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Abstract
Enterprise Knowledge Graphs (EKG) are powerful tools for representing and reasoning about complex and dynamic domains,
such as cyber threat intelligence. However, designing and constructing such graphs can be challenging, especially when
dealing with heterogeneous and noisy data sources. This paper presents our novel approach to using Large Language
Models (LLM) for EKG design and development based on our experience building a Threat Intelligence Graph (TIG) using
GPT3.5/ GPT4/ ChatGPT. We show how LLMs can automatically extract, infer, validate, and summarize information from
various sources, such as threat reports, literature, scripts, etc., and populate the EKG with relevant entities, relationships, and
properties. We also demonstrate how LLMs can identify malicious intents in any script file and map it to the TIG to detect
any malicious techniques linked to the script. We demonstrate that an LLM-EKG-based approach could deliver up to 99%
recall on the task of detection of malicious scripts and a consistent 90%+ recall on the task of detection of specific threat types
across all script-based cybersecurity threats.
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1. Introduction
Cyber threat intelligence is the process of collecting, an-
alyzing, and disseminating information about current
and emerging cyber threats, such as actors, targets, tech-
niques, tools, etc. Cyber threat intelligence can help or-
ganizations to proactively defend themselves from cyber-
attacks by providing them with actionable and timely
insights. However, cyber threat intelligence is also a
complex and dynamic domain, where the information
is often scattered across various sources, such as news
articles, social media posts, dark web forums, etc. It can
be incomplete, inconsistent, or inaccurate. In addition,
cyber threats are constantly evolving and adapting to
new technologies and environments, making it difficult
to keep track of them.

Malicious scripts are common vectors of cyber threats
and attacks, as they can execute arbitrary code on the
target system and compromise security. Detecting ma-
licious scripts is, therefore, an important task for enter-
prise security. However, detecting malicious scripts is
difficult, especially while preserving the privacy and in-
tellectual property rights underlying the code in these
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scripts. Moreover, malicious scripts can be dynamically
generated or modified by other scripts or programs, mak-
ing them hard to analyze statically. Therefore, traditional
signature-based or rule-based methods are ineffective
in detecting malicious scripts as they can only match
known files or near absolute pattern-matching.

One way to address these challenges is to use dy-
namically designed Enterprise Knowledge Graphs (EKG),
which are graph-based representations of knowledge that
capture the semantics and context of a domain. EKGs can
enable efficient and effective reasoning and query over
large-scale and heterogeneous data sources by leveraging
the rich structure and semantics of the graph. EKGs can
also facilitate knowledge discovery and sharing among
stakeholders by providing a common and intuitive view
of the domain. Graphs on executables, API calls, and con-
trol flows have been used in the past [1]. The graphs used
in such approaches had been designed, extracted, and
enriched using the expertise of subject matter experts
(SME) and manually designed extractors. Hence, these
are neither scalable nor widely extendable to applications,
even across the cybersecurity domain. Designing and
creating dynamic and scalable EKGs without extensive
SME involvement can be challenging, especially when
dealing with complex and dynamic domains like cyber
threat intelligence. Some of the challenges include:

• How to define the schema and ontology of the
graph that can capture the essential concepts and
relationships of the domain?

• How to extract relevant information from various
sources and map them to the graph schema?

• How to validate and improve the quality and con-
sistency of the information in the graph?
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• How to summarize and present the information in
the threat reports and malicious scripts in graph
format and vice versa?

• How to make decisions based on information in
the graph?

• How to correlate insights across multiple graphs
or subgraphs?

In this paper, we present our novel approach, CRUSH
(for Cybersecurity Research using Universal LLMs and
Semantic Hypernetworks), to using Large Language
Models (LLM) to alleviate these challenges associated
with designing, creating and using such dynamic and
scalable EKG in an automated manner, without much
SME involvement and in real-time. Using this approach,
we design and enrich a Threat Intelligence Graph (TIG)
using the GPT series of LLMs, like the GPT 3.5 (Turbo),
GPT 3.5 Chat, and GPT 4 Chat, and Bing Chat (An en-
hanced/assisted variant of GPT 4). LLMs are large foun-
dation neural network models trained on large-scale text
corpora and can generate natural language texts based
on various inputs or prompts. LLMs have shown remark-
able capabilities in various natural language processing
tasks, such as text summarization, question answering,
text generation, etc.

