growing adoption and application of artificial intelligence
for various use-cases on education domain. We propose EduEmbedd, a framework to develop an Embedding (Knowledge
Graph Embedding) for the education domain and demonstrate the usefulness of such embedding. We understand that in the
emerging era of Large Language Model (LLMs), domain specific embeddings based on Knowledge Graph has the potential to
aid the LLMs to overcome some of the most pressing challenges like hallucinations along with improving its interpretability.
The knowledge held up in the education domain is an assimilation of information from multiple contexts. EduEmbedd
leverages all these different contexts into one to learn an effective embedding which can be used for various upstream machine
learning tasks. The heterogeneous data from different contexts is often related to each other. In order to derive value, the data
should be integrated, structured and the relationships should be made explicit. Knowledge Graphs (KG) can play a key role in
achieving these goals and gives us an opportunity to assimilate information from these multiple contexts into a single unified
structure and semantic form. We also understand that several novel enhancements would be required on top of this base idea
to ensure that we are able to deal with the nuances of the domain for which we are creating the embedding. EduEmbedd is a
step towards this direction where we introduce a systematic framework to create an Embedding for the education domain by
leveraging Knowledge Graph Embedding (KGE) approaches. We also demonstrate how these embeddings are useful in terms
of its ability in representing the composite knowledge being held up in them along with the efficacy it brings to machine
learning using this approach.
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1. Introduction
The information held up in education learning data(
courses, concepts etc.) inherently possesses multiple con-
texts. There are two major contexts which we will factor
currently in EduEmbedd. These are the information held
up in the Pedagogical context and information from the
actual content of learning data or Content context. So
the inherent knowledge that the entities possess is made
up by the collective knowledge from these contexts.

Pedagogical context - The pedagogical contexts de-
notes the various pedagogical information for the learn-
ing course. It is a form of meta information for the learn-
ing data which captures the learning entities interactions
with other leaning entities. To understand this, we can
visualize the entire information in an education domain
as comprising of entities that share one or more rela-
tionship between each other. For example, a educational
learning course (an example of entity) could have a par-
ticular learning complexity level (beginner, expert etc.)
and this could be visualized as a form of relationship
between them, Similarly, educational learning courses
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can possess inter-dependencies contexts (supplementary,
complementary, composite, contradicting) between each
other and these inter-dependencies could be also visual-
ized as a form of relationship between them. Similarly
various learning entities like courses, subjects, concepts,
topics etc. could possess an inheritance (IS-A) or compo-
sition (Has-A) relationship between each other. These
are some of the examples of pedagogical relationships
seen in the learning universe.

Content context – Education Learning data also pos-
sesses the knowledge from the actual learning content
or knowledge coming from the learning text and the
concepts present in them. For example, the instruction
concepts that are being described in a course, the topics
present in the course etc. are some examples of informa-
tion representing the content context. These information
from the content context can be efficiently linked to the
entity( example; a course) through appropriate content
type relationships.

With respect to the above understanding, we could say
that an entity (course, topic etc.) in a learning universe
has two broad context and these contexts are translating
to corresponding type of relationships which defines an
entity; pedagogical relationships and content type rela-
tionships with other entities. For example, if we take any
education course or any chapter of the course as an en-
tity, then this entity(chapter) is defined both in terms of
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Figure 1: Knowledge Graph with Content based and Peda-
gogical type relationship with weights associated to triples.

the pedagogical relationship of this chapter/course with
other chapters/course and also the actual content being
held in the chapter. As our intention is to develop a KG, it
makes sense to see these context as a form a relationship.

Most of the prominent past related work have consid-
ered either one of these contexts to arrive at an embed-
ding for an educational learning entity. However, the
advent of KG provides us an opportunity to assimilate
these heterogeneous type of data in order to collectively
represent the entity. This now opens up to the idea of gen-
erating an embedding (KGE) of an entity in the education
domain by assimilating the information and knowledge
held in multiple(both) contexts; thus potentially giving
the embedding representation a much broader perspec-
tive and semantic coverage. KGE is a machine learning
task of learning a low-dimensional representation of a
knowledge graph’s entities and relations while preserv-
ing their semantic meaning.

