
Related Table Search for Numeric data using Large
Language Models and Enterprise Knowledge Graphs
Pranav Subramaniam1, Udayan Khurana2, Kavitha Srinivas2 and Horst Samulowitz2

1The University of Chicago
2IBM Research

Abstract
Searching related tables is a crucial part of enterprise data lake exploration. However, data lakes often contain numeric tables
with unreliable column headers, and ID columns whose text names have been lost. Finding such related numeric tables in
large data lakes is a challenging task. State-of-the-art related table search relies on text values in tables, and cannot be applied
on numeric tables. On the other hand, the state-of-the-art for semantic labeling of numeric tables using enterprise knowledge
graphs (EKGs) has clear sources of semantic ambiguity due to its heuristic and rule-based approaches for determining numeric
types and EKG labels, leading to poor performance. In this paper, we propose a system, NumSearchLLM, that leverages LLMs
alongside EKGs to alleviate the ambiguity in semantic labeling of numeric columns and facilitate both joinable table search,
and more general table relatedness tasks. Specifically, we use LLMs to: (i) discover new relationships absent from EKGs; (ii)
validate numeric types assigned by heuristics; and (iii) check whether the semantic labels assigned to columns of a table
form a meaningful schema. We also show how EKGs can be used in conjunction with LLMs to fix labeling inconsistencies
discovered by LLMs by finding alternate labels. We show that by an integrated use of LLMs with EKGs, we can achieve
superior performance in joinable and related table search tasks in comparison to the current approaches.

Keywords
EKG- and LLM-based data discovery, numeric data discovery, paper formatting, tabular data

1. Introduction
When exploring enterprise data lakes, it is often crucial
to find tables that can add valuable information in com-
bination with a table already in possession. This could
be done through a join operation, or even simply finding
a table containing information that is related in some
way, such as, information in the same domain, differ-
ent information about the same event, etc. Finding such
semantically related tables can involve searching over
several kinds of tables in a data lake, including open data
sources, which have proven useful in enterprise settings
as well [1]. These sources include purely numeric tables
with unreliable column headers. Purely numeric data is
often found often in many domains, including finance,
industrial measurements, and medical practice.

Related table search over purely numeric tables is a
novel problem, and is challenging for a number of rea-
sons: (i) the semantics of a numeric table are difficult to
determine. For example, a column of positive integers
could be IDs or counts; (ii) there are many ways in which
tables can be related. For example, they may be joinable

CIKM’23: Workshop on Enterprise Knowledge Graphs Using Large
Language Models, October 21, 2023, Birmingham, UK

Envelope-Open psubramaniam@uchicago.edu (P. Subramaniam);
ukhurana@us.ibm.com (U. Khurana); Kavitha.Srinivas@ibm.com
(K. Srinivas); samulowitz@us.ibm.com (H. Samulowitz)

Orcid 0009-0005-4684-0501 (P. Subramaniam); 0000-0001-8113-
1210 (U. Khurana); 0000-0003-4610-967X (K. Srinivas); 0000-0002-
6780-3217 (H. Samulowitz)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

on columns representing the same type of information.
Or the tables may capture related information, e.g., movie
sales and movie cast finance tables.

Automatic procedures leveraging knowledge graphs
(KGs) and semantic similarity using word embeddings
have been developed to detect table relatedness [2, 3, 4, 5].
However, they each are specific to one type of relatedness
(e.g., joinability/unionability) and rely heavily on text
values contained in table cells and the column headers.
Further, KGs are limited in finding relationships between
entities because they are sparse and do not capture all
possible relationships that may exist between entities [6].

Typically, methods for determining relatedness do not
make the discovered relationship explicit: pairs of tables
are returned with a score indicating a join cardinality or
an embedding similarity, but no explanation.

On the other hand, existing works concerning purely
numeric tables only focus on column semantic labeling.
The state-of-the-art work, TTLA [7], for numeric se-
mantic labeling suffers from semantic ambiguities: (i)
TTLA [7] uses heuristics to assign numeric types to
columns, and then uses these types to select subsets of
KG candidate labels for each column. The rules imple-
mented by these heuristics are chosen arbitrarily (e.g.,
checking whether the range is greater than the square
root of total values), and must be adapted to different
types of numeric data [7]. For this reason, TTLA [7] can
assign the wrong type, ultimately resulting in incorrect
labeling. For example, Figure 1 shows that a table column
containing hospital bed counts can be incorrectly classi-

mailto:psubramaniam@uchicago.edu
mailto:ukhurana@us.ibm.com
mailto:Kavitha.Srinivas@ibm.com
mailto:samulowitz@us.ibm.com
https://orcid.org/0009-0005-4684-0501
https://orcid.org/0000-0001-8113-1210
https://orcid.org/0000-0001-8113-1210
https://orcid.org/0000-0003-4610-967X
https://orcid.org/0000-0002-6780-3217
https://orcid.org/0000-0002-6780-3217
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

YES

EKG
Property

dbp:bedCount

Column
Header

Tr0

…

583

550

Tr0
TTLA Heuristic
Range >
sqrt(Cardinality)?