However, LLMs are also not perfect. Mitigating hal-
lucination and enhancing the ability to reason [2] are
looming research challenges for any practical enterprise
application of LLMs. Moreover, to the best of our infor-
mation, LLMs have not previously been employed for
such complex tasks of designing and enriching EKGs.
Therefore, this paper shows how we leveraged these ca-
pabilities to address the challenges of designing EKGs
and creating them for cyber threat intelligence. We base-
line CRUSH, an LLM-EKG-based approach, to the LLM-
Only-based approach for malicious script and threat type
detection. We demonstrated that CRUSH is superior to
an LLM-only approach but can also deliver up to 99%
recall on detecting malicious scripts and a consistent
90%+ recall on detecting specific threat types across all
script-based cybersecurity threats.

2. Related Work
LLMs [3] have revolutionized various applications and
domains. These have revolutionized multiple domains
ranging from biomedical [4, 5] to education [6]. How-
ever, their application in the cybersecurity domain has
found limited applications. This is because not many
applications in cybersecurity use text and natural lan-
guage data and telemetry. One approach to leveraging
the architecture of the large language models is to use
transformers and other architectural aspects behind the
LLMs and pre-train the resulting model on security data

like the malware binaries. A similar approach has been
used in the past for the security domain [7]; however,
such approaches did not become as popular.

Open Source Intelligence (OSINT) refers to the process
and methods of finding, gathering, analyzing, and using
information from publicly available sources [8]. OSINT
has a direct connection with cybersecurity. The cyber
intelligence community has increasingly started to use
public records to collect unique and valuable intelligence.
This involves creating a complete profile of certain targets
using openly available information [9]. However, despite
the opportunities, due to the unstructured and unbound
nature of the information available in OSINT, it is not easy
to use OSINT [10, 11]. In the case of cybersecurity, similar
challenges exist. Hence, using OSINT is still largely a
human expert and curated knowledge retrieval task.

The terminology used in cybersecurity is unique, and
hence, researchers have found it valuable to train (rel-
atively) smaller versions of the transformer models on
cybersecurity data [12]. Given the added complexity
in the threat intelligence (TI) domain, researchers have
found it useful to train such transformer models on TI
data [13]. However, these relatively smaller foundation
models suffer from multiple drawbacks that led to the
evolution of LLMs [14], and hence are not ideal for the
type of applications we intend to perform.

3. Data, LLMs and LLM-Assisting
resources Used

We compare and baseline CRUSH against an LLM-Only
approach as described in section 4 across two tasks. Both
tasks use a common dataset, which is a collection of mali-
cious and clean script files across different programming
languages and platforms. Each malicious file is mapped
to a particular threat type, which has a specific TTP. Be-
sides the script files, we collected blog URLs describing
the various threats and their respective TTPs to which
these scripts are mapped.

Each threat type of interest here could use a different
programming language or script type based on its TTP.
Some threat types could use multiple script languages to
attack machines across different platforms or to evade
detection. The expertise of Microsoft’s Threat Research
team was used to validate each threat type and label these
scripts for the identified threat type. We also collected
some clean scripts across different script types to avoid
bias. Figure 1 shows the distribution of collected scripts
across threat types. Whereas Figure 2 shows the distribu-
tion of these scripts based on scripting language or the
extension.