An entity in an education universe could be visualized
as a function of its existence as per all the relationship it
shares with other entities. This concept fundamentally
gives more breadth to the representation of these enti-
ties and a KGE fulfils this requirement to a large extent.
These generated embedding vectors aim to capture the
latent properties of the semantics in the KG and so simi-
lar entities and similar relationships will be represented
with similar vectors.

However, Education KG could not be perceived as just
having the relationship between entities. In many sce-
narios we find that the relationship must carry certain
weights. The weights would signify the degree of associ-
ation (of the relationship) between the entities. This de-
gree of association could semantically mean confidence,
strength, probability etc. We explain this with few exam-
ples for both pedagogical and content based relationships.

For pedagogical relationship, we take the example of
two different course chapters (entities) which are related
with the ’supplements’ relationship. From an education
learning perspective it is a common understanding that
for a given learning course chapter, multiple other course
chapter could supplement differently or in different de-
grees i.e. chapterA ’supplements’ chapterC more than
chapterB ’supplements’ chapterC. Similarly other ped-

agogical relationship could be efficiently weighted so
that we can capture the degree of association, confidence,
probability etc of the relationship into the embeddings.

For content relationship, a similar example is of a cer-
tain topic which could be comparatively covered / de-
scribed more exhaustively in a particular course chapter
than other.

So, EduEmbedd derives the embeddings by factoring
these two most important aspects seen prevalently in
education domain:

• Amalgamating the knowledge from multiple con-
text (Pedagogical context and Content context);

• Weighted relationship between entities.

2. Related Work
In this section, we explore and report some of the pio-
neering works around the area of creating a KG and KGE
for academia or in an educational realm. The novelties
introduced in this paper are quite salient where we use
both Pedagogical as well as content based information.
On top of this we also use weights to arrive at the final
KGE. However we have studied few pioneering work
done on this domain which we have listed here.

Few studies focus on systematic construction of do-
main specific KG. We are yet to find any prominent work
of construction of KGE for such domain specific KG or
for a KG on education domain. However, there are some
recent works investigating different relation extractions
between certain known educational entities [1] extract
concepts hierarchies from the textbooks; [2] induce struc-
tures of multiple units in a course; and [3] recover pre-
requisite relations from university course dependencies.
One of relevant work to our research is carried out by
Carnegie Mellon University: the researchers utilize ob-
served relations among courses to create a directed con-
cept graph [4], and the relations are assumed to be known
in advance. In educational industry, MOOC providers,
like Khan Academy [5][8], have built some dedicated
knowledge graphs for their online courses, but most are
undirected graphs built by domain experts. Yu Lu et al.
proposed a system , called KnowEdu [6] to automatically
construct KG for education, however the KG focusses
more on only one type of automatically extraction of a
concept relation to build the KG. All these pioneer stud-
ies and efforts demonstrate the increasing interests and
pressing needs of knowledge graph construction in edu-
cation domain. Majority of the known published work
in this area has either utilised the concepts/text from the
course content to derive the embeddings or have utilised
course hierarchy structure to derive the embeddings. The
KG behind EduEmbedd is designed to amalgamate multi-
ple heterogeneous context into one view and incorporate



the concept of weighted relationship between the nodes
of the KG.

Although a comprehensive survey of KGE is out of the
scope of this work (recent surveys provide a good cover-
age of the landscape [7]), it is worth listing the most pop-
ular KGE models proposed to date. TransE [8] is the fore-
runner of distance-based models, and inspired a number
of models commonly referred to as TransX. TransH [9]
projects entities and relations into a hyperplane, TransR
[10] introduces separate projection spaces for entities
and relations. The symmetric bilinear-diagonal model
DistMult [11] paved the way for its asymmetric evolu-
tions in the complex space, ComplEx [12] and RotatE
[13]. Holographic Embeddings of Knowledge Graphs
(HOLE) [14] is related to holographic models of associa-
tive memory in that it employs circular correlation to
create compositional representations. Some models such
as RESCAL [15], TuckER [16], and implE [17] rely on
different tensor decomposition techniques. Models such
as ConvE [18] or ConvKB [19] leverage convolutional
layers. Attention is used by [20].