Column Stats
Min: 501
Max: 956
Range: 455
Cardinality: 234

Sequential

Figure 1: Ambiguous numeric types due to Heuristics.

EKG

dbp:votes

Mean: 20431.5
Standard

Deviation:
1373553.89

dbo:bedCount

Mean: 340.0
Standard

Deviation:
581.92

TTLA Semantic
Label

dbo:termStart

TTLA Semantic
Label

dbo:bedCount

TTLA Semantic
Label

dbo:age

Tr2
Mean: 57.8

Std Dev.: 14.7

Tr1Tr0
Mean: 1999.5

Std Dev.: 32.41
Mean: 8782.9

Std Dev.: 153455.49

dbo:termStart

Mean: 1931.5
Standard

Deviation:
73.24

Tr2 dbo:age
Tr1 dbo:termStart

Tr0 dbp:votes

True LabelColumn
Header

Figure 2: Ambiguous semantic labels due to Euclidean Dis-
tance.

Tr0 Tr2Column Headers Tr1

“Area in Square
Kilometers”GPT-4’s Labels “Serial

Number”
“Population in

Thousands”

True Labels dbp:totalcapsdbp:totalGoalsPlayer ID

Prompt: “We know that each column is a sample of
numeric DBpedia property values. What are likely
DBpedia labels for columns Tr0, Tr1, and Tr2?”

Figure 3: GPT-4’s paraphrased answer. It cannot effectively
detect semantics of soccer statistics table.

fied as ”sequential” by following the heuristic rule that
the range of values is greater than the square root of the
total number of values in the column. (ii) TTLA directly
compares column numeric distributions to numeric prop-
erty distributions in KGs using Euclidean distance, which
can often be inaccurate. Figure 2 shows an example of
a numeric column such as 𝑇 𝑟_0 can be mapped to the
wrong EKG label (<http://dbpedia.org/bedCount>) sim-
ply because the summary statistics of 𝑇 𝑟_0 are closer to
those of dbo:bedCount than other labels.

Recently, many works have proven LLMs are effective
at tabular tasks (e.g., joinability/semantic labeling [8],
entity resolution [9]). However, LLMs currently cannot
directly detect semantics of numeric tables (see Figure 3).

In this paper, we show how LLMs can be leveraged
to overcome the semantic ambiguities of numeric typ-
ing and semantic labeling by detecting inconsistencies
among semantic labels for the same table, and ensuring
numbers match the type assigned by heuristics. We then
use these semantic labels for table relatedness. We find
that while LLMs cannot directly determine numeric table
semantics, they are effective at these tasks.

LLMs are pretrained to perform classification, suggest-
ing they can more accurately determine the types of num-
bers, which are leveraged by the state-of-the-art numeric
semantic labeling method [7]. LLMs might also detect
out-of-place semantic labels in a schema (e.g., do all labels
explain a bus company, or does one of them concern a
politician’s votes?) These properties of LLMs make them
useful in numeric semantic labeling. Further, LLMs are
pretrained to answer text summarization, information
extraction, and classification questions that can make
them useful for determining relatedness of two blocks of
text (such as two table schemas), if prompted correctly.
And naturally, LLMs can explicate relationships between
tables. These LLM properties are potentially useful for
related numeric table search, provided proper handling
of potential issues such as hallucinations.

We propose NumSearchLLM, a system that leverages
these strengths of large language models by incorporat-
ing them into state-of-the-art numeric semantic labeling
methods using EKGs for more accurate explainable re-
lated table search over purely numeric tables. Our pre-
liminary evaluation shows that NumSearchLLM achieves
superior performance in joinable and related table search
tasks in comparison to the current approaches. Although
we use DBpedia as a proxy for EKGs, NumSearchLLM
can use any EKG as input. Also, giving DBpedia as in-
put can allow NumSearchLLM to find related tables from
open data, which has proven valuable in many settings,
including the enterprise setting [1, 10, 11, 12].

2. Background

2.1. Related Table Search
Automatic procedures for determining table relatedness
rely on external knowledge, in the form of heuristics, KGs,
or word embeddings. Some works consider tables related
based on the heuristics of overlap similarity, or identical
datatypes [13, 14, 12]. More recent solutions leverage KG
labels or word embedding vectors as external knowledge.
Some such solutions map tables to KGs and determine
table relatedness via KG relationships [5, 15], others use
word embeddings for semantic similarity, both of column
values [2, 3] and similarity of column headers [4, 5, 12, 16].
In the case of numeric tables, these solutions cannot be
applied, as they rely on text appearing in tables.