Figure 1: Distribution of Scripts based on Threat Type (Including Clean Scripts)

3.1. LLMs Used
We used multiple LLM Endpoints or APIs to demonstrate
the universality of the application and the approach.
Some of these endpoints are enhanced with either search
or Retrieval Augmented Generation (RAG) [15] capabili-
ties or both. The LLMs used are:

• GPT 3.5 Turbo
• GPT 3.5 Chat (ChatGPT)
• GPT 4.0 Chat (ChatGPT Plus)
• Bing Chat - A search and RAG enhanced variant

of GPT-4

3.2. Addressing LLM Issues - Noise,
Hallucination, Reasoning, and
Planning

At appropriate stages in the methodology (refer section
5, we use LLMs to standardize the TTPs to standardized
threat nomenclature as provided by third parties like
MITRE ATT&CK[16] to reduce noise in the EKG and
for a fair comparison. Some of the LLMs endpoints in
the list (example LLM 3.1) come augmented with RAG,
search, and planning. So, these variants of LLMs could
automatically reason when to use search, RAG, or gener-
ation and could also create a plan of action to use these
steps in a coordinated manner for the desired action [17].
For universal interoperability of the solution across all
the stated LLMs, we enhanced the remaining with the
MITRE ATT&CK TTP listing by either direct injection in

the LLM context or by using RAG. We further augmented
some LLM variants with reasoning and planning assist
frameworks like the Microsoft Semantic Kernel [18].

4. Baseline: Classifying Malicious
Scripts with LLM-Only
approach

Large LLMs, like GPT-4, are often trained on a corpus of
data that includes code and script files across different
programming languages. Many applications and com-
mercial tools employ such LLMs as co-pilots for coding
[19]. This validates that these models could understand
programming languages and produce syntactically cor-
rect code for a specific intent in a given programming
or scripting language. Therefore, arguably, such LLMs
possess the capability of understanding the intent of an
existing code or script file. Therefore, to produce a base-
line to validate our model against, we create an LLM-
Only baseline model that combines best practices and
techniques ranging from prompt engineering, reasoning,
and planning [20, 21] to get the optimal performance
out of an LLM directly. This approach uses two or more
series of prompting with reasoning. In the first series of
prompting, LLMs are used to summarize and then un-
derstand the intent of a particular script file. Due to the
context length limitations, not all script files could fit into
the LLM context. In such a case, we chunk the script into
sizes that could fit into the LLM context, with adequate



Figure 2: Distribution of Script based on Scripting Language

overlaps across chunks to maintain continuity. In a sub-
sequent step, the obtained intent is again passed through
another round of prompts to assess if the resultant code
intent could be part of malicious Tactics, Techniques and
Procedures (TTP). For the chunked scripts, another series
of prompting was carried out to join the intents obtained
from each chunk in sequence into a coherent intent de-
scription for homogeneity and further processing. In the
next series of prompting, the script is classified as mali-
cious or clean based on the response to these prompts.
In yet another series of prompting, we tried to obtain the
specific threat type from a limited list of threats) that the
specific TTP could lead to.

4.1. Baseline Results
We baselined the performance of the Prompt Engineering
based on the description in section 4. Figure 3. shows the
binary model’s baseline performance based on the TTP’s
maliciousness assessment. Figure 4 shows the class-wise
recall of the multivariate model that assesses the treat
type based on the TTP.

As shown in Figure 3, the precision of this model is not
good. Also, Figure 4 shows that recall for certain threat
types is not good.

Figure 3: LLM-Only Baseline Performance - - Malicious Script
Detection

5. CRUSH Methodology
Figure 5 shows a high-level schematic of our methodol-
ogy. In this, we first use prompt engineering methodolo-
gies [22] to obtain a schema of the different node and
relationship types relevant to the TI landscape. Exam-
ples of some of the node types that the LLM suggested to
keep in the schema range from Malware Family, Malware
Name, Threat Group, Techniques, etc.

Subsequently, in the next step, we provided some
threat feeds and queried the LLM with another series
of prompt engineering to extract the relevant nodes and



Figure 4: LLM-Only Baseline Performance: Threat Type Detection

Figure 5: High-Level Process Schematic

relationships in the form of triples [23] (i.e. node-relation-
node). For noise considerations, instead of querying over
all entities, this process is repeated over individual rela-
tions in the schema. Further, longer feeds were broken
into smaller parts to reduce noise and optimally fit into
the context window.