None of the models listed above leverage numeric at-
tributes of any kind. A number of recent works does
support multimodal knowledge graphs and learn from
numeric values associated to node entities. LiteralE en-
riches node embeddings with numeric information be-
fore scoring the triples [21]. KBLRN combines latent,
relational and numeric features using product of experts
model [22]. TransEA learns a vanilla structural model us-
ing TransE scoring, and an attribute model for attributed
triples, using regression over the attribute values, which
is jointly trained [23]. Nevertheless, such models are
not designed to learn from numeric values associated
to edges. On KGE to the best of our knowledge, the
only work designed to work with numeric-aware edges
is UKGE [24]. UKGE generates confidence scores for
known triples by squashing numeric values in the [0 -
1] interval. It then uses probabilistic soft logic [25] to
predict probability estimates for unseen triples, by jointly
training a model to regress over the confidence values.
A limitation of this approach is that out-of-band logical
rules are required as additional input. It is also worth
noting that UKGE design rationale aims at supporting
uncertain knowledge graphs, i.e. graphs whose edge
numeric values represent uncertainty. Our concept of
weights is to ensure that triples with high numeric edge
values have high contribution on the overall learning of
the embeddings. [26] and Ampligraph [27] does supports
numeric values for Representation learning of Knowl-
edge Graphs and comes close to our work but it does not
have support for TransH which is a base model for us
and also our work has various improvisations required at
different components of the KGE for TransH, including
a different evaluation mechanism.

3. EduEmbedd Framework

3.1. Preliminaries
We first introduce the notations used in this paper. Low-
ercase letters in italics denote entities, relations, or types,
whose bold forms denote embedding vectors. A knowl-
edge graph G = (s, p, o) ⊆ E × R × E is a set of triples t
= (s, p, o) each including a subject s ∈ E, a predicate p ∈
R, and an object o ∈ E. E and R are the sets of all entities
and relation types of G.

Knowledge Graph with weights to the triples. In a
knowledge graph G, each triple is assigned a weight at-
tribute w ∈ R, leading to G = t = (s, p, o, w). The weights
are assigned to triples.

3.2. EduEmbedd Framework Details
Compared to a generic KGE, construction of educational
KGE takes the following consideration into account:

3.2.1. Identification of Entities

Most often it is seen in the case of a generic KG that the
nodes/entities are real world entities like people, place,
things etc. Education domain may not have such real
world entities. We have to identify the entities that we
are interested with and this identification of entities is
often dictated by the use case/s we are interested in solv-
ing/working using the KGE. For EduEmbedd, the entities
are:

• The Course Learning chapters.

• The topics generated by a topic modelling algorithm
Latent Dirichlet Allocation (LDA) – We apply LDA to
the learning content text data and derive the available
topics in the course chapters. Any other topic mod-
elling method like BERTopic etc, which potentially
has the capability to also determine the probability
of the topic could also be used here. The topic here
is a cluster of keywords that is identified by a topic
modelling algorithm and is often more abstract. Here
we assume that every chapter comprises of a statistical
distribution of topics.

• The instructional concepts in the course chapters –
Instructional concepts are the learning concepts that a
learner would learn from a course chapter. For Exam-
ple, a course chapter on grammar for Natural Language
Processing could include instructional concepts like
’CFG grammar’, ’Dependency grammar’ etc. To under-
stand the difference between Topics and instructional
concepts; topics here are more abstract and statistically
relevant keyword pattern which may or may not be
explicitly understood by a human but the instructional



Figure 2: EduEmbedd High Level Process Flow.

concepts are concepts that more tangible to under-
stand and many of these instructional concepts are
mentioned in the index of a text book. We can employ
either or both of the below ways to extract instruc-
tional concepts (IC):

– Build a master list of ICs by referring and extracting
the ICs from the index section of a standard book
on that subject and thereafter search the available
ICs in the course chapter.

– Leverage a pre-trained Large Language Model
(LLM) like GPT to retrieve the ICs for the course
chapter. Relevant prompt engineering needs to be
leveraged to ensure the model understand the type
of ICs to be retrieved by the LLM (for example ICs
for Natural Language Processing).