2.2. Numeric Table Relatedness
There is no direct way to perform related table search
over purely numeric tables. Perhaps the closest work
is D3L [16], which uses row entities to contextualize
numeric attributes when discovering joins and unions,
but they assume a table will have a subject attribute they
can use to determine the entities.

However, there has been modest success in leveraging
KGs to perform column semantic labeling on numeric
tables. TTLA is the state-of-the-art numeric column se-
mantic labeling technique which designs and applies a
numeric typology first to select subsets of KG labels more
likely to contain the label that correctly describes a col-
umn, and then maps columns to KG properties by match-
ing column and KG distribution parameters such as mean
and standard deviation, using Euclidean distance.

2.3. LLMs for Numeric Related Search
Recent works have shown that generative pretrained
LLMs have the key advantage that they can solve a wide
variety of tasks including information extraction over
tables [17]. Further, several methods have been devel-
oped to leverage LLMs and are useful for performing
a wide variety of tasks, including entity resolution [9],
tabular understanding [18, 19], and semantic annotation
and joinability [8]. Considering their capabilities, LLMs
can be used as another source of external knowledge to
determine table relatedness. However, LLMs, like KGs
and word embeddings, cannot directly be used to deter-
mine table relatedness for purely numeric tables because
language models are likely not trained on examples of
the semantics of numbers. Therefore, one key challenge
is to devise a method of using LLMs that will enhance
numeric semantic labeling and assess table relatedness.

2.4. Problem Statement
We consider the enterprise setting where an analyst has
purely numeric input table 𝐼 and wishes to find purely
numeric tables related to 𝐼 in data lake 𝐿. The enterprise
has an EKG capturing all information collected by the
enterprise. We consider the case where the tables in 𝐿
are known to contain information in the EKG, but it is
unknown which KG labels describe each table.

Formally, we assume that each table 𝑡 is described by
an EKG class 𝐶𝑡, each row of table 𝑡, 𝑟𝑡, is an EKG entity
𝑒𝑡 that is an instance of class 𝐶𝑡, and each column is a
numeric EKG property of one or more instances of 𝐶𝑡, 𝑝𝑡.

Then, given input table 𝐼, we want to find all tables
𝑡 ∈ 𝐿 such that (i) 𝐼 and 𝑡 are strongly-semantic joinable,
or (ii) 𝐼 and 𝑡 are table-related.

Definition 1: Strongly-semantic joinable There exists
some join key column of 𝐼 and some join key column of

user: Consider the following sample of
a list of values: ... Would you consider
this list sequential? Begin your answer
with YES or NO.

model: NO, the sample list you’ve
given is not sequential according to
this definition...

Figure 4: NumSearchLLM’s Type Verification Prompt

𝑡 such that 𝐼 ⋈ 𝑡 can be taken, and for each row of 𝐼 ⋈ 𝑡
consisting of pairs of rows from original tables 𝐼 and 𝑡,
(𝑟𝐼, 𝑟𝑡), the EKG contains the same path between the EKG
entities corresponding to 𝑟𝐼 and 𝑟𝑡 (that is, the join aligns
pairs of entities such that all pairs of entities are related
in the same way). Definition 2: Table-related 𝐼 and 𝑡 are
table-related if there is an EKG path between the classes
representing each table, 𝐶𝐼 and 𝐶𝑡.

While the above definitions precisely describe the
types of relatedness in this paper, LLMs allow us to relax
these definitions: a path between entities/tables does not
have to exist in the EKG for the LLM to determine they
are related, and the LLM can describe classes and entities
more precisely than the EKG. This allows us to discover
a wider variety of joinable/table-related tables.

3. NumSearchLLM
To solve the above problem, we propose NumSearchLLM,
an approach integrating LLMs and the EKG to recover
the schemas of purely numeric tables, and then perform
relatedness search. The approach leverages LLMs to (i)
improve numeric typing and (ii) detect incorrect semantic
labels among labels in a table schema and suggest alter-
natives. We then provide the LLM with semantic labels
and use it to perform joinability and table relatedness.

The main steps of our NumSearchLLM approach are: 𝑖)
Assigning Numeric Types, 𝑖𝑖) Mapping types to semantic
labels, and 𝑖𝑖𝑖) Related table and joinability search. We
describe how EKGs and LLMs are integrated to perform
each of these steps in detail below.

3.1. Assigning Numeric Types to Columns
Given a collection of numeric values for a column, 𝑐,
we use TTLA’s rule-based heuristics [7] and the LLM
to find the numeric type of 𝑐. For example, one such
rule is that the numeric type ”categorical” is assigned if
distinct values in c < √|𝑐| [7].