The triples extraction process was transformed into
multiple LLM-skill/plugins for the LLM to make this pro-
cess generalizable and scalable [18]. Many of these ex-
tractions may require nested LLM plugins or skills. Also,

while working on a large and scalable graph like this, it
may become challenging to recall the appropriate llm-
plugins. Therefore, to alleviate these challenges and en-
hance interoperability across multiple LLM endpoints,
we used an LLM planner [24].

The sub-graph generated by the CRUSH for each script
was intersected with the global TI graph made using the
TTP description of all the combined threat types and their
descriptions. The resulting feature vectors were used for
classification using a logistic regression classifier, and



the results obtained were compared against the LLM-
Only approach. The qualitative assessment and labelling
are described in sub-section 5.1, and the quantitative
performance benchmarks are provided in section 6.

5.1. Evaluation Mechanism
Since no standardized training or evaluation data exists
for this purpose, we relied on the domain expertise of
professional threat intelligence researchers to validate
the constituents of the graph, and then later, the insights
obtained from the traversal of this graph for different
threat types and other cybersecurity purpose. For this
purpose, we collaborated with Microsoft’s Threat Intelli-
gence Research team, which researches OSINT and other
threat intelligence means and mechanisms. We acquired
a collection of labelled scripts across different threat types
from this team. Further, we used the SMEs from the team
to validate the graph connection and entities suggested
by the CRUSH approach for their relevance to the spe-
cific threat type and the specific TTP as discovered in the
intent in the script code.

Following the qualitative assessment by the threat ex-
perts, we evaluated the two approaches empirically using
the labels provided by the threat experts.

6. LLM-EKG Threat Detection
Results

Using the methodology as described in section 5, and
the labels collected as described in section 5.1, the binary
and threat-class classification performance metrics for
CRUSH (LLM-EKG) approach were computed. Figure 6
shows the performance in a binary detection scenario,
where we are interested in knowing whether a script is
malicious or clean. This result shows a significant uplift
in the recall, taking it to 99% as compared to a baseline
of 95%, of the LLM-Only model while maintaining or
improving the precision and F1 scores over the baseline
model.

Similarly, Figure 7 shows the performance metrics of
the CRUSH-based model in detecting the specific threat
type. For almost all threats but one, there is an improve-
ment or maintenance in all the metrics (precision, recall,
F1-score). Also, for most of the threats, the recall is 100%
for the CRUSH approach.

7. Conclusion
We presented CRUSH, an approach to use LLMs and
semantic hypernetworks to design and enrich a TIG for
cyber threat intelligence. We showed how CRUSH can
extract, integrate, and infer information from various

Figure 6: CRUSH (LLM-EKG) Performance - Malicious Script
Detection

cyber threat intelligence sources and how it can represent
and query the complex and dynamic relationships in the
TIG. We evaluated CRUSH on malicious script and threat
type detection, showing that it can achieve high recall and
outperform the LLM-only approach. We used multiple
LLM endpoints or APIs to demonstrate the universality of
our approach and how we addressed some of the common
issues associated with LLMs, such as noise, hallucination,
reasoning, and planning. We used LLMs to standardize
the TTPs to standardized threat nomenclature provided
by third parties like MITRE ATT&CK. Some of the LLM
endpoints we used were enhanced with either search or
RAG capabilities or both. These variants of LLMs could
automatically reason and plan for the desired action. For
universal interoperability of our solution across all the
LLMs, we enhanced some LLM variants with reasoning
and planning assist frameworks like Microsoft Semantic
Kernel.

We believe that CRUSH is a promising and innovative
approach to using LLMs for cyber threat intelligence and
that it can be extended to other domains and tasks that
require designing and enriching EKGs. We also hope
that CRUSH can inspire more research on combining
LLMs and semantic hypernetworks for natural language
processing and artificial intelligence.
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