• Complexity level of the course/chapters like Begin-
ner, Intermediate, Expert etc. – This information can
be found either using manual experts review or by
leveraging a LLMs to aid us with this information by
utilizing the course introduction or course synopsis to
get the possible complexity level of the course. Prompt
engineering using few shot learning was used to ex-
periment this with LLMs. It showed mixed results with
the limited experimentation that was conducted. For
better consistency at this time, we leveraged expert
manual review of a part of the course abstract and
introduction to determine the complexity level.

3.2.2. Identification of Relationships

Relationships are identified based on all possible con-
texts which we have factored in the design of the KG. So
in EduEmbedd, we have pedagogical and content based
relationship information. Ideally there could be many
possible relationship that could be imagined for the en-
tities but some relationship may not be useful in the
context of the entities and the use cases that we are tar-
geting, it is best to ignore such relationship. For example
if the corpus belongs to resources from a very specific

stream (ex. engineering) then including this common
relationship for every entity will not help much for the
embedding and can be discarded.

Though there can be many possible relationships
which could be used but we have only considered the fol-
lowing relationship in the current scope of EduEmbedd:

• Text_topic: This relationship links the course learn-
ing chapter(head) to the topic identifiers (tail) ( topic
based on the implementation of a topic modelling algo-
rithm (LDA) on the learning content text data) found in
the course chapters. This is a content type relationship.

• Concept_vocab: This relationship links the course
Learning chapter(head) to the IC(tail) available in the
chapters hence depicting the available IC in a course
chapter. This is a content type relationship.

• Prerequisite: This relation links the course learn-
ing chapter(head) to the other course learning chap-
ters(tail) those are considers as a pre-requisite. At this
time, we have leveraged expert manual review of the
course mandates and the learning curriculum to deter-
mine this. This is a pedagogical type relationship.

• Level: This relationship link the course learning chap-
ter(head) to the complexity level(tail) of the course
learning chapter. At this time, we have leveraged ex-
pert manual review of a part of the course abstract and
introduction to determine the complexity level. This
is a pedagogical type relationship.

3.2.3. Assign weights to the relationship edges

EduEmbedd factors weights given to the relationship
edges to arrive at the resultant embeddings. The concept
of weights play a vital role to highlight the confidence,
probability, degree of the association (of a relationship)
between the two entities. Different relationships requires
different criteria to assign the weights. We have consid-
ered a combination of machine learning based process
and expert reviews to arrive at the weights for the rela-
tionships (edge) and they are as follows:



• Text_topic: LDA for machine learning based topic
modelling algorithm considers the notion of proba-
bility to arrive at the topics. The probabilistic model
specifies a probability distribution over the k topics
for each course chapter text document. Each word in
the document is attributed to a particular topic with
probability given by this distribution. So the topics are
inherently defined as probability distributions over the
vocabulary. The probablity scores acts as weights for
this relationship type.

• Concept_vocab: The weights to this relationship
specifies the notion of the relative strengths of the
ICs in the course chapter document. Term Frequency
Inverse Document Frequency (TF-IDF). It is a weight-
ing system that assigns a weight to each word in a
document based on its term frequency (tf) and the re-
ciprocal document frequency (idf). The words with
higher scores of weight are deemed to be more signifi-
cant. The TF-IDF weights to the ICs in the document
is considered as the weights for this relationship edge.

• Prerequisite: The weights for this relationship
type is determined using an expect assessment mech-
anism meant to quantify the strength of the pre-
requisite course chapter which could aid in better un-
derstanding of the head node course chapter.

• Level: The weights for this relationship edge is deter-
mined using an expert assessment mechanism meant
to quantify the complexity level and the content depth
of the course chapter. It determines the extent to which
the course chapter content impart the learning either
as beginner, intermediate or at expert level. For exam-
ple a course chapter could be classified as 80 percent
Intermediate in complexity. In most cases if it is quite
evident that the course chapter is fully at an beginner
or intermediate or expert level then the weights could
be given as 1.

3.2.4. Build the EduEmbedd KGE model

There are two primary considerations that we consider
to build a suitable KGE model. The first is to consider
building a KGE model from scratch and the second is to
consider a standard boot strapped KGE model and fine
tune this as per Eduembedd requirements.