Given 𝑐 and its type assigned by the heuristic 𝑦𝑐, we
enhance the heuristics with LLMs for numeric typing
by using an in-context learning step followed by the
type verification step, followed by a type inference step
if needed. The prompt for the in-context learning step
defines 𝑦𝑐 and includes an example list of numbers.

The in-context learning prompt is the following: We
define the following numeric type [definition of 𝑦𝑐]. Here
is an example [example list]. The type verification step
prompt is shown in Figure 4 (𝑦𝑐 is ”sequential” here). If
the type verification step returns ”no”, then we use a
type inference prompt to choose a different numeric type.
The type inference prompt is the following: Consider the
following alternate numeric types: [other definitions]. Of
these, which do you think is most likely for this set of num-
bers? If the heuristic and LLM types are identical then
NumSearchLLM returns that type. If the inferred types
differ, and the type inferred by LLM is not ”categorical”
then NumSearchLLM returns the type inferred by LLM. If
the types disagree and LLM assigned type is ”categorical”,
then since the LLM is unable to understand the numeric
thresholds, NumSearchLLM does not rely on its answer
and instead returns the type assigned by the heuristics.

3.2. Semantic Labeling of Columns
Given the numeric types of each column, we initially
assign EKG semantic labels and validate them using LLMs
to obtain the column semantic label (example below). The
generation of this label involves reaching an agreement
between the labels assigned using EKGs and LLMs and
may involve a pre-defined number of iterations between
the EKGs and LLMs to reach agreement.

user: Consider the following table
schema, represented using DBpedia
labels: dbp:bedCount, dbp:votes,[...].
What might this table represent? Are
there labels in the schema that seem
out of place compared to the others?

model: Yes, the label dbp:bedCount
appears to be out of place[...].

In order to assign EKG semantic labels, the numeric prop-
erties in EKGs are first pre-processed to produce cluster-
ing models containing their distribution parameters.
Preprocessing the EKG.We find all properties 𝑃 whose
datatype is numeric according to the EKG backend. For
each property 𝑝 ∈ 𝑃, we search for nodes in the EKG that
have a collection of values for these properties (e.g., node
𝑛 has 𝑝 = {4, 5}). We concatenate all collections of values
from all nodes into one collection, 𝑆𝑝. This set of values is
the distribution of 𝑝 (e.g., the distribution of ages, heights,
annual riderships, etc.). We use our method for numeric
type assignment involving heuristics and LLMs on the
distribution of 𝑝 to determine the numeric type of 𝑝 (e.g.,
counts, sequential, categorical, or other). Given the nu-
meric type of 𝑝, we compute the appropriate distribution
parameters, e.g., number of unique values and value his-
togram for categorical type, mean and standard deviation
for counts etc. for that property. Then, for each numeric
type, we cluster all property parameters of properties

with that type in a fuzzy c-means clustering model. Each
cluster is the vector of distribution parameters for one
property (e.g., <mean, standard deviation>).

Algorithm 1 clusterEKG
1: Input: EKG, LLM
2: clusteringModels = ∅
3: for 𝑝 ∈ EKG.properties do
4: if 𝑝.isNumeric() == True then
5: values = extractPropertyValues(EKG.entities,

𝑝)
6: propertyType = computeType(values, LLM)
7: distributionParameters = computeParame-

ters(values, propertyType)
8: clusteringModels[propertyType].cluster(dis-

tributionParameters, 𝑝)
9: end if

10: end for
11: return clusteringModels

Given the numeric types and clustering models ob-
tained from preprocessing the EKG, for each column of
a table: we use its numeric type to select the clustering
model containing numeric properties of the same nu-
meric type. Then, we cluster the column’s distribution
parameters and assign the top EKG label from the subset.
After performing semantic labeling on all table’s columns,
the output is a table schema comprised of EKG labels.

For each table 𝑡, NumSearchLLM gives the LLM ta-
ble 𝑡’s schema and asks the LLM the following question
(paraphrased): Consider the given DBpedia labels repre-
senting a schema[...] Do any of these labels seem out of
place? If so, does a substitute for the wrong label from
the following list apply? If not, suggest a label from the
following alternatives [...].. The LLM can return a list of
labels that are out-of-place, 𝑂. In this case, for each label
𝑙 ∈ 𝑂, we choose the top-𝑘 alternative labels based on
the fuzzy c-means clustering model (𝑘 is specified by the
user). If the LLM chooses a substitute from the top-𝑘,
NumSearchLLM chooses this label as substitute. Other-
wise, the LLM can indicate none of the top-𝑘 labels apply.
In this case, we ask the LLM to generate an alternative
label. To avoid the possibility that the LLM hallucinated
a label that is not actually in the EKG, NumSearchLLM
embeds the LLM-generated labels, embeds the EKG la-
bels, and then finds the most similar EKG label to the
LLM-generated label. The most similar EKG label may
still be unrelated. To account for this, we repeat the
above procedure on the schema with the newly chosen
semantic label. Algorithm 2 describes our procedure.