From a KGE model perspective, the requirements for
Eduembedd is to ensure that the model is able to com-
prehend 1-to-1 relationship, 1-to-many relationship and
many-to-many relationships between the head and the
tail entities. The model should be fairly interpretable as
far as the scoring objective function is concerned. This
is to enable us to efficiently work on updating the model
(to add the notion of weights to the base model) as well
as efficiently evaluate the model. Building a model from

scratch would be required if the critical requirements are
not being supported by the available base models. We
reviewed various base KGE models before arriving at the
base KGE model for EduEmbedd.

We studied various KGE models and decided to specifi-
cally evaluate compositional and non-compositional mod-
els or translations models. Compositional models elegant
way to learn the characteristic functions of the relations
in a knowledge graph, as they allow to cast the learning
task as a problem of supervised representation learning.
We specifically selected Holographic Embedding (HOLE)
in this class of KGE.

For Translational KGE models, we understand that
TransE is not capable of supporting 1-to-many and many-
to-many type of relations and hence we looks into other
translation models which supports this, like TransH and
TransR etc. After reviewing the computational aspects
of TransR we decided to select TransH as it met most of
our base criteria.

A very extensive and thorough selection of base mod-
els is not in the scope of the current version of Eduem-
bedd and is a work for future. Our endeavor for the
current version is to arrive at a viable baseline for Eduem-
bedd. We understand that the version of this KGE model
would be developed using custom KG data where we do
not have any prior performance baselines. Hence we
were inclined to use a base model which would be fairly
straightforward to interpret and evaluate based on the
scoring objective function. This is required because we
would need to functionally evaluate the model embed-
dings to verify the extent to which the model is able to
capture the scoring objective function into its learning,
to derive the embeddings. With this in mind, the trans-
lational type of KGE models comes as a natural choice
because it is more straightforward to verify the extent
to which the scoring objective function gets full-filled by
the final embeddings (vector computation could mean
adding a head to a relation should approximate to the
relation’s tail). TransH as a base KGE model is shortlisted
as part of this understanding. We also wanted to prac-
tically experiment with models of different genre and
which can be further modified to suit Eduembedd design
with a reasonable effort to develop and test. HOLE fits
well to this bracket.

A thorough evaluation between various KGE embed-
ding models (including TransH and HOLE) was per-
formed before arriving at TransH as the base KGE model
on top of which we will further build EduEmbedd.

3.2.5. EduEmbedd Support for TransH edge
weights

The base KGE models do not factor the numerical value as
a weight to a relationship(edge) attribute. Though there
are few multimodal KGE like LiteralE, TransEA etc. but



none of them are primarily designed to support numerical
value associated to edges. We have to build a version of
TransH which supports numerical value associated to
edges. We account for the edge weights by revamping
the base TransH model such that the scoring layer which
computes the TransH objective scoring function is able
to account for the edge weights while computing the
scoring and the loss function of the TransH network.
For a practical implementation, we should be able to
effectively change the base model (a neural network) to
handle numerical weights by ensuring that the below
components of a standard TransH model are revamped:

• Scoring function - Assign scores to Triples based
on the TransH scoring function, high scores to posi-
tive triples and comparatively low scores to negative
(corrupted) triples.

• Loss function - Optimize the embedding by max-
imizing the margin between positive and negative
triples.

• Optimization algorithm - Margin-based ranking
loss framework limits the scores of positive and nega-
tive triplets to have a suitable margin.

• Regularization mechanism - Initialize and com-
pute regularization of the KGE neural network Tensors.

• Initializer - Entity and Relation embedding initial-
ization functions.

• Negatives generation strategy - Corruptions
are synthetic negative triples generated by a corruption
generation layer that follows the protocol proposed in
[Bordes et al., 2013]: we define a corruption of t as �̄�=
(s; p; �̄�) or �̄� = (�̄�; p; o) where �̄�; �̄� are respectively sub-
ject or object corruptions (i.e. other entities randomly
selected from E). We generate synthetic negatives by
corrupting one side of the triple at a time to comply
with the local closed world assumption [Nickel et al.,
2016].

Let f(t) be the scoring function of a KGE model. In the
case of TransE [Bordes et al., 2013] this is:

𝑓(𝑡) = −||𝑒s + 𝑟p − 𝑒o||n (1)

where es, rp and eo are the embeddings of the subject s,
predicate p, and object o. We use a softplus non-linearity
to make sure the scores returned by f(t) are greater or
equal to zero, without introducing excessive distortion:

𝑔(𝑡) = (𝑓(𝑡)) = 𝑙𝑛(1 + 𝑒f(t)) >= 0 (2)

If we consider as the impact of the numerical edge
weights then our scoring function becomes

ℎ(𝑡) = 𝑔(𝑡) (3)

Now the loss function becomes L is a modified, more
numerically stable version of the negative log-likelihood
of normalized softmax scores proposed in [Kadlec, 2017]:

𝐿 = −(𝑙𝑜𝑔(𝑒h(t+)/(𝑒h(t+) + 𝑒h(t-))) (4)

Where, (t+) are all positive triples and (t-) are corrupted
triples either of the subject or the object entity is cor-
rupted. Through this updated training functions, we
modulate the network output based on numeric values
associated to triples. We leverage numeric weights asso-
ciated to triples so that during training the model focuses
on triples with higher numeric weights. We want our
model to learn from training triples with high numeric
weights, and at the same time use triple numeric weights
to maximise the margin between scores assigned to true
triples and those assigned to their corruptions. This in-
creases the loss of the model and helps it focus on triples
with higher weights.

3.2.6. Model Fine tuning and Final model selection

There are various critical hyperparameters which influ-
ences the quality of embeddings in EduEmbedd. These
are:

• Embedding dimension - This depends on the
amount of training data in our corpus and the num-
ber of entity features and many other factors beyond
the scope of this work. In EduEmbedd we choose the
embedding dimension empirically.

• Batch size - The number of training example in a
batch also plays an important role. A value between
5-20 is fit empirically before arriving at a desirable
value.

• Learning rate - The model learning rate is an impor-
tant hyper-parameter and we try various combinations
by increasing by a factor of 10 from the default value
of 0.1.

• If early stopping is not configured then the number of
epoch should also be tuned to ensure that the neural
network is efficiently converging.

4. Experiments
We assess the predictive power of EduEmbedd by per-
forming a combination of technical predictive evaluation
and functional evaluation. The technical predictive eval-
uation focuses on the evaluation of the KGE model using
link prediction. Here we use the commonly used KGE
metrics:

• Mean Rank - The average of the ranks of all positive
predictions.



• Mean Reciprocal Rank - The average of the recip-
rocal of the ranks of all positive predictions.

• Hits@1 - The fraction of positive predictions that rank
better than all their negative predictions, i.e., have a
rank of 1.

• Hits@3 - The fraction of positive predictions that rank
in the top 3 among their negative predictions.

• Hits@5 - The fraction of positive predictions that rank
in the top 5 among their negative predictions.

• Hits@10 - The fraction of positive predictions that
rank in the top 10 among their negative predictions.

4.1. Technical Predictive Evaluation
We conducted this Evaluation with 3 different objective
in our mind:

• Evaluate multiple models to select the best performing
model.

• Evaluate the best set of hyper-parameters for a partic-
ular model.

• Relative evaluation of the model performance on out
custom dataset.

Dataset: Custom data created using Open source ed-
ucational courses featuring multiple courses from the
Natural Language Processing field of education. The data
spans over more than 300 lesson chapters in total. Based
on the evaluation results Table 1 we found one of the
version of TransH with weights performs comparatively
better on most of the KGE predictive metrics. As this eval-
uation is conducted on a custom dataset we look forward
more towards a comparative assessment of the models
which could act as a viable baseline for future work. We
also understand that improvements to the data, feature
selection and base model would be critical to achieve
future improvements to the Evaluation baseline scores.

Going further we also evaluate our best perform-
ing TransH_with_weights model to the base TransH
(without weights) and observe Table 2 that the
TransH_with_weights is performing even better than
the base TransH on the various KGE predictive metrics.

4.2. Functional Evaluation of TransH with
weights

This evaluation is important for the work because the
technical predictive evaluation scores do not have any
prior baselines and it would be hard to practically quan-
tify an acceptable score achieved by a model on this data.
So our objective here is to verify the effectiveness of the

model in capturing the semantic aspect of our base data.
For this, we constructed a test set of 22 similar entities
taken from the base data and perform cosine similarity
test. The average cosine similarity scores are mentioned
in Table 3

This clearly shows that the revamped model of TransH
with weights is able to create embedding which are more
closer to the embeddings other similar entities. It shows
that it is having comparatively better semantic prowess.