3.3. Related Table Search
Given input table and lake table 𝐼 and 𝑡 with semantic
labels 𝑙𝐼 and 𝑙𝑡 respectively, we provide the following

Algorithm 2 semLabel
1: Input: clusteringModels, LLM, 𝑡
2: columnLabels = ∅
3: for column ∈ 𝑡 do
4: columnType = computeType(column, LLM)
5: distributionParameters = computeParame-

ters(column, columnType)
6: columnLabel = clusteringModel[column-

Type].cluster(distributionParameters)
7: columnLabels.𝑎𝑑𝑑(columnLabel
8: end for
9: correctedLabels = verifyLabels(LLM, columnLabels)

10: return correctedLabels

prompts for table relatedness and then joinability: (i) ta-
ble relatedness: Is it likely that these tables are related? (ii)
I have determined that these tables can be joined, and this
join aligns the following pairs of data instances represented
in each table: [insert pairs]. Based on these pairs, do you
think there is a relationship between the tables? We show
the overall NumSearchLLM algorithm in Algorithm 3.

Algorithm 3 NumSearchLLM
1: Input: 𝐼, 𝐿, EKG, LLM
2: clusteringModels = clusterEKG(EKG, LLM)
3: Related_Tables = ∅
4: inputSchema = semLabel(clusteringModels, LLM, 𝐼)
5: for 𝑡 ∈ 𝐿 do
6: tSchema = semLabel(clusteringModels, LLM, 𝑡)
7: isRelated, Relationship = findRelationship(LLM,

inputSchema, tSchema, 𝑡)
8: if isRelated == True then
9: Related_Tables.𝑎𝑑𝑑(𝑡)

10: end if
11: end for
12: return Related_Tables

3.4. Implementation Details
NumSearchLLM makes use of classification prompts
whose answer is either binary (yes/no) or an element
of a specified list (e.g., numeric type categories). The
LLM must return responses that are parseable with re-
spect to these categories. To ensure this, we suffix all
prompts with ”Begin your answer with YES or NO.”, or
”Begin your answer with the chosen category.” So far, this
has proven effective on ChatGPT as well as LlaMA2.

4. Evaluation

4.1. Setup
Our Benchmark. As there is no existing benchmark to
our knowledge for related table search of purely numeric
tables, we constructed our own benchmark of 100 tables,
consisting of 50 pairs of joinable tables and 20 other pairs
of non-joinable but related tables. We plan to make this
benchmark available. We constructed pairs of joinable
tables using DBpedia classes and their properties. We
used a list of DBpedia classes available from Kaggle [20]
to construct input and join table pairs. Each input table
is constructed from numeric properties of instances of
a DBpedia class (e.g., votes of a politician, which is an
instance of class dbo:Politician). The join key is a KG
edge from the class instance to another entity.

For each class, we sampled the numeric properties for
the class, sampled the class property URIs for join keys,
and then retrieved class instances with each numeric
property-join key combination in a brute-force fashion,
searching for combinations that returned a high number
of class instances (more than 50 instances, in our case).
The output is a set of tables where each table has a clearly
labeled ground truth column indicating the DBpedia class
instance each row represents, several property columns,
and one or more join key columns. The property cells
are numeric properties of the instance, the join key cells
are the URIs for KG entities that are property values of
the instance. The ground truth column is the DBpedia
URI for the class instance. Of the 100 collected tables, we
manually compare pairs of table schemas to determine
table relatedness based on whether the information cap-
tured in both tables is related. For example, a table about
U.S. politicians is related to a table about U.S. elections,
but not to a table about birthplaces of European soccer
players. Note that a pair of related tables can also be join-
able, but there are tables in the dataset that are related
but not joinable. We do not use the ground truth, but
store it to report the accuracy of our approach.
Baselines. We compare against a recent system for find-
ing numeric joins only using EKGs, called NumJoin [21].

4.2. Preliminary Results
In this section, we answer the central research question
of this work: do LLMs improve the precision and recall
of joinable and related table search over a data lake for
given input tables? We explore a popular LLM, ChatGPT
(gpt-3.5-turbo), and a popular open-source LLM used
as a precursor to many other LLMs, LlaMA2.

We first discuss the overall performance of NumSearch-
LLM. Then, we evaluate the effectiveness of LLMs on each
component, namely NumSearchLLM’s numeric typing
and labeling accuracy, and table relatedness precision and

recall assuming the correct labels. Our current results
show that LLMs can greatly enhance table relatedness
when the correct EKG labels are provided.
Overall Performance of NumSearchLLM.We observe
that NumSearchLLM boosts the recall of related table
search compared to NumJoin, a state-of-the-art system
for discovering numeric joins. Specifically, NumSearch-
LLM finds 36 joinable table pairs out of 50, of which
20 are joinable, compared to only 10 found by NumJoin
(NumJoin Precision: 10 / 10 = 100%, NumJoin Recall: 10
/ 50 = 20%, NumSearchLLM Precision: 20 / 36 = 55.56%.
NumSearchLLM Recall: 20 / 50 = 40%).

NumJoin determines whether a join exists by find-
ing entities with KG properties labeled using semantic
labeling, and links between those entities. Therefore,
when semantic labeling is incorrect due to semantic am-
biguity, this greatly limits its ability to correctly disam-
biguate entities and find existing links between them.
NumSearchLLM’s enhanced semantic labeling is more
accurate, allowing it to discover more joinable tables.

We also report NumSearchLLM’s overall performance
for table relatedness: precision: 20 / 20 = 100% of pairs of
tables, recall: 20 / 70 = 28.57% of pairs of tables. Note that
the baseline NumJoin does not perform table relatedness.
LLM Choice: We also report NumSearchLLM results on
LlaMA2. LlaMA2’s training data involves conversations
more than tabular data [22]. Naively using the earlier
prompts leads to a much higher number of hallucinations
and stock responses such as, ”As a language model, I
cannot answer this question...”. We attempt to improve
the performance by adding 5 negative and 5 positive
few-shot training examples [23, 24] devised by randomly
choosing 5 other DBpedia classes from which to generate
joinable table pairs using the data generation process
above (one example described below).

user: Is it likely that these tables are
related? [Example Table 1] [Example
Table 2]

user posing as model: No, there
doesn’t appear to be a direct and
inherent relationship between the two
table schemas you mentioned.

user: Is it likely that these tables are
related? [Real Table 1] [Real Table 2]

model: Yes, these two tables are
related.

ChatGPT’s performance still far exceeds LlaMA2 (join-
ability precision: 5 / 92, recall: 5 / 50 = 10%). This indi-
cates that including more training examples of tabular
tasks on open LLMs may improve performance.

While these results exceed the state-of-the-art
(NumJoin [21]), there is still much room to improve. To
isolate the area with the most opportunity, we ablate

NumSearchLLM with respect to numeric typing and se-
mantic labeling accuracies, and related table search.
Numeric Typing Accuracy We compare the heuristic
rule-based numeric typing used by TTLA and our LLM-
enhanced approach. Our metric is the accuracy of the
numeric type assigned to each column. We find that the
rule-based accuracy is 145 / 358 columns, whereas the
LLM-enhanced approach is 195 / 358 columns.

Overall, using the LLM to verify and suggest alter-
native numeric types can effectively avoid mislabeling
count columns as sequential and vice versa. However,
LLMs can incorrectly agree with heuristics. For example,
foreign key columns with high redundancy are categori-
cal (they should be sequential).
Numeric Semantic Labeling Accuracy We compare
TTLA to the LLM-enhanced approach for semantic label-
ing. Our metric is the accuracy of the DBpedia semantic
label assigned to each column. We find that TTLA has
accuracy 126 / 358 columns, whereas the LLM-enhanced
approach has accuracy 181 / 358.

Overall, using the LLM effectively detects incorrect la-
bels by detecting inconsistencies among semantic labels
assigned to columns of the same table. However, the LLM
frequently hallucinates alternate labels that are more
vague than the true label. For this reason, when Num-
SearchLLM uses embeddings to map the LLM-generated
labels to DBpedia labels, it frequently chooses similar
but different labels. For example, the true label may be
dbp:PopulationDensity, but NumSearchLLM may ulti-
mately choose dbp:PopulationTotal.

The numeric typing and semantic labeling accuracy
values show that LLMs are successfully able to detect and
correct semantic ambiguities present in the state-of-the-
art semantic labeling system, TTLA.
Related Table Search with Perfect Labels: We have
shown that LLMs can improve semantic labeling, but
there is still much room for improvement. We now an-
swer whether there is room for LLMs to improve with
regards to table relatedness. We achieve this by assuming
all tables have been labeled with the correct semantic
labels, and then running only the related table search
portion of NumSearchLLM. We find that joinable table
search has precision 45 / 45 = 100%, and recall 45 / 50
= 90%. Based on this benchmark this suggests that one
improvement lies in using LLMs for numeric semantic
labeling while improving related table search appears dif-
ficult. Additional benchmarks with uncommon semantic
labels not well-known to LLMs are likely to make related
table search more challenging as well. Other opportuni-
ties include scaling NumSearchLLM (LLM inferences are
max 1.5s per prompt, 250 tokens, and 300 prompts) and
varying LLM prompts to enable precision/recall tuning.

References
[1] N. Chepurko, R. Marcus, E. Zgraggen, R. C. Fer-

nandez, T. Kraska, D. Karger, Arda: Automatic
relational data augmentation for machine learning,
Proc. VLDB Endow. 13 (2020) 1373–1387. URL: https:
//doi.org/10.14778/3397230.3397235. doi:10.14778/
3397230.3397235.

[2] Y. Dong, K. Takeoka, C. Xiao, M. Oyamada, Ef-
ficient joinable table discovery in data lakes: A
high-dimensional similarity-based approach, CoRR
abs/2010.13273 (2020). URL: https://arxiv.org/abs/
2010.13273. arXiv:2010.13273.

[3] Y. Dong, C. Xiao, T. Nozawa, M. Enomoto, M. Oya-
mada, Deepjoin: Joinable table discovery with
pre-trained language models, 2022. URL: https:
//arxiv.org/abs/2212.07588. doi:10.48550/ARXIV.
2212.07588.

[4] G. Fan, J.Wang, Y. Li, D. Zhang, R. Miller, Semantics-
aware dataset discovery from data lakes with con-
textualized column-based representation learning,
2022. URL: https://arxiv.org/abs/2210.01922. doi:10.
48550/ARXIV.2210.01922.

[5] R. Castro Fernandez, E. Mansour, A. A. Qahtan,
A. Elmagarmid, I. Ilyas, S. Madden, M. Ouzzani,
M. Stonebraker, N. Tang, Seeping semantics: Link-
ing datasets using word embeddings for data discov-
ery, in: 2018 IEEE 34th International Conference
on Data Engineering (ICDE), 2018, pp. 989–1000.
doi:10.1109/ICDE.2018.00093.

[6] M. Wang, L. Qiu, X. Wang, A survey on knowledge
graph embeddings for link prediction, Symmetry
13 (2021). URL: https://www.mdpi.com/2073-8994/
13/3/485. doi:10.3390/sym13030485.

[7] C. Faron, C. Ghidini, A. Alobaid, E. Kacprzak,
O. Corcho, C. Faron, C. Ghidini, Typology-based
semantic labeling of numeric tabular data, Semant.
Web 12 (2021) 5–20. URL: https://doi.org/10.3233/
SW-200397. doi:10.3233/SW-200397.

[8] M. Kayali, A. Lykov, I. Fountalis, N. Vasiloglou,
D. Olteanu, D. Suciu, Chorus: Foundation models
for unified data discovery and exploration, 2023.
arXiv:2306.09610.

[9] R. Peeters, C. Bizer, Using chatgpt for entity match-
ing, 2023. arXiv:2305.03423.

[10] Z. Huang, P. Subramaniam, R. C. Fernandez, E. Wu,
Kitana: Efficient data augmentation search for au-
toml, 2023. arXiv:2305.10419.

[11] resources.data.gov, Business case for open data,
2023. URL: https://resources.data.gov/resources/
open-data/.

[12] F. Nargesian, E. Zhu, K. Q. Pu, R. J. Miller, Ta-
ble union search on open data, Proc. VLDB
Endow. 11 (2018) 813–825. URL: https://doi.org/
10.14778/3192965.3192973. doi:10.14778/3192965.

3192973.
[13] E. Zhu, F. Nargesian, K. Q. Pu, R. J. Miller, Lsh en-

semble: Internet-scale domain search, Proc. VLDB
Endow. 9 (2016) 1185–1196. URL: https://doi.org/
10.14778/2994509.2994534. doi:10.14778/2994509.
2994534.

[14] E. Zhu, D. Deng, F. Nargesian, R. J. Miller, Josie:
Overlap set similarity search for finding join-
able tables in data lakes, in: Proceedings of
the 2019 International Conference on Manage-
ment of Data, SIGMOD ’19, Association for Com-
puting Machinery, New York, NY, USA, 2019,
p. 847–864. URL: https://doi.org/10.1145/3299869.
3300065. doi:10.1145/3299869.3300065.

[15] A. Khatiwada, G. Fan, R. Shraga, Z. Chen, W. Gat-
terbauer, R. J. Miller, M. Riedewald, Santos:
Relationship-based semantic table union search,
2022. URL: https://arxiv.org/abs/2209.13589. doi:10.
48550/ARXIV.2209.13589.

[16] A. Bogatu, A. A. A. Fernandes, N. W. Paton, N. Kon-
stantinou, Dataset discovery in data lakes, in: 2020
IEEE 36th International Conference on Data Engi-
neering (ICDE), 2020, pp. 709–720. doi:10.1109/
ICDE48307.2020.00067.

[17] T. Brown, B. Mann, et al., Language models are
few-shot learners, in: Advances in Neural Infor-
mation Processing Systems, volume 33, Curran
Associates, Inc., 2020, pp. 1877–1901. URL: https:
//proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[18] J. Jiang, K. Zhou, Z. Dong, K. Ye, W. X. Zhao, J.-
R. Wen, Structgpt: A general framework for large
languagemodel to reason over structured data, 2023.
arXiv:2305.09645.

[19] Y. Sui, M. Zhou, M. Zhou, S. Han, D. Zhang, Evalu-
ating and enhancing structural understanding capa-
bilities of large language models on tables via input
designs, 2023. arXiv:2305.13062.

[20] D. Ofer, Dbpedia classes: Hierarchical taxonomy of
wikipedia article classes, 2019. URL: https://www.
kaggle.com/datasets/danofer/dbpedia-classes.

[21] IBM, Numjoin: Discovering numeric joinable tables
with semantically related columns, 2023. URL: https:
//tinyurl.com/u2upae2j.

[22] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A.
Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Ham-
bro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave,
G. Lample, Llama: Open and efficient foundation
language models, 2023. arXiv:2302.13971.

[23] S. M. Xie, A. Raghunathan, P. Liang, T. Ma, An ex-
planation of in-context learning as implicit bayesian
inference, in: International Conference on Learn-
ing Representations, 2022. URL: https://openreview.
net/forum?id=RdJVFCHjUMI.

[24] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis,

https://doi.org/10.14778/3397230.3397235
https://doi.org/10.14778/3397230.3397235
http://dx.doi.org/10.14778/3397230.3397235
http://dx.doi.org/10.14778/3397230.3397235
https://arxiv.org/abs/2010.13273
https://arxiv.org/abs/2010.13273
http://arxiv.org/abs/2010.13273
https://arxiv.org/abs/2212.07588
https://arxiv.org/abs/2212.07588
http://dx.doi.org/10.48550/ARXIV.2212.07588
http://dx.doi.org/10.48550/ARXIV.2212.07588
https://arxiv.org/abs/2210.01922
http://dx.doi.org/10.48550/ARXIV.2210.01922
http://dx.doi.org/10.48550/ARXIV.2210.01922
http://dx.doi.org/10.1109/ICDE.2018.00093
https://www.mdpi.com/2073-8994/13/3/485
https://www.mdpi.com/2073-8994/13/3/485
http://dx.doi.org/10.3390/sym13030485
https://doi.org/10.3233/SW-200397
https://doi.org/10.3233/SW-200397
http://dx.doi.org/10.3233/SW-200397
http://arxiv.org/abs/2306.09610
http://arxiv.org/abs/2305.03423
http://arxiv.org/abs/2305.10419
https://resources.data.gov/resources/open-data/
https://resources.data.gov/resources/open-data/
https://doi.org/10.14778/3192965.3192973
https://doi.org/10.14778/3192965.3192973
http://dx.doi.org/10.14778/3192965.3192973
http://dx.doi.org/10.14778/3192965.3192973
https://doi.org/10.14778/2994509.2994534
https://doi.org/10.14778/2994509.2994534
http://dx.doi.org/10.14778/2994509.2994534
http://dx.doi.org/10.14778/2994509.2994534
https://doi.org/10.1145/3299869.3300065
https://doi.org/10.1145/3299869.3300065
http://dx.doi.org/10.1145/3299869.3300065
https://arxiv.org/abs/2209.13589
http://dx.doi.org/10.48550/ARXIV.2209.13589
http://dx.doi.org/10.48550/ARXIV.2209.13589
http://dx.doi.org/10.1109/ICDE48307.2020.00067
http://dx.doi.org/10.1109/ICDE48307.2020.00067
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2305.09645
http://arxiv.org/abs/2305.13062
https://www.kaggle.com/datasets/danofer/dbpedia-classes
https://www.kaggle.com/datasets/danofer/dbpedia-classes
https://tinyurl.com/u2upae2j
https://tinyurl.com/u2upae2j
http://arxiv.org/abs/2302.13971
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI

H. Hajishirzi, L. Zettlemoyer, Rethinking the role of
demonstrations: What makes in-context learning
work?, arXiv preprint arXiv:2202.12837 (2022).

	1 Introduction
	2 Background
	2.1 Related Table Search
	2.2 Numeric Table Relatedness
	2.3 LLMs for Numeric Related Search
	2.4 Problem Statement

	3 NumSearchLLM
	3.1 Assigning Numeric Types to Columns
	3.2 Semantic Labeling of Columns
	3.3 Related Table Search
	3.4 Implementation Details

	4 Evaluation
	4.1 Setup
	4.2 Preliminary Results