We also wanted to verify that incorporating the notion
of weights is helping us to get model with better semantic
understanding. We evaluated the functional testing of
TransH with weights and compared with the version of
TransH without weights. The average cosine similarity
scores are mentioned in Table 4

This evaluation again points that having the notion of
weights in our model is performing better in comparison
to a model which does not account for weights.



Table 1
Predictive Evaluation of various models modified to handle edge weights

Model_name epochs k lr mrr mr hits_10 hits_5 hits_3 hits_1

transH_with_weights 50 40 0.1 0.205753 46.85977 0.389785 0.287634 0.219086 0.113351
transH_with_weights 100 40 0.1 0.187792 50.31586 0.364695 0.260305 0.193996 0.101703
transH_with_weights 50 50 0.1 0.20682 47.23477 0.40233 0.28853 0.219086 0.114247
transH_with_weights 100 50 0.1 0.187761 50.98477 0.364247 0.262993 0.196237 0.09991
transH_with_weights 50 40 0.01 0.130619 68.99283 0.254032 0.175627 0.138889 0.060484
transH_with_weights 100 40 0.01 0.11856 69.306 0.242832 0.166667 0.124552 0.051075
transH_with_weights 50 50 0.01 0.148806 66.39695 0.297043 0.203405 0.155466 0.073925
transH_with_weights 100 50 0.01 0.139172 65.30287 0.267473 0.183244 0.142473 0.0681
transE_with_weights 50 40 0.1 0.060491 148.4347 0.138544 0.083481 0.051954 0.019982
transE_with_weights 100 40 0.1 0.098372 97.52931 0.222025 0.145648 0.099023 0.036856
transE_with_weights 50 50 0.1 0.067951 147.4596 0.139876 0.088366 0.060835 0.026643
transE_with_weights 100 50 0.1 0.095743 95.56883 0.214032 0.141652 0.09103 0.035524
transE_with_weights 50 40 0.01 0.073888 155.9827 0.166075 0.102131 0.071936 0.027531
transE_with_weights 100 40 0.01 0.088706 113.3472 0.190053 0.129663 0.087922 0.03286
transE_with_weights 50 50 0.01 0.073352 153.3091 0.153197 0.094139 0.071492 0.028863
transE_with_weights 100 50 0.01 0.099445 112.1399 0.209591 0.138988 0.099467 0.042185
holE_with_weights 50 40 0.1 0.132954 76.07416 0.267762 0.186501 0.138988 0.061723
holE_with_weights 100 40 0.1 0.118447 69.79707 0.248668 0.167407 0.122114 0.047513
holE_with_weights 50 50 0.1 0.128366 78.98712 0.25222 0.171403 0.127886 0.062611
holE_with_weights 100 50 0.1 0.113633 79.7349 0.224245 0.15897 0.117673 0.049734
holE_with_weights 50 40 0.01 0.094671 104.1794 0.211812 0.139876 0.093694 0.034192
holE_with_weights 100 40 0.01 0.09835 83.54973 0.230018 0.152309 0.099911 0.033304
holE_with_weights 50 50 0.01 0.001254 800.0719 0 0 0 0
holE_with_weights 100 50 0.01 0.001254 800.0719 0 0 0 0

Table 2
Predictive Evaluation of TransH model with edge weights and vanilla TransH (without edge weights)

Model_name epochs k lr mrr mr hits_10 hits_5 hits_3 hits_1

transH_with_weights 50 40 0.1 0.205753 46.85977 0.389785 0.287634 0.219086 0.113351
transH 50 40 0.1 0.202403 47.34515 0.399013 0.280072 0.213196 0.106373

Table 3
Average cosine similarity scores for various models with edge
weights)

Model_name Average Cosine Similarity scores

Hole_with_weights 0.48
TransE_with_weights 0.33
TransH_with_weights 0.64

Table 4
Average cosine similarity scores for TransH models with edge
weights and standard TransH (without edge weights)

Model_name Average Cosine Similarity scores

TransH_with_weights 0.64
TransH_without_weights 0.49
